organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzo­ylbenzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 11 September 2009; accepted 14 September 2009; online 26 September 2009)

In the crystal structure of the title compound, C13H11NO3S, the conformation of the N—H bond in the C—SO2—NH—C(O)—C segment is anti to the C=O bond. The molecule is twisted at theN atom with a dihedral angle of 86.5(1)° between the sulfonyl benzene ring and the —SO2—NH—C=O segment. Furthermore, the dihedral angle between the two benzene rings is 80.3(1)°. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O(S) hydrogen bonds.

Related literature

For related structures, see: Gowda et al. (2008a[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1692.],b[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1825.]; 2009[Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1219.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11NO3S

  • Mr = 261.29

  • Triclinic, [P \overline 1]

  • a = 5.8396 (7) Å

  • b = 10.178 (1) Å

  • c = 10.405 (1) Å

  • α = 90.187 (8)°

  • β = 99.074 (9)°

  • γ = 99.617 (9)°

  • V = 601.83 (11) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.40 mm−1

  • T = 299 K

  • 0.50 × 0.33 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.] Tmin = 0.380, Tmax = 0.889

  • 2354 measured reflections

  • 2125 independent reflections

  • 1962 reflections with I > 2σ(I)

  • Rint = 0.011

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.171

  • S = 1.18

  • 2125 reflections

  • 167 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.79 (3) 2.22 (3) 2.981 (4) 163 (4)
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent anti-tumor agents against a broad spectrum of human tumor xenografts (colon, lung, breast, ovary, and prostate) in nude mice. As part of a study of the effect of ring and the side chain substituents on the solid-state structures of N-aromatic sulfonamides (Gowda et al., 2008a,b; 2009), in the present work the structure of N-(benzoyl)benzenesulfonamide (I) has been determined (Fig. 1). The conformation of the N—H bond in the structure is anti to the CO bond in the side-chain, similar to that observed in the acid anilides. The conformation of the N—C bond in the C—SO2—NH—C(O) segment of the structure has "gauche" torsions with respect to the SO bonds (Fig. 1). The molecule is twisted at the C(O) atom with the C—SO2—NH—C(O) torsion angle being -66.9 (3)°. The packing of molecules via N—H···O(S) hydrogen bonds (Table 1) into supramolecular dimers is shown in Fig. 2.

Related literature top

For related structures, see: Gowda et al. (2008a,b; 2009).

Experimental top

Compound (I) was prepared by refluxing a mixture of benzoic acid, benzene sulfonamide and phosphorous oxy chloride for 5 h on a water bath. The resultant mixture was cooled and poured into ice-cold water. The solid obtained was filtered and washed thoroughly with water and then dissolved in sodium bicarbonate solution. Compound (I) was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried solid was recrystallized to the constant melting point. The compound was characterized by its characteristic aromatic C—H stretching (3061.1 cm-1), carbonyl CO (1696.7 cm-1), N—H stretching (3280.1 cm-1), symmetric (1176.3 cm-1), and asymmetric SO2 (1335.1 cm-1) infrared absorption frequencies.

Long colorless plates of (I) were obtained from a slow evaporation of its toluene solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and and later restained to N—H = 0.86 (4) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The Uij components of C5 were restrained to approximate isotropic behavoir.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-Benzoylbenzenesulfonamide top
Crystal data top
C13H11NO3SZ = 2
Mr = 261.29F(000) = 272
Triclinic, P1Dx = 1.442 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 5.8396 (7) ÅCell parameters from 25 reflections
b = 10.178 (1) Åθ = 4.3–22.9°
c = 10.405 (1) ŵ = 2.40 mm1
α = 90.187 (8)°T = 299 K
β = 99.074 (9)°Long plate, colorless
γ = 99.617 (9)°0.50 × 0.33 × 0.05 mm
V = 601.83 (11) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1962 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.011
Graphite monochromatorθmax = 66.9°, θmin = 4.3°
ω/2θ scansh = 06
Absorption correction: ψ scan
North et al., 1968
k = 1211
Tmin = 0.380, Tmax = 0.889l = 1212
2354 measured reflections3 standard reflections every 120 min
2125 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0862P)2 + 0.5464P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.008
2125 reflectionsΔρmax = 0.65 e Å3
167 parametersΔρmin = 0.36 e Å3
7 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (3)
Crystal data top
C13H11NO3Sγ = 99.617 (9)°
Mr = 261.29V = 601.83 (11) Å3
Triclinic, P1Z = 2
a = 5.8396 (7) ÅCu Kα radiation
b = 10.178 (1) ŵ = 2.40 mm1
c = 10.405 (1) ÅT = 299 K
α = 90.187 (8)°0.50 × 0.33 × 0.05 mm
β = 99.074 (9)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1962 reflections with I > 2σ(I)
Absorption correction: ψ scan
North et al., 1968
Rint = 0.011
Tmin = 0.380, Tmax = 0.8893 standard reflections every 120 min
2354 measured reflections intensity decay: 1.0%
2125 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0557 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.65 e Å3
2125 reflectionsΔρmin = 0.36 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3607 (5)0.8198 (3)0.8908 (3)0.0337 (6)
C20.2344 (5)0.9229 (3)0.8901 (3)0.0407 (7)
H20.10210.91430.93070.049*
C30.3058 (7)1.0380 (3)0.8289 (4)0.0539 (9)
H30.22191.10810.82830.065*
C40.5004 (7)1.0503 (4)0.7686 (4)0.0589 (10)
H40.54821.12880.72740.071*
C50.6248 (6)0.9472 (4)0.7688 (4)0.0583 (10)
H50.75530.95590.72660.070*
C60.5584 (5)0.8304 (4)0.8311 (3)0.0470 (8)
H60.64420.76110.83290.056*
C70.0114 (5)0.5480 (3)0.7670 (3)0.0400 (7)
C80.0390 (5)0.4316 (3)0.6753 (3)0.0368 (7)
C90.2525 (6)0.4135 (4)0.5908 (3)0.0500 (8)
H90.35770.47170.59650.060*
C100.3098 (6)0.3115 (4)0.4997 (4)0.0602 (10)
H100.45330.30090.44410.072*
C110.1570 (7)0.2248 (4)0.4897 (4)0.0564 (9)
H110.19580.15570.42730.068*
C120.0539 (7)0.2408 (4)0.5727 (4)0.0589 (10)
H120.15760.18180.56640.071*
C130.1137 (6)0.3429 (4)0.6649 (3)0.0492 (8)
H130.25710.35260.72050.059*
N10.2045 (5)0.5551 (3)0.8642 (3)0.0436 (7)
H1N0.262 (7)0.491 (3)0.882 (4)0.052*
O10.4799 (5)0.6424 (2)1.0568 (3)0.0629 (8)
O20.0786 (5)0.6940 (3)1.0349 (3)0.0597 (7)
O30.1033 (4)0.6374 (3)0.7564 (3)0.0562 (7)
S10.27661 (14)0.67612 (7)0.97654 (7)0.0416 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0246 (13)0.0344 (14)0.0396 (15)0.0060 (10)0.0030 (11)0.0037 (11)
C20.0305 (15)0.0399 (16)0.0508 (18)0.0101 (12)0.0009 (12)0.0029 (13)
C30.054 (2)0.0397 (17)0.064 (2)0.0116 (15)0.0085 (17)0.0005 (15)
C40.057 (2)0.049 (2)0.058 (2)0.0084 (16)0.0088 (18)0.0092 (16)
C50.0344 (17)0.081 (3)0.054 (2)0.0073 (17)0.0082 (15)0.0003 (18)
C60.0320 (16)0.059 (2)0.0508 (18)0.0136 (14)0.0041 (13)0.0049 (15)
C70.0280 (15)0.0441 (17)0.0469 (17)0.0057 (12)0.0030 (12)0.0036 (13)
C80.0280 (14)0.0415 (16)0.0392 (15)0.0050 (11)0.0013 (11)0.0046 (12)
C90.0314 (16)0.063 (2)0.0534 (19)0.0125 (14)0.0044 (14)0.0042 (16)
C100.0408 (19)0.076 (3)0.056 (2)0.0057 (17)0.0116 (16)0.0082 (18)
C110.061 (2)0.056 (2)0.0469 (19)0.0034 (17)0.0017 (16)0.0092 (16)
C120.061 (2)0.062 (2)0.055 (2)0.0257 (18)0.0035 (17)0.0090 (17)
C130.0401 (17)0.056 (2)0.0486 (18)0.0154 (14)0.0082 (14)0.0067 (15)
N10.0414 (15)0.0331 (13)0.0525 (16)0.0104 (11)0.0086 (12)0.0001 (12)
O10.0787 (18)0.0431 (13)0.0567 (15)0.0186 (12)0.0293 (13)0.0018 (11)
O20.0647 (16)0.0593 (15)0.0575 (15)0.0008 (12)0.0278 (13)0.0007 (12)
O30.0414 (13)0.0604 (15)0.0686 (16)0.0248 (11)0.0031 (11)0.0111 (12)
S10.0460 (5)0.0348 (5)0.0405 (5)0.0062 (3)0.0023 (3)0.0006 (3)
Geometric parameters (Å, º) top
C1—C21.379 (4)C8—C131.385 (5)
C1—C61.384 (4)C8—C91.392 (4)
C1—S11.756 (3)C9—C101.366 (5)
C2—C31.370 (5)C9—H90.9300
C2—H20.9300C10—C111.370 (6)
C3—C41.370 (6)C10—H100.9300
C3—H30.9300C11—C121.373 (5)
C4—C51.373 (6)C11—H110.9300
C4—H40.9300C12—C131.375 (5)
C5—C61.383 (5)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—H60.9300N1—S11.650 (3)
C7—O31.212 (4)N1—H1N0.79 (3)
C7—N11.383 (4)O1—S11.432 (2)
C7—C81.479 (4)O2—S11.425 (3)
C2—C1—C6121.3 (3)C10—C9—C8121.0 (3)
C2—C1—S1119.0 (2)C10—C9—H9119.5
C6—C1—S1119.6 (2)C8—C9—H9119.5
C3—C2—C1119.4 (3)C9—C10—C11120.4 (3)
C3—C2—H2120.3C9—C10—H10119.8
C1—C2—H2120.3C11—C10—H10119.8
C4—C3—C2120.3 (3)C10—C11—C12119.4 (3)
C4—C3—H3119.9C10—C11—H11120.3
C2—C3—H3119.9C12—C11—H11120.3
C3—C4—C5120.2 (3)C11—C12—C13120.8 (3)
C3—C4—H4119.9C11—C12—H12119.6
C5—C4—H4119.9C13—C12—H12119.6
C4—C5—C6120.8 (3)C12—C13—C8120.2 (3)
C4—C5—H5119.6C12—C13—H13119.9
C6—C5—H5119.6C8—C13—H13119.9
C1—C6—C5118.1 (3)C7—N1—S1122.6 (2)
C1—C6—H6121.0C7—N1—H1N120 (3)
C5—C6—H6121.0S1—N1—H1N114 (3)
O3—C7—N1120.1 (3)O2—S1—O1119.09 (18)
O3—C7—C8122.6 (3)O2—S1—N1110.97 (15)
N1—C7—C8117.2 (3)O1—S1—N1103.63 (14)
C13—C8—C9118.2 (3)O2—S1—C1108.38 (15)
C13—C8—C7124.8 (3)O1—S1—C1109.23 (15)
C9—C8—C7117.0 (3)N1—S1—C1104.55 (14)
C6—C1—C2—C30.1 (5)C10—C11—C12—C130.3 (6)
S1—C1—C2—C3176.8 (2)C11—C12—C13—C80.0 (6)
C1—C2—C3—C40.2 (5)C9—C8—C13—C120.3 (5)
C2—C3—C4—C50.1 (5)C7—C8—C13—C12177.3 (3)
C3—C4—C5—C60.9 (5)O3—C7—N1—S15.1 (4)
C2—C1—C6—C50.9 (5)C8—C7—N1—S1177.7 (2)
S1—C1—C6—C5177.5 (2)C7—N1—S1—O249.8 (3)
C4—C5—C6—C11.3 (5)C7—N1—S1—O1178.7 (3)
O3—C7—C8—C13164.9 (3)C7—N1—S1—C166.9 (3)
N1—C7—C8—C1312.2 (5)C2—C1—S1—O20.3 (3)
O3—C7—C8—C912.7 (5)C6—C1—S1—O2176.3 (2)
N1—C7—C8—C9170.2 (3)C2—C1—S1—O1131.5 (2)
C13—C8—C9—C100.3 (5)C6—C1—S1—O145.2 (3)
C7—C8—C9—C10177.5 (3)C2—C1—S1—N1118.1 (2)
C8—C9—C10—C110.1 (6)C6—C1—S1—N165.2 (3)
C9—C10—C11—C120.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.79 (3)2.22 (3)2.981 (4)163 (4)
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC13H11NO3S
Mr261.29
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)5.8396 (7), 10.178 (1), 10.405 (1)
α, β, γ (°)90.187 (8), 99.074 (9), 99.617 (9)
V3)601.83 (11)
Z2
Radiation typeCu Kα
µ (mm1)2.40
Crystal size (mm)0.50 × 0.33 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
North et al., 1968
Tmin, Tmax0.380, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
2354, 2125, 1962
Rint0.011
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.171, 1.18
No. of reflections2125
No. of parameters167
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.36

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.79 (3)2.22 (3)2.981 (4)163 (4)
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds