organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,5-Di­methyl­phen­yl)-2,4-di­methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 25 November 2009; accepted 25 November 2009; online 28 November 2009)

In the title compound, C16H19NO2S, the mol­ecule is twisted about the S—N bond, the C—S(O2)—N(H)—C torsion angle being 53.9 (2)°. The dihedral angle between the two benzene rings is 82.1 (1)°. The crystal structure features inversion-related dimers linked by N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006[ Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600-606.]). For our work on the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009a[ Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576.],b[ Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009b). Acta Cryst. E65, o1976.]); Nirmala et al. (2009[ Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3225.]). For related structures, see: Gelbrich et al. (2007[ Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[ Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19NO2S

  • Mr = 289.38

  • Monoclinic, C 2/c

  • a = 23.490 (2) Å

  • b = 8.1528 (6) Å

  • c = 16.544 (1) Å

  • β = 102.690 (8)°

  • V = 3090.9 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 299 K

  • 0.40 × 0.20 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[ Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.921, Tmax = 0.975

  • 6232 measured reflections

  • 2751 independent reflections

  • 2009 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.01

  • 2751 reflections

  • 188 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.10 (2) 2.945 (3) 176 (3)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[ Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[ Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[ Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009a,b; Nirmala et al., 2009), in the present work, the structure of 2,4-dimethyl-N-(3,5-dimethylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The molecule is bent at the S–O bond atom with the C1—SO2—NH—C7 torsion angle being 53.9 (2)°, compared to the values of 46.1 (3)° and 47.7 (3)° in the two independent molecules of 2,4-dimethyl-N-(3,5-dimethylphenyl)benzenesulfonamide (II) (Gowda et al., 2009a), 67.9 (2)° in N-(3,5-dimethylphenyl)benzenesulfonamide (III) (Nirmala et al., 2009) and -69.7 (2)° in 2,4-dimethyl-N-(3,4-dichlorophenyl)benzenesulfonamide (IV) (Gowda et al., 2009b).

The two benzene rings in (I) are tilted relative to each other by 82.1 (1)°, compared to the values of 67.5 (1)° (molecule 1) and 72.9 (1)° (molecule 2) in the two independent molecules of (II), 54.6 (1)° in (III) and 82.4 (1)° in (IV). The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) is through pairs of N—H···O(S) hydrogen bonds (Table 1).

Related literature top

For the preparation of the title compound, see: Savitha & Gowda (2006). For our work on the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009a,b); Nirmala et al. (2009). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of m-xylene (10 cc) in chloroform (40 cc) was treated drop-wise with chlorosulfonic acid (25 ml) at 273 K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with a stoichiometric ratio of 3,4-dimethylaniline and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice-cold water (100 ml). The resultant solid, 2,4-dimethyl-N- (3,5-dimethylphenyl)benzenesulfonamide, was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and refined with the distance restraint N—H = 0.86 (2) Å, and with Uiso(H) = 1.2Ueq(C). The C atoms were included in the riding model approximation with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
N-(3,5-Dimethylphenyl)-2,4-dimethylbenzenesulfonamide top
Crystal data top
C16H19NO2SF(000) = 1232
Mr = 289.38Dx = 1.244 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2194 reflections
a = 23.490 (2) Åθ = 2.5–27.9°
b = 8.1528 (6) ŵ = 0.21 mm1
c = 16.544 (1) ÅT = 299 K
β = 102.690 (8)°Prism, colourless
V = 3090.9 (4) Å30.40 × 0.20 × 0.12 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2751 independent reflections
Radiation source: fine-focus sealed tube2009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Rotation method data acquisition using ω and ϕ scans.θmax = 25.3°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2817
Tmin = 0.921, Tmax = 0.975k = 99
6232 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0512P)2 + 3.0162P]
where P = (Fo2 + 2Fc2)/3
2751 reflections(Δ/σ)max = 0.004
188 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.28 e Å3
Crystal data top
C16H19NO2SV = 3090.9 (4) Å3
Mr = 289.38Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.490 (2) ŵ = 0.21 mm1
b = 8.1528 (6) ÅT = 299 K
c = 16.544 (1) Å0.40 × 0.20 × 0.12 mm
β = 102.690 (8)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2751 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2009 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.975Rint = 0.018
6232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.19 e Å3
2751 reflectionsΔρmin = 0.28 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.05610 (3)0.54362 (8)0.39886 (4)0.0472 (2)
O10.00491 (7)0.5510 (2)0.40012 (10)0.0581 (5)
O20.08128 (8)0.6784 (2)0.36408 (12)0.0655 (5)
N10.08841 (9)0.5250 (3)0.49593 (13)0.0519 (5)
H1N0.0648 (10)0.498 (3)0.5253 (15)0.062*
C10.07002 (9)0.3654 (3)0.34572 (13)0.0382 (5)
C20.05851 (9)0.2067 (3)0.37077 (14)0.0421 (5)
C30.06794 (10)0.0785 (3)0.32105 (16)0.0492 (6)
H30.06110.02770.33720.059*
C40.08716 (10)0.0999 (3)0.24799 (16)0.0498 (6)
C50.09849 (10)0.2566 (3)0.22560 (15)0.0525 (6)
H50.11190.27390.17740.063*
C60.09019 (10)0.3886 (3)0.27382 (15)0.0480 (6)
H60.09820.49400.25800.058*
C70.14835 (10)0.4895 (3)0.52826 (15)0.0458 (6)
C80.16296 (10)0.4248 (3)0.60749 (15)0.0508 (6)
H80.13370.40190.63570.061*
C90.22056 (11)0.3939 (3)0.64514 (17)0.0606 (7)
C100.26309 (12)0.4250 (4)0.60070 (19)0.0675 (8)
H100.30190.40290.62520.081*
C110.24971 (11)0.4873 (4)0.52134 (18)0.0612 (8)
C120.19150 (11)0.5218 (3)0.48498 (17)0.0564 (7)
H120.18170.56630.43200.068*
C130.03632 (13)0.1703 (4)0.44804 (16)0.0636 (7)
H13A0.00220.23520.44790.076*
H13B0.06600.19660.49610.076*
H13C0.02660.05610.44910.076*
C140.09508 (14)0.0463 (4)0.1958 (2)0.0796 (9)
H14A0.05800.09790.17520.096*
H14B0.12120.12310.22890.096*
H14C0.11110.01090.15010.096*
C150.23625 (14)0.3267 (5)0.7320 (2)0.0931 (11)
H15A0.25220.21840.73100.112*
H15B0.20190.32200.75440.112*
H15C0.26470.39680.76590.112*
C160.29662 (13)0.5197 (5)0.4739 (2)0.0881 (11)
H16A0.30200.42380.44280.106*
H16B0.33250.54570.51210.106*
H16C0.28520.61020.43680.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0477 (4)0.0440 (4)0.0490 (4)0.0102 (3)0.0089 (3)0.0005 (3)
O10.0450 (9)0.0733 (12)0.0548 (10)0.0213 (9)0.0082 (8)0.0019 (10)
O20.0843 (13)0.0390 (10)0.0738 (13)0.0028 (9)0.0189 (10)0.0074 (10)
N10.0434 (12)0.0667 (14)0.0455 (12)0.0089 (10)0.0098 (9)0.0063 (11)
C10.0364 (11)0.0397 (13)0.0386 (12)0.0039 (9)0.0083 (9)0.0025 (10)
C20.0403 (13)0.0429 (13)0.0435 (12)0.0022 (10)0.0103 (10)0.0042 (11)
C30.0502 (14)0.0397 (13)0.0576 (15)0.0004 (11)0.0114 (12)0.0040 (12)
C40.0441 (13)0.0535 (16)0.0507 (14)0.0080 (11)0.0078 (11)0.0066 (13)
C50.0549 (15)0.0656 (18)0.0405 (13)0.0069 (13)0.0177 (11)0.0018 (13)
C60.0504 (14)0.0478 (14)0.0471 (14)0.0012 (11)0.0134 (11)0.0089 (12)
C70.0405 (13)0.0456 (14)0.0498 (14)0.0034 (10)0.0065 (10)0.0145 (12)
C80.0473 (14)0.0528 (15)0.0512 (15)0.0002 (11)0.0086 (11)0.0078 (13)
C90.0523 (16)0.0623 (17)0.0615 (17)0.0007 (13)0.0002 (13)0.0054 (15)
C100.0425 (15)0.080 (2)0.074 (2)0.0033 (14)0.0010 (13)0.0087 (17)
C110.0429 (14)0.0707 (19)0.0708 (19)0.0047 (13)0.0140 (13)0.0191 (16)
C120.0518 (15)0.0667 (18)0.0498 (14)0.0008 (13)0.0095 (12)0.0092 (14)
C130.0804 (19)0.0584 (17)0.0598 (17)0.0053 (14)0.0324 (14)0.0097 (15)
C140.089 (2)0.075 (2)0.076 (2)0.0131 (18)0.0195 (17)0.0212 (18)
C150.069 (2)0.116 (3)0.083 (2)0.0011 (19)0.0087 (16)0.024 (2)
C160.0550 (18)0.120 (3)0.094 (2)0.0072 (18)0.0268 (16)0.016 (2)
Geometric parameters (Å, º) top
S1—O21.4276 (18)C8—H80.9300
S1—O11.4392 (17)C9—C101.388 (4)
S1—N11.626 (2)C9—C151.506 (4)
S1—C11.766 (2)C10—C111.378 (4)
N1—C71.422 (3)C10—H100.9300
N1—H1N0.844 (16)C11—C121.396 (3)
C1—C61.386 (3)C11—C161.510 (4)
C1—C21.403 (3)C12—H120.9300
C2—C31.378 (3)C13—H13A0.9600
C2—C131.512 (3)C13—H13B0.9600
C3—C41.391 (3)C13—H13C0.9600
C3—H30.9300C14—H14A0.9600
C4—C51.373 (4)C14—H14B0.9600
C4—C141.507 (4)C14—H14C0.9600
C5—C61.379 (3)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—H60.9300C15—H15C0.9600
C7—C81.384 (3)C16—H16A0.9600
C7—C121.389 (3)C16—H16B0.9600
C8—C91.383 (3)C16—H16C0.9600
O2—S1—O1118.40 (11)C10—C9—C15121.2 (3)
O2—S1—N1108.98 (12)C11—C10—C9122.1 (2)
O1—S1—N1103.88 (11)C11—C10—H10118.9
O2—S1—C1107.12 (11)C9—C10—H10118.9
O1—S1—C1109.61 (10)C10—C11—C12118.8 (2)
N1—S1—C1108.52 (11)C10—C11—C16121.3 (3)
C7—N1—S1126.83 (17)C12—C11—C16119.9 (3)
C7—N1—H1N117.0 (19)C7—C12—C11119.8 (3)
S1—N1—H1N111.7 (19)C7—C12—H12120.1
C6—C1—C2120.2 (2)C11—C12—H12120.1
C6—C1—S1116.78 (18)C2—C13—H13A109.5
C2—C1—S1122.89 (17)C2—C13—H13B109.5
C3—C2—C1117.2 (2)H13A—C13—H13B109.5
C3—C2—C13119.1 (2)C2—C13—H13C109.5
C1—C2—C13123.7 (2)H13A—C13—H13C109.5
C2—C3—C4123.3 (2)H13B—C13—H13C109.5
C2—C3—H3118.3C4—C14—H14A109.5
C4—C3—H3118.3C4—C14—H14B109.5
C5—C4—C3118.1 (2)H14A—C14—H14B109.5
C5—C4—C14121.7 (2)C4—C14—H14C109.5
C3—C4—C14120.2 (3)H14A—C14—H14C109.5
C4—C5—C6120.7 (2)H14B—C14—H14C109.5
C4—C5—H5119.7C9—C15—H15A109.5
C6—C5—H5119.7C9—C15—H15B109.5
C5—C6—C1120.6 (2)H15A—C15—H15B109.5
C5—C6—H6119.7C9—C15—H15C109.5
C1—C6—H6119.7H15A—C15—H15C109.5
C8—C7—C12120.2 (2)H15B—C15—H15C109.5
C8—C7—N1116.9 (2)C11—C16—H16A109.5
C12—C7—N1122.8 (2)C11—C16—H16B109.5
C9—C8—C7120.7 (2)H16A—C16—H16B109.5
C9—C8—H8119.7C11—C16—H16C109.5
C7—C8—H8119.7H16A—C16—H16C109.5
C8—C9—C10118.4 (3)H16B—C16—H16C109.5
C8—C9—C15120.4 (3)
O2—S1—N1—C762.4 (2)C14—C4—C5—C6179.1 (2)
O1—S1—N1—C7170.5 (2)C4—C5—C6—C10.2 (4)
C1—S1—N1—C753.9 (2)C2—C1—C6—C50.8 (3)
O2—S1—C1—C612.4 (2)S1—C1—C6—C5175.71 (18)
O1—S1—C1—C6117.20 (18)S1—N1—C7—C8158.6 (2)
N1—S1—C1—C6129.97 (18)S1—N1—C7—C1223.5 (4)
O2—S1—C1—C2171.16 (18)C12—C7—C8—C91.0 (4)
O1—S1—C1—C259.2 (2)N1—C7—C8—C9177.0 (2)
N1—S1—C1—C253.6 (2)C7—C8—C9—C101.8 (4)
C6—C1—C2—C30.2 (3)C7—C8—C9—C15178.8 (3)
S1—C1—C2—C3176.07 (17)C8—C9—C10—C111.0 (4)
C6—C1—C2—C13179.8 (2)C15—C9—C10—C11179.6 (3)
S1—C1—C2—C133.6 (3)C9—C10—C11—C120.6 (4)
C1—C2—C3—C41.0 (3)C9—C10—C11—C16179.8 (3)
C13—C2—C3—C4178.7 (2)C8—C7—C12—C110.7 (4)
C2—C3—C4—C51.5 (4)N1—C7—C12—C11178.5 (2)
C2—C3—C4—C14178.5 (2)C10—C11—C12—C71.5 (4)
C3—C4—C5—C60.9 (4)C16—C11—C12—C7179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.10 (2)2.945 (3)176 (3)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H19NO2S
Mr289.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)299
a, b, c (Å)23.490 (2), 8.1528 (6), 16.544 (1)
β (°) 102.690 (8)
V3)3090.9 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.40 × 0.20 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.921, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
6232, 2751, 2009
Rint0.018
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.01
No. of reflections2751
No. of parameters188
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.28

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.844 (16)2.102 (17)2.945 (3)176 (3)
Symmetry code: (i) x, y+1, z+1.
 

References

First citation Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009b). Acta Cryst. E65, o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3225.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citation Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.  Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Spek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds