organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4,5-Di­iodo-1,3-di­thiol-2-yl­­idene)-4′,5′-bis­(methyl­sulfan­yl)-2,2′-bi-1,3-di­thiol-4(5H)-one

aDivision of Applied Science and Fundamental Engineering, Faculty of Engineering, Shizuoka University, Johoku 3-5-1, Hamamatsu, Shizuoka 432-8561, Japan, and bBruker AXS Co. Ltd., Moriya-cho 3-9, Kanagawa-ku, Kanagawa, Kanagawa 221-0022, Japan
*Correspondence e-mail: tkueda@ipc.shizuoka.ac.jp

(Received 23 September 2009; accepted 3 October 2009; online 10 October 2009)

The mol­ecular framework of the title compound, C11H6I2OS8, is almost planar [maximum deviation = 0.057 (5) Å] except for the two methyl­sulfanyl groups, which are twisted relative to the mol­ecular skeleton, with C—C—S—C torsion angles of 49.74 (22) and 82.91 (21)°. In the crystal, mol­ecules are stacked alternately in opposite orientations, forming a one-dimensional column along the b axis. The inter­action between adjacent columns is accomplished through S⋯S [3.4289 (5) Å], S⋯I [3.4498 (4) Å] and O⋯I [2.812 (2) Å] contacts.

Related literature

For background to tetra­thia­fulvalenoquinone-1,3-dithiol­emethide derivatives, see: Matsumoto et al. (2002a[Matsumoto, T., Kominami, T., Ueda, K., Sugimoto, T., Tada, T., Noguchi, S., Yoshino, H., Murata, K., Shiro, M., Negishi, E., Toyota, N., Endo, S. & Takahashi, K. (2002a). Inorg. Chem. 41, 4763-4769.],b[Matsumoto, T., Kominami, T., Ueda, K., Sugimoto, T., Tada, T., Yoshino, H., Murata, K., Shiro, M., Negishi, E., Matsui, H., Toyota, N., Endo, S. & Takahashi, K. (2002b). J. Solid. State. Chem. 168, 408-417.]; 2003[Matsumoto, T., Kamada, Y., Sugimoto, T., Tada, T., Nakazumi, H., Kawakami, T. & Yamaguchi, K. (2003). Synth. Met. 135--136, 575-576.]); Hiraoka et al. (2007[Hiraoka, T., Fujiwara, H., Sugimoto, T., Nakazumi, H., Noguchi, S., Kuribayashi, A., Ishida, T., Yokogawa, K., Murata, K., Mori, T., Aruga-Katori, H., Kimura, S. & Hagiwara, M. (2007). J. Mater. Chem. 17, 1664-1673.]); Sugimoto (2008[Sugimoto, T. (2008). Chem. Lett. 37, 896-901.]). For the synthesis, see: Iwamatsu et al. (1999[Iwamatsu, M., Kominami, T., Ueda, K., Sugimoto, T., Fujita, H. & Adachi, T. (1999). Chem. Lett. 28, 329-330.]). For background to inter­molecular I⋯O contacts, see: Etter (1976a[Etter, M. C. (1976a). J. Am. Chem. Soc. 98, 5736-5331.],b[Etter, M. C. (1976b). J. Solid. State. Chem. 16, 399-411.]); Groth & Hassel (1965[Groth, P. & Hassel, O. (1965). Acta Chem. Scand. 19, 1733-1746.]); Leser & Rabinovich (1978[Leser, J. & Rabinovich, D. (1978). Acta Cryst. B34, 2250-2252.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • C11H6I2OS8

  • Mr = 664.44

  • Monoclinic, P 21 /n

  • a = 7.7642 (14) Å

  • b = 17.652 (3) Å

  • c = 14.124 (3) Å

  • β = 98.188 (2)°

  • V = 1916.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.15 mm−1

  • T = 93 K

  • 0.10 × 0.07 × 0.03 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.682, Tmax = 0.886

  • 11092 measured reflections

  • 4403 independent reflections

  • 3764 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.051

  • S = 0.99

  • 4403 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XSHEL (Bruker, 2002[Bruker (2002). XSHEL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: XCIF (Bruker, 2001[Bruker (2001). XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

New donor molecules featuring a skeleton of tetrathiafulvalenoquinone-1,3-dithiolemethide are used for the preparation of charge transfer (CT) salts with magnetic metal anions (Matsumoto et al., 2002a,b, 2003; Hiraoka et al., 2007; Sugimoto 2008). In CT salts these molecules can form unique crystal structures with channels in addition to the usual layer stacking structures as a result of their molecular skeletons and intermolecular S···S contacts. The introduction of iodide atoms as substituents in the molecular skeleton is expected to enhance intermolecular interaction through the formation of S···I and O···I heteroatom contacts. These contacts are of special interest in these structures as they may increase the dimensionality of aggregation in the solid-state. In this connection, the crystal structure of the title compound, (I), was investigated.

The molecular framework of (I), Fig. 1, except for two methylsulfanyl groups, is almost planar. The displacements of atoms S7, S8, I1, and I2 relative to the plane of the skeleton are 0.2056 (17), 0.230 (2), -0.1867 (15) and -0.1274 (18) Å, respectively. The torsion angles of the two methylsulfanyl groups are -49.74 (22)° for C11—S8—C9—S6 and -89.91 (21)° for C10—S7—C8—S5.

In the crystal structure, the molecules are alternatively stacked in opposite orientations to form a one-dimensional column along the a axis (Fig. 2). Stacked molecules are separated by interplanar distances greater than 3.54 Å and have fairly poor overlap. However, some effective side-by-side contacts are observed between molecules of adjacent columns. The interaction between adjacent columns is accomplished through contacts between different sulfur atoms [S2···S8i = 3.4289 (5) Å] along the b axis, between sulfur and iodide atoms [S7···I2ii = 3.4498 (4) Å] along the c axis, and between oxygen and iodide atoms [O1···I1iii = 2.812 (2) Å] along the b axis; symmetry operation i: -1/2+x, 1/2-y, -1/2+z; ii: 1+x, y, 1+z; and iii: 1/2+x, -1/2-y, 1/2+z. These distances are shorter than the sum of corresponding van der Waals radii, i.e. 3.60 Å for S···S, 3.78 Å for S···I and 3.32 Å for O···I (Bondi, 1964). An interesting feature of this structure is the fairly shorter intermolecular O···I contacts. Such strong oxygen-halogen interactions have been observed previously (Groth & Hassel, 1965; Etter, 1976a,b). The intermolecular angles are 124.20 (19)° for C5=O1···I1 and 176.17 (10)° for O1···I1—C2 are fairly close to the ideal geometry (120° for C=O···I and 180° for O···I—C) which has been proposed for these types of associations (Leser & Rabinovich, 1978).

Related literature top

For background to tetrathiafulvalenoquinone-1,3-dithiolemethide derivatives, see: Matsumoto et al. (2002a,b; 2003); Hiraoka et al. (2007); Sugimoto (2008). For the synthesis, see: Iwamatsu et al. (1999). For background to intermolecular I···O contacts, see: Etter (1976a,b); Groth & Hassel (1965); Leser & Rabinovich (1978). For van der Waals radii, see: Bondi (1964).

Experimental top

Compound (I) was synthesized by a modification of the method used for the preparation of bis(methylsulfanyl)tetrathiafulvalenoquinone-1,3-dithiolemethide (Iwamatsu et al., 1999). Bis(tetraethylammonium)bis(2,3-bis(methylsulfanyl)tetrathiafulvalenyl-6,7- dithiolato)zinc (269 mg, 0.258 mmol) was reacted with 4,5-diiodo-2-methylsulfanyl-1,3-dithiole-2,3-dithiolium tetrafluoroborate (535 mg, 1.10 mmol) in THF-DMF (5:1 = v/v,) at room temperature under nitrogen and stirring for 12 h. After separation of the reaction mixture by column chromatography on silica gel (eluent: CS2) followed by recrystallization from CS2/n-hexane, bis(dimethylsulfanyl)tetrathiafulvalenothioquinone- 4,5-diiodo-1,3-dithiolemethide (II) was obtained as a dark-green needles in 72% yield. When compound (II) (87 mg, 0.127 mmol) was reacted with mercury(II) acetate (90 mg, 0.282 mmol) in THF-AcOH (5:1 =v/v), compound (I) was obtained as a dark-red plates in 47% yield by recrystallization from CS2/n-hexane.

Refinement top

The H atoms were geometrically placed with C-H = 0.98Å, and refined as riding with Uiso(H) = 1.5Ueq(C).

Structure description top

New donor molecules featuring a skeleton of tetrathiafulvalenoquinone-1,3-dithiolemethide are used for the preparation of charge transfer (CT) salts with magnetic metal anions (Matsumoto et al., 2002a,b, 2003; Hiraoka et al., 2007; Sugimoto 2008). In CT salts these molecules can form unique crystal structures with channels in addition to the usual layer stacking structures as a result of their molecular skeletons and intermolecular S···S contacts. The introduction of iodide atoms as substituents in the molecular skeleton is expected to enhance intermolecular interaction through the formation of S···I and O···I heteroatom contacts. These contacts are of special interest in these structures as they may increase the dimensionality of aggregation in the solid-state. In this connection, the crystal structure of the title compound, (I), was investigated.

The molecular framework of (I), Fig. 1, except for two methylsulfanyl groups, is almost planar. The displacements of atoms S7, S8, I1, and I2 relative to the plane of the skeleton are 0.2056 (17), 0.230 (2), -0.1867 (15) and -0.1274 (18) Å, respectively. The torsion angles of the two methylsulfanyl groups are -49.74 (22)° for C11—S8—C9—S6 and -89.91 (21)° for C10—S7—C8—S5.

In the crystal structure, the molecules are alternatively stacked in opposite orientations to form a one-dimensional column along the a axis (Fig. 2). Stacked molecules are separated by interplanar distances greater than 3.54 Å and have fairly poor overlap. However, some effective side-by-side contacts are observed between molecules of adjacent columns. The interaction between adjacent columns is accomplished through contacts between different sulfur atoms [S2···S8i = 3.4289 (5) Å] along the b axis, between sulfur and iodide atoms [S7···I2ii = 3.4498 (4) Å] along the c axis, and between oxygen and iodide atoms [O1···I1iii = 2.812 (2) Å] along the b axis; symmetry operation i: -1/2+x, 1/2-y, -1/2+z; ii: 1+x, y, 1+z; and iii: 1/2+x, -1/2-y, 1/2+z. These distances are shorter than the sum of corresponding van der Waals radii, i.e. 3.60 Å for S···S, 3.78 Å for S···I and 3.32 Å for O···I (Bondi, 1964). An interesting feature of this structure is the fairly shorter intermolecular O···I contacts. Such strong oxygen-halogen interactions have been observed previously (Groth & Hassel, 1965; Etter, 1976a,b). The intermolecular angles are 124.20 (19)° for C5=O1···I1 and 176.17 (10)° for O1···I1—C2 are fairly close to the ideal geometry (120° for C=O···I and 180° for O···I—C) which has been proposed for these types of associations (Leser & Rabinovich, 1978).

For background to tetrathiafulvalenoquinone-1,3-dithiolemethide derivatives, see: Matsumoto et al. (2002a,b; 2003); Hiraoka et al. (2007); Sugimoto (2008). For the synthesis, see: Iwamatsu et al. (1999). For background to intermolecular I···O contacts, see: Etter (1976a,b); Groth & Hassel (1965); Leser & Rabinovich (1978). For van der Waals radii, see: Bondi (1964).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSHEL (Bruker, 2002); software used to prepare material for publication: XCIF (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atom labelling and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Projection of the crystal packing in (I) down the bc plane. The S···S (black), S···I (blue) and O···I (green) contacts are shown with dashed lines.
5-(4,5-Diiodo-1,3-dithiol-2-ylidene)-4',5'-bis(methylsulfanyl)- 2,2'-bi-1,3-dithiol-4(5H)-one top
Crystal data top
C11H6I2OS8F(000) = 1256
Mr = 664.44Dx = 2.303 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.7642 (14) ÅCell parameters from 3988 reflections
b = 17.652 (3) Åθ = 2.3–27.5°
c = 14.124 (3) ŵ = 4.15 mm1
β = 98.188 (2)°T = 93 K
V = 1916.0 (6) Å3Plate, dark-red
Z = 40.10 × 0.07 × 0.03 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4403 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode3764 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromatorRint = 0.030
Detector resolution: 8.333 pixels mm-1θmax = 27.6°, θmin = 1.9°
φ and ω scansh = 610
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2222
Tmin = 0.682, Tmax = 0.886l = 1815
11092 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.019P)2]
where P = (Fo2 + 2Fc2)/3
4403 reflections(Δ/σ)max = 0.006
201 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C11H6I2OS8V = 1916.0 (6) Å3
Mr = 664.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7642 (14) ŵ = 4.15 mm1
b = 17.652 (3) ÅT = 93 K
c = 14.124 (3) Å0.10 × 0.07 × 0.03 mm
β = 98.188 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4403 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3764 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.886Rint = 0.030
11092 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 0.99Δρmax = 0.72 e Å3
4403 reflectionsΔρmin = 0.56 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.12578 (3)0.013561 (12)0.111820 (14)0.01793 (6)
I10.15011 (3)0.203405 (12)0.164968 (14)0.01569 (6)
C90.6068 (4)0.19937 (18)0.7771 (2)0.0152 (7)
C10.0462 (4)0.11760 (18)0.2570 (2)0.0149 (7)
C60.4087 (4)0.01803 (18)0.6428 (2)0.0136 (6)
C40.2274 (4)0.04697 (17)0.4954 (2)0.0120 (6)
C80.6498 (4)0.14725 (18)0.8460 (2)0.0154 (7)
C20.0379 (4)0.04383 (18)0.2381 (2)0.0143 (7)
C30.1281 (4)0.06019 (17)0.4091 (2)0.0123 (6)
C70.4882 (4)0.07062 (18)0.7018 (2)0.0142 (7)
C50.2707 (4)0.10758 (18)0.5631 (2)0.0142 (6)
S60.49464 (10)0.16647 (5)0.66722 (6)0.01662 (17)
S40.30314 (10)0.04434 (4)0.52857 (5)0.01454 (16)
S20.06947 (10)0.01342 (4)0.32957 (5)0.01350 (16)
S70.75758 (11)0.16499 (5)0.96192 (6)0.02020 (18)
S50.59033 (10)0.05246 (5)0.81921 (6)0.01688 (17)
S30.39758 (10)0.07854 (5)0.67194 (6)0.01666 (17)
S10.05054 (10)0.14886 (4)0.36963 (6)0.01449 (17)
S80.63332 (11)0.29739 (5)0.79188 (6)0.02255 (19)
O10.2235 (3)0.17383 (12)0.54846 (15)0.0180 (5)
C110.7178 (5)0.3241 (2)0.6839 (3)0.0263 (8)
H13A0.83050.29940.68250.039*
H13B0.73260.37920.68250.039*
H13C0.63620.30810.62800.039*
C100.5747 (5)0.1720 (2)1.0279 (2)0.0303 (9)
H12A0.50260.21561.00450.045*
H12B0.61740.17871.09600.045*
H12C0.50510.12561.01870.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.01932 (12)0.02057 (12)0.01307 (11)0.00006 (9)0.00063 (8)0.00219 (8)
I10.01529 (11)0.01492 (11)0.01614 (11)0.00063 (8)0.00027 (8)0.00382 (8)
C90.0150 (16)0.0153 (17)0.0153 (16)0.0013 (13)0.0020 (12)0.0021 (13)
C10.0128 (15)0.0164 (17)0.0153 (16)0.0002 (13)0.0014 (12)0.0051 (13)
C60.0140 (15)0.0145 (17)0.0117 (15)0.0028 (13)0.0003 (12)0.0016 (12)
C40.0151 (15)0.0091 (16)0.0122 (15)0.0011 (12)0.0028 (12)0.0019 (12)
C80.0142 (16)0.0163 (17)0.0156 (17)0.0025 (13)0.0019 (13)0.0050 (13)
C20.0120 (15)0.0183 (18)0.0118 (16)0.0014 (13)0.0016 (12)0.0003 (13)
C30.0119 (15)0.0114 (16)0.0141 (16)0.0013 (12)0.0038 (12)0.0009 (12)
C70.0119 (15)0.0174 (17)0.0136 (16)0.0007 (12)0.0029 (12)0.0011 (13)
C50.0103 (15)0.0164 (17)0.0165 (16)0.0033 (12)0.0037 (12)0.0009 (13)
S60.0201 (4)0.0142 (4)0.0148 (4)0.0009 (3)0.0000 (3)0.0002 (3)
S40.0172 (4)0.0111 (4)0.0143 (4)0.0004 (3)0.0011 (3)0.0005 (3)
S20.0170 (4)0.0104 (4)0.0123 (4)0.0004 (3)0.0005 (3)0.0008 (3)
S70.0217 (4)0.0225 (5)0.0151 (4)0.0016 (4)0.0021 (3)0.0028 (3)
S50.0198 (4)0.0152 (4)0.0149 (4)0.0016 (3)0.0003 (3)0.0011 (3)
S30.0206 (4)0.0137 (4)0.0143 (4)0.0007 (3)0.0023 (3)0.0011 (3)
S10.0175 (4)0.0101 (4)0.0150 (4)0.0002 (3)0.0009 (3)0.0004 (3)
S80.0317 (5)0.0141 (4)0.0218 (5)0.0030 (4)0.0036 (4)0.0037 (3)
O10.0220 (12)0.0136 (12)0.0170 (12)0.0005 (10)0.0016 (9)0.0008 (9)
C110.032 (2)0.0164 (19)0.031 (2)0.0020 (15)0.0087 (16)0.0030 (15)
C100.036 (2)0.036 (2)0.0183 (19)0.0172 (18)0.0010 (15)0.0053 (16)
Geometric parameters (Å, º) top
I2—C22.080 (3)C2—S21.755 (3)
I1—C12.082 (3)C3—S21.736 (3)
C9—C81.347 (4)C3—S11.740 (3)
C9—S81.751 (3)C7—S61.764 (3)
C9—S61.766 (3)C7—S51.763 (3)
C1—C21.333 (4)C5—O11.234 (4)
C1—S11.749 (3)C5—S31.780 (3)
C6—C71.338 (4)S7—C101.810 (4)
C6—S31.759 (3)S8—C111.807 (4)
C6—S41.765 (3)C11—H13A0.9800
C4—C31.366 (4)C11—H13B0.9800
C4—C51.442 (4)C11—H13C0.9800
C4—S41.756 (3)C10—H12A0.9800
C8—S71.757 (3)C10—H12B0.9800
C8—S51.763 (3)C10—H12C0.9800
C8—C9—S8125.2 (2)O1—C5—C4123.8 (3)
C8—C9—S6116.8 (2)O1—C5—S3122.1 (2)
S8—C9—S6117.69 (18)C4—C5—S3114.0 (2)
C2—C1—S1117.6 (2)C7—S6—C995.85 (15)
C2—C1—I1127.7 (2)C4—S4—C695.57 (15)
S1—C1—I1114.61 (17)C3—S2—C295.67 (15)
C7—C6—S3124.1 (2)C8—S7—C10100.80 (15)
C7—C6—S4120.0 (2)C8—S5—C795.65 (15)
S3—C6—S4115.91 (17)C6—S3—C596.70 (15)
C3—C4—C5120.9 (3)C3—S1—C195.27 (14)
C3—C4—S4121.3 (2)C9—S8—C11101.97 (16)
C5—C4—S4117.8 (2)S8—C11—H13A109.5
C9—C8—S7126.0 (3)S8—C11—H13B109.5
C9—C8—S5117.6 (2)H13A—C11—H13B109.5
S7—C8—S5116.41 (18)S8—C11—H13C109.5
C1—C2—S2116.5 (2)H13A—C11—H13C109.5
C1—C2—I2128.9 (2)H13B—C11—H13C109.5
S2—C2—I2114.47 (17)S7—C10—H12A109.5
C4—C3—S2120.8 (2)S7—C10—H12B109.5
C4—C3—S1124.4 (2)H12A—C10—H12B109.5
S2—C3—S1114.77 (16)S7—C10—H12C109.5
C6—C7—S6121.5 (2)H12A—C10—H12C109.5
C6—C7—S5124.4 (3)H12B—C10—H12C109.5
S6—C7—S5114.10 (17)

Experimental details

Crystal data
Chemical formulaC11H6I2OS8
Mr664.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)93
a, b, c (Å)7.7642 (14), 17.652 (3), 14.124 (3)
β (°) 98.188 (2)
V3)1916.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)4.15
Crystal size (mm)0.10 × 0.07 × 0.03
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.682, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
11092, 4403, 3764
Rint0.030
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.051, 0.99
No. of reflections4403
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.56

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XSHEL (Bruker, 2002), XCIF (Bruker, 2001).

 

Acknowledgements

This work was supported by the Hamashin Regional Development Foundation and the Japan Chemical Innovation Institute.

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). XSHEL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C. (1976a). J. Am. Chem. Soc. 98, 5736–5331.  Google Scholar
First citationEtter, M. C. (1976b). J. Solid. State. Chem. 16, 399–411.  CrossRef CAS Web of Science Google Scholar
First citationGroth, P. & Hassel, O. (1965). Acta Chem. Scand. 19, 1733–1746.  CrossRef CAS Web of Science Google Scholar
First citationHiraoka, T., Fujiwara, H., Sugimoto, T., Nakazumi, H., Noguchi, S., Kuribayashi, A., Ishida, T., Yokogawa, K., Murata, K., Mori, T., Aruga-Katori, H., Kimura, S. & Hagiwara, M. (2007). J. Mater. Chem. 17, 1664–1673.  Web of Science CSD CrossRef CAS Google Scholar
First citationIwamatsu, M., Kominami, T., Ueda, K., Sugimoto, T., Fujita, H. & Adachi, T. (1999). Chem. Lett. 28, 329–330.  Google Scholar
First citationLeser, J. & Rabinovich, D. (1978). Acta Cryst. B34, 2250–2252.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMatsumoto, T., Kamada, Y., Sugimoto, T., Tada, T., Nakazumi, H., Kawakami, T. & Yamaguchi, K. (2003). Synth. Met. 135--136, 575–576.  Web of Science CSD CrossRef Google Scholar
First citationMatsumoto, T., Kominami, T., Ueda, K., Sugimoto, T., Tada, T., Noguchi, S., Yoshino, H., Murata, K., Shiro, M., Negishi, E., Toyota, N., Endo, S. & Takahashi, K. (2002a). Inorg. Chem. 41, 4763–4769.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMatsumoto, T., Kominami, T., Ueda, K., Sugimoto, T., Tada, T., Yoshino, H., Murata, K., Shiro, M., Negishi, E., Matsui, H., Toyota, N., Endo, S. & Takahashi, K. (2002b). J. Solid. State. Chem. 168, 408–417.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSugimoto, T. (2008). Chem. Lett. 37, 896–901.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds