metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[N,N-di­ethyl-N′-(2-pyridyl­methyl­ene)ethane-1,2-di­amine]mercury(II)

aDepartment of Chemistry Education, Interdisciplinary Program of Advanced Information and Display Materials, and Center for Plastic Information Systems, Pusan National University, Busan 609-735, Republic of Korea, and bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 25 December 2009; accepted 2 January 2010; online 9 January 2010)

The Hg atom in the title compound, [HgCl2(C12H19N3)], adopts a distorted trigonal-bipyramidal geometry, being ligated by two Cl atoms and three N atoms of the N,N-diethyl-N′-(2-pyridylmethyl­ene)ethane-1,2-diamine ligand. The dihedral angle between the HgN3 and HgCl2 least-squares planes is 88.6 (1)°. The Hg—N distances including the pyridine N and the ammonium N atom are about 0.20 Å longer than the Hg—N distance including the imino N atom.

Related literature

For general background to luminescent mercury compounds, see: Elena et al. (2006[Elena, L.-T., Antoina, M. & Ceser, J. P. (2006). Polyhedron, 25, 1464-1470.]); Durantaye et al. (2006[Durantaye, L. D. L., McCormick, T., Liu, X.-Y. & Wang, S. (2006). Dalton Trans. pp. 5675-5682.]); Fan et al. (2009[Fan, B., Yang, Y., Yin, Y., Hasi, W. & Mu, Y. (2009). Inorg. Chem. 48, 6034-6043.]). For the syntheses and structures of these compounds, see: Kim et al. (2008[Kim, Y.-I., Lee, Y.-S., Seo, H.-J., Nam, K.-S. & Kang, S. K. (2008). Acta Cryst. E64, m358.]); Seo et al. (2009[Seo, H.-J., Kim, Y.-I., Lee, Y.-S. & Kang, S. K. (2009). Acta Cryst. E65, m55.]).

[Scheme 1]

Experimental

Crystal data
  • [HgCl2(C12H19N3)]

  • Mr = 476.79

  • Monoclinic, P 21 /n

  • a = 8.0028 (5) Å

  • b = 16.6507 (9) Å

  • c = 12.4541 (8) Å

  • β = 101.630 (5)°

  • V = 1625.47 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.79 mm−1

  • T = 295 K

  • 0.27 × 0.24 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.085, Tmax = 0.102

  • 17026 measured reflections

  • 4039 independent reflections

  • 3124 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.059

  • S = 1.04

  • 4039 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—Cl1 2.4088 (11)
Hg1—Cl2 2.4431 (11)
Hg1—N1 2.540 (3)
Hg1—N8 2.336 (3)
Hg1—N11 2.544 (3)

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Much attention has been paid to the design and synthesis of luminescent mercury compounds for the detection and extraction of the mercury (Elena et al., 2006; Durantaye et al., 2006), among which, Hg(II) complexes with pyridine-containing ligands are of importance for their high luminescent efficiency (Fan et al., 2009). Recently, we reported Hg(II) compounds with bis(2-pyridylmethyl)amine (Kim et al., 2008) and with benzyl(2-pyridylmethyl)amine (Seo et al., 2009) as a development of blue fluorescent materials. In this work, we prepared a Hg(II) complex with N,N-diethyl-N'-pyridine-2-ylmethylene-ethene-1,2-diamine (depmed), and its structure and luminescent properties were investigated.

In the title compound, (I), the Hg atom is 5-coordinated by two Cl atoms and three N atoms of the tridentate depmed ligand. The coordination geometry around Hg atom is based on a distorted trigonal bipyramid with the equatorial plane defined by N8, Cl1, and Cl2 atoms, with the other N atoms occupying axial positions. The dihedral angle between the least-squares planes through the N1/N8/N11/Hg atoms and that through the HgCl2 atoms is 88.6 (1)°; the bond angle of N1—Hg—N11 is 139.2 (1)°. The Hg–N1 and Hg–N11 bond distances are each about 0.20Å longer than the Hg–N8 bond distance, Table 1.

The free ligand (depmed) showed strong blue (λmax,PL = 491 nm in DMF) fluorescent emissions upon 280 nm excitation, while Hg(depmed)Cl2 displayed two blue emission (λmax,PL = 309 and 389 nm in DMF) which was tentatively assigned to be an intraligand (IL) 1π-π* transition. The PL quantum yield (f) versus 9,10-diphenylanthracene was measured to be 0.29% and 0.04% for free ligand (depmed) and Hg(depmed)Cl2, respectively.

Related literature top

For general background to luminescent mercury compounds, see: Elena et al. (2006); Durantaye et al. (2006); Fan et al. (2009). For the syntheses and structures of these compounds, see: Kim et al. (2008); Seo et al. (2009).

Experimental top

All of the reagents and solvents were purchased from Aldrich and used without further purification. The N,N-diethyl-N'-pyridine-2-ylmethylene-ethene-1,2-diamine (L) was synthesized by reacting N,N-diethyl-ethylenediamine (15 mmol) and 2-pyridinecarboxaldehyde (15 mmol) in methanol (50 ml). The mixture was stirred for 3 h at room temperature and the solution was evaporated to dryness. The residue was extracted with dichloromethane to give depmed as yellow oil. A solution depmed (5 mmol) in methanol (15 ml) was added slowly to a solution of mercuric chloride (5 mmol) in methanol (15 ml). The mixture was stirred for 12 h at room temperature. The resultant precipitate was collected by filtration and washed several times with cool methanol. The precipitate was dried over vacuum in an oven at room temperature. The crystals were obtained by slow evaporation in a methanol solution. Yield: 53%. Anal. Calcd. for C12H19N3Cl2Hg: C, 30.23; H, 4.02; N, 8.81. Found: C, 29.97; H, 4.21; N, 8.76. 1H-NMR (300 MHz, d6-DMSO) δ; 8.95 (1H, d, J=4.2 Hz), 8.57 (1H, s), 7.97 (1H, t, J=7.8 Hz), 7.62–7.68 (2H, m), 3.82 (2H, t, J=6.5 Hz), 2.94–3.08 (6H, m), 1.19 (6H, s).

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.97 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic- and methylene-H, and 1.5Ueq(C) for methyl-H atoms.

Structure description top

Much attention has been paid to the design and synthesis of luminescent mercury compounds for the detection and extraction of the mercury (Elena et al., 2006; Durantaye et al., 2006), among which, Hg(II) complexes with pyridine-containing ligands are of importance for their high luminescent efficiency (Fan et al., 2009). Recently, we reported Hg(II) compounds with bis(2-pyridylmethyl)amine (Kim et al., 2008) and with benzyl(2-pyridylmethyl)amine (Seo et al., 2009) as a development of blue fluorescent materials. In this work, we prepared a Hg(II) complex with N,N-diethyl-N'-pyridine-2-ylmethylene-ethene-1,2-diamine (depmed), and its structure and luminescent properties were investigated.

In the title compound, (I), the Hg atom is 5-coordinated by two Cl atoms and three N atoms of the tridentate depmed ligand. The coordination geometry around Hg atom is based on a distorted trigonal bipyramid with the equatorial plane defined by N8, Cl1, and Cl2 atoms, with the other N atoms occupying axial positions. The dihedral angle between the least-squares planes through the N1/N8/N11/Hg atoms and that through the HgCl2 atoms is 88.6 (1)°; the bond angle of N1—Hg—N11 is 139.2 (1)°. The Hg–N1 and Hg–N11 bond distances are each about 0.20Å longer than the Hg–N8 bond distance, Table 1.

The free ligand (depmed) showed strong blue (λmax,PL = 491 nm in DMF) fluorescent emissions upon 280 nm excitation, while Hg(depmed)Cl2 displayed two blue emission (λmax,PL = 309 and 389 nm in DMF) which was tentatively assigned to be an intraligand (IL) 1π-π* transition. The PL quantum yield (f) versus 9,10-diphenylanthracene was measured to be 0.29% and 0.04% for free ligand (depmed) and Hg(depmed)Cl2, respectively.

For general background to luminescent mercury compounds, see: Elena et al. (2006); Durantaye et al. (2006); Fan et al. (2009). For the syntheses and structures of these compounds, see: Kim et al. (2008); Seo et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme and 30% probability ellipsoids.
Dichlorido[N,N-diethyl-N'-(2-pyridylmethylene)ethane-1,2- diamine]mercury(II) top
Crystal data top
[HgCl2(C12H19N3)]F(000) = 904
Mr = 476.79Dx = 1.948 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5949 reflections
a = 8.0028 (5) Åθ = 2.5–26.4°
b = 16.6507 (9) ŵ = 9.79 mm1
c = 12.4541 (8) ÅT = 295 K
β = 101.630 (5)°Block, colourless
V = 1625.47 (17) Å30.27 × 0.24 × 0.23 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3124 reflections with I > 2σ(I)
φ and ω scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
θmax = 28.3°, θmin = 2.1°
Tmin = 0.085, Tmax = 0.102h = 1010
17026 measured reflectionsk = 2222
4039 independent reflectionsl = 1416
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.026P)2 + 0.5659P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.71 e Å3
4039 reflectionsΔρmin = 0.92 e Å3
163 parameters
Crystal data top
[HgCl2(C12H19N3)]V = 1625.47 (17) Å3
Mr = 476.79Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0028 (5) ŵ = 9.79 mm1
b = 16.6507 (9) ÅT = 295 K
c = 12.4541 (8) Å0.27 × 0.24 × 0.23 mm
β = 101.630 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4039 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3124 reflections with I > 2σ(I)
Tmin = 0.085, Tmax = 0.102Rint = 0.029
17026 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.04Δρmax = 0.71 e Å3
4039 reflectionsΔρmin = 0.92 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.208069 (19)0.190628 (9)0.561325 (12)0.05266 (7)
Cl10.04834 (16)0.20511 (8)0.70474 (10)0.0766 (3)
Cl20.06896 (15)0.15227 (8)0.37542 (9)0.0756 (3)
N10.3474 (4)0.0549 (2)0.6108 (3)0.0533 (8)
C20.2740 (6)0.0156 (3)0.6201 (4)0.0654 (11)
H20.15550.01770.60570.078*
C30.3629 (7)0.0862 (3)0.6499 (4)0.0697 (12)
H30.30580.13420.65530.084*
C40.5359 (7)0.0830 (3)0.6708 (4)0.0731 (13)
H40.59960.12920.69150.088*
C50.6169 (6)0.0108 (3)0.6612 (3)0.0659 (11)
H50.73530.00780.67450.079*
C60.5184 (5)0.0570 (2)0.6313 (3)0.0527 (9)
C70.5949 (5)0.1352 (3)0.6185 (3)0.0584 (10)
H70.7130.13910.62830.07*
N80.5056 (4)0.19763 (19)0.5946 (3)0.0554 (8)
C90.5810 (6)0.2749 (3)0.5783 (4)0.0706 (12)
H9A0.69060.26710.55780.085*
H9B0.5990.30570.64580.085*
C100.4618 (7)0.3196 (2)0.4886 (4)0.0721 (14)
H10A0.51110.37150.47820.087*
H10B0.4510.28990.42060.087*
N110.2900 (5)0.33175 (19)0.5129 (3)0.0545 (8)
C120.2909 (6)0.3827 (2)0.6098 (3)0.0597 (10)
H12A0.35440.35490.67360.072*
H12B0.17430.3880.61970.072*
C130.3658 (7)0.4666 (3)0.6073 (4)0.0860 (15)
H13A0.36040.49420.67420.129*
H13B0.30160.4960.54630.129*
H13C0.48250.46270.59960.129*
C140.1738 (7)0.3608 (3)0.4138 (4)0.0836 (15)
H14A0.17830.32410.3540.1*
H14B0.21340.41280.39420.1*
C150.0096 (8)0.3686 (4)0.4267 (5)0.112 (2)
H15A0.07820.38810.35950.168*
H15B0.01570.40570.48490.168*
H15C0.0510.31710.4440.168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.04281 (9)0.06545 (11)0.05013 (10)0.00279 (7)0.01033 (7)0.00321 (7)
Cl10.0616 (7)0.1078 (9)0.0680 (7)0.0054 (6)0.0312 (6)0.0045 (6)
Cl20.0637 (7)0.0923 (8)0.0615 (7)0.0041 (6)0.0097 (6)0.0122 (6)
N10.0474 (18)0.065 (2)0.0478 (18)0.0010 (15)0.0114 (15)0.0030 (15)
C20.060 (3)0.076 (3)0.066 (3)0.002 (2)0.025 (2)0.011 (2)
C30.082 (3)0.070 (3)0.065 (3)0.001 (2)0.033 (3)0.011 (2)
C40.092 (4)0.068 (3)0.062 (3)0.023 (3)0.024 (3)0.014 (2)
C50.057 (3)0.080 (3)0.059 (3)0.020 (2)0.009 (2)0.000 (2)
C60.051 (2)0.067 (2)0.040 (2)0.0014 (19)0.0081 (17)0.0043 (17)
C70.037 (2)0.080 (3)0.058 (2)0.003 (2)0.0084 (18)0.014 (2)
N80.0451 (18)0.066 (2)0.057 (2)0.0078 (15)0.0133 (16)0.0080 (16)
C90.052 (3)0.069 (3)0.095 (4)0.008 (2)0.025 (3)0.004 (3)
C100.089 (4)0.063 (3)0.078 (3)0.019 (2)0.050 (3)0.005 (2)
N110.065 (2)0.0620 (19)0.0372 (17)0.0039 (16)0.0116 (16)0.0066 (14)
C120.068 (3)0.066 (3)0.047 (2)0.003 (2)0.016 (2)0.0030 (19)
C130.115 (4)0.070 (3)0.078 (3)0.006 (3)0.031 (3)0.012 (3)
C140.115 (5)0.080 (3)0.048 (3)0.004 (3)0.003 (3)0.019 (2)
C150.099 (5)0.117 (5)0.102 (4)0.024 (4)0.024 (4)0.018 (4)
Geometric parameters (Å, º) top
Hg1—Cl12.4088 (11)C9—H9A0.97
Hg1—Cl22.4431 (11)C9—H9B0.97
Hg1—N12.540 (3)C10—N111.480 (6)
Hg1—N82.336 (3)C10—H10A0.97
Hg1—N112.544 (3)C10—H10B0.97
N1—C21.328 (5)N11—C141.470 (5)
N1—C61.341 (5)N11—C121.473 (5)
C2—C31.385 (6)C12—C131.524 (6)
C2—H20.93C12—H12A0.97
C3—C41.357 (6)C12—H12B0.97
C3—H30.93C13—H13A0.96
C4—C51.384 (6)C13—H13B0.96
C4—H40.93C13—H13C0.96
C5—C61.383 (6)C14—C151.514 (8)
C5—H50.93C14—H14A0.97
C6—C71.462 (6)C14—H14B0.97
C7—N81.262 (5)C15—H15A0.96
C7—H70.93C15—H15B0.96
N8—C91.452 (5)C15—H15C0.96
C9—C101.511 (7)
N8—Hg1—Cl1122.54 (9)C10—C9—H9B109.9
N8—Hg1—Cl2115.75 (9)H9A—C9—H9B108.3
Cl1—Hg1—Cl2121.35 (4)N11—C10—C9113.0 (3)
N8—Hg1—N167.63 (11)N11—C10—H10A109
Cl1—Hg1—N1100.47 (8)C9—C10—H10A109
Cl2—Hg1—N195.24 (8)N11—C10—H10B109
N8—Hg1—N1172.16 (12)C9—C10—H10B109
Cl1—Hg1—N11106.49 (8)H10A—C10—H10B107.8
Cl2—Hg1—N1196.14 (8)C14—N11—C12113.3 (4)
N1—Hg1—N11139.24 (11)C14—N11—C10109.3 (4)
C2—N1—C6117.3 (4)C12—N11—C10113.2 (4)
C2—N1—Hg1128.9 (3)C14—N11—Hg1110.7 (3)
C6—N1—Hg1113.9 (3)C12—N11—Hg1107.2 (2)
N1—C2—C3124.1 (4)C10—N11—Hg1102.5 (2)
N1—C2—H2117.9N11—C12—C13116.6 (3)
C3—C2—H2117.9N11—C12—H12A108.1
C4—C3—C2117.9 (4)C13—C12—H12A108.1
C4—C3—H3121.1N11—C12—H12B108.1
C2—C3—H3121.1C13—C12—H12B108.1
C3—C4—C5119.6 (4)H12A—C12—H12B107.3
C3—C4—H4120.2C12—C13—H13A109.5
C5—C4—H4120.2C12—C13—H13B109.5
C6—C5—C4118.7 (4)H13A—C13—H13B109.5
C6—C5—H5120.6C12—C13—H13C109.5
C4—C5—H5120.6H13A—C13—H13C109.5
N1—C6—C5122.4 (4)H13B—C13—H13C109.5
N1—C6—C7115.8 (3)N11—C14—C15113.7 (4)
C5—C6—C7121.8 (4)N11—C14—H14A108.8
N8—C7—C6122.0 (4)C15—C14—H14A108.8
N8—C7—H7119N11—C14—H14B108.8
C6—C7—H7119C15—C14—H14B108.8
C7—N8—C9122.0 (4)H14A—C14—H14B107.7
C7—N8—Hg1120.6 (3)C14—C15—H15A109.5
C9—N8—Hg1117.2 (3)C14—C15—H15B109.5
N8—C9—C10108.7 (4)H15A—C15—H15B109.5
N8—C9—H9A109.9C14—C15—H15C109.5
C10—C9—H9A109.9H15A—C15—H15C109.5
N8—C9—H9B109.9H15B—C15—H15C109.5

Experimental details

Crystal data
Chemical formula[HgCl2(C12H19N3)]
Mr476.79
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)8.0028 (5), 16.6507 (9), 12.4541 (8)
β (°) 101.630 (5)
V3)1625.47 (17)
Z4
Radiation typeMo Kα
µ (mm1)9.79
Crystal size (mm)0.27 × 0.24 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.085, 0.102
No. of measured, independent and
observed [I > 2σ(I)] reflections
17026, 4039, 3124
Rint0.029
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.059, 1.04
No. of reflections4039
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.92

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Hg1—Cl12.4088 (11)Hg1—N82.336 (3)
Hg1—Cl22.4431 (11)Hg1—N112.544 (3)
Hg1—N12.540 (3)
 

Acknowledgements

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NO. 2009–0066594).

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDurantaye, L. D. L., McCormick, T., Liu, X.-Y. & Wang, S. (2006). Dalton Trans. pp. 5675–5682.  Google Scholar
First citationElena, L.-T., Antoina, M. & Ceser, J. P. (2006). Polyhedron, 25, 1464–1470.  Google Scholar
First citationFan, B., Yang, Y., Yin, Y., Hasi, W. & Mu, Y. (2009). Inorg. Chem. 48, 6034–6043.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKim, Y.-I., Lee, Y.-S., Seo, H.-J., Nam, K.-S. & Kang, S. K. (2008). Acta Cryst. E64, m358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeo, H.-J., Kim, Y.-I., Lee, Y.-S. & Kang, S. K. (2009). Acta Cryst. E65, m55.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds