metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(benzohydrazide-κ2O,N′)bis­­(nitrato-κO)copper(II)

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal, bANBioPhi FRE 3207 CNRS, Université de Paris 13, 74 Rue Marcel Cachin, 93017, Bobigny, France, and cICSN-CNRS, Laboratoire de Cristallochimie, 1 Avenue la Terasse, 91198 Gift sur Yvette, France
*Correspondence e-mail: mlgayeastou@yahoo.fr

(Received 23 July 2009; accepted 28 July 2009; online 31 July 2009)

In the title compound, [Cu(NO3)2(C7H8N2O)2], the CuII atom is located on a centre of inversion, and is coordinated by two bidentate benzohydrazide ligands and two monodentate nitrate anions in an axially distorted octa­hedral geometry within an N2O4 donor set. The crystal structure is stabilized by N—H⋯O and weak N—H⋯N hydrogen bonds.

Related literature

For related structures, see: Sousa-Pedrares et al. (2008[Sousa-Pedrares, A., Camiña, N., Romero, J., Durán, M. L., García-Vázquez, J. A. & Sousa, A. (2008). Polyhedron, 27, 3391-3397.]); Despaigne et al. (2009[Despaigne, A. A. R., Da Silva, J. G., do Carmo, A. C. M., Piro, O. E., Castellano, E. E. & Beraldo, H. (2009). Inorg. Chim. Acta, 362, 2117-2122.]); Hernández-Gil et al. (2009[Hernández-Gil, J., Perelló, L., Ortiz, R., Alzuet, G., González-Álvarez, M. & Liu-González, M. (2009). Polyhedron, 28, 138-144.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C7H8N2O)2]

  • Mr = 459.86

  • Monoclinic, P 21 /c

  • a = 10.259 (5) Å

  • b = 10.078 (5) Å

  • c = 9.762 (4) Å

  • β = 106.85 (1)°

  • V = 966.0 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 293 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 3237 measured reflections

  • 1768 independent reflections

  • 1278 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.05

  • 1768 reflections

  • 145 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.911 (17) 1.94 (2) 2.794 (4) 156 (3)
N1—H1⋯N3i 0.911 (17) 2.64 (2) 3.371 (4) 138 (2)
N2—H2A⋯O2ii 0.929 (18) 2.03 (2) 2.813 (3) 141 (3)
N2—H2A⋯O3i 0.929 (18) 2.60 (3) 3.186 (3) 122 (2)
N2—H2B⋯O2iii 0.912 (18) 1.97 (2) 2.834 (3) 159 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y, -z; (iii) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The CuII cation in (I), Fig. 1, is located on a centre of inversion. The CuII ion is coordinated to two neutral hydrazone molecules functioning as chelating ligands through the amine-N and carbonyl-O atoms. The equatorial bond Cu–O and Cu-N lengths [1.940 (2) and 1.970 (3) Å, respectively] are similar to those observed in related compounds (Sousa-Pedrares et al.<i\>, 2008; Despaigne et al.<i\>, 2009). The remaining coordination positions are occupied by two nitrate-O atoms which are located in apical positions [O1–Cu–O3 = 82.49 (8) °; and Cu–O3 = 2.589 (2) Å]. The axially distorted N2O4 coordination geometry is consistent with a Jahn–Teller effect (Hernández-Gil et al.<i\>, 2009). In the crystal structure, intermolecular N—H···O and (weak) N—H···N hydrogen bonds interactions link the molecules into a 2-D array (Table 1).

Related literature top

For related structures, see: Sousa-Pedrares et al. (2008); Despaigne et al. (2009); Hernández-Gil et al. (2009).

Experimental top

All purchased chemicals and solvents were reagent grade and used without further purification. To a mixture of benzohydrazide (0.2721 g, 2 mmol) and methanol (10 ml) was added dropwise a solution of copper nitrate trihydrate (0.2416 g, 1 mmol) in methanol (10 ml). The resulting green solution was stirred and refluxed for 2 h. The compound was filtered, and slow evaporation of the filtrate gave 0.2930 g (63.7 %) of (I). Analysis: calculated for C14H16CuN4O8: C 36.57, H 3.51, N 18.28 %; found: C 36.55, H 3.48, N 18.13. Crystals were obtained from slow evaporation of an ethanol solution of (I).

Refinement top

The H atoms of the NH and NH2 groups were located in the Fourier difference maps and refined with N—H = 0.96 (2) Å. The remaining H atoms were placed geometrically and refined in the riding model approximation with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Symmetry code: (i) -x, -y, -z
Bis(benzohydrazide-κ2O,N')bis(nitrato-κO)copper(II) top
Crystal data top
[Cu(NO3)2(C7H8N2O)2]F(000) = 470
Mr = 459.86Dx = 1.581 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1847 reflections
a = 10.259 (5) Åθ = 0.4–25.4°
b = 10.078 (5) ŵ = 1.19 mm1
c = 9.762 (4) ÅT = 293 K
β = 106.85 (1)°Prism, blue
V = 966.0 (8) Å30.10 × 0.10 × 0.10 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1278 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 25.4°, θmin = 2.9°
π scansh = 1212
3237 measured reflectionsk = 1211
1768 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.3254P]
where P = (Fo2 + 2Fc2)/3
1768 reflections(Δ/σ)max = 0.003
145 parametersΔρmax = 0.24 e Å3
3 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Cu(NO3)2(C7H8N2O)2]V = 966.0 (8) Å3
Mr = 459.86Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.259 (5) ŵ = 1.19 mm1
b = 10.078 (5) ÅT = 293 K
c = 9.762 (4) Å0.10 × 0.10 × 0.10 mm
β = 106.85 (1)°
Data collection top
Nonius KappaCCD
diffractometer
1278 reflections with I > 2σ(I)
3237 measured reflectionsRint = 0.029
1768 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0363 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.24 e Å3
1768 reflectionsΔρmin = 0.26 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.00000.04486 (19)
O10.19749 (19)0.00452 (19)0.0567 (2)0.0488 (5)
O20.0400 (3)0.1377 (2)0.3265 (2)0.0779 (8)
O30.0372 (2)0.0668 (2)0.2647 (2)0.0604 (6)
O40.1549 (3)0.0048 (2)0.4748 (2)0.0777 (8)
N10.1582 (2)0.2195 (3)0.0063 (3)0.0490 (6)
H10.183 (3)0.3054 (19)0.001 (3)0.058 (9)*
N20.0173 (2)0.1913 (2)0.0322 (2)0.0431 (6)
H2A0.020 (3)0.212 (3)0.128 (2)0.065 (10)*
H2B0.023 (3)0.243 (3)0.020 (3)0.061 (10)*
N30.0780 (3)0.0207 (2)0.3550 (3)0.0492 (6)
C10.2427 (3)0.1197 (3)0.0488 (3)0.0466 (7)
C20.3914 (3)0.1439 (3)0.0875 (3)0.0544 (8)
C30.4773 (3)0.0501 (4)0.1710 (4)0.0732 (10)
H30.44100.02460.20240.088*
C40.6155 (4)0.0674 (6)0.2074 (4)0.0973 (14)
H40.67230.00490.26530.117*
C50.6709 (4)0.1739 (6)0.1605 (5)0.1008 (16)
H50.76490.18410.18570.121*
C60.5871 (5)0.2671 (5)0.0752 (6)0.1043 (16)
H60.62480.34000.04230.125*
C70.4457 (4)0.2523 (4)0.0379 (5)0.0804 (11)
H70.38900.31500.01980.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0462 (3)0.0307 (3)0.0588 (3)0.0001 (2)0.0170 (2)0.0012 (2)
O10.0476 (11)0.0350 (11)0.0640 (12)0.0019 (10)0.0166 (10)0.0027 (10)
O20.146 (2)0.0381 (13)0.0555 (13)0.0204 (14)0.0385 (14)0.0072 (10)
O30.0891 (17)0.0414 (12)0.0477 (12)0.0098 (12)0.0154 (12)0.0092 (10)
O40.104 (2)0.0504 (15)0.0546 (14)0.0168 (13)0.0155 (14)0.0068 (11)
N10.0501 (15)0.0358 (14)0.0573 (15)0.0064 (12)0.0097 (12)0.0033 (12)
N20.0495 (15)0.0348 (13)0.0426 (14)0.0011 (11)0.0095 (12)0.0008 (11)
N30.0673 (16)0.0380 (16)0.0437 (14)0.0045 (12)0.0182 (13)0.0015 (11)
C10.0523 (17)0.0462 (19)0.0420 (16)0.0038 (14)0.0147 (14)0.0047 (13)
C20.0501 (17)0.060 (2)0.0540 (18)0.0083 (16)0.0171 (15)0.0102 (16)
C30.054 (2)0.099 (3)0.062 (2)0.000 (2)0.0083 (17)0.004 (2)
C40.057 (2)0.150 (5)0.075 (3)0.007 (3)0.003 (2)0.005 (3)
C50.051 (2)0.136 (5)0.111 (4)0.017 (3)0.016 (2)0.051 (3)
C60.079 (3)0.097 (4)0.153 (4)0.040 (3)0.059 (3)0.039 (3)
C70.065 (2)0.068 (3)0.114 (3)0.014 (2)0.035 (2)0.011 (2)
Geometric parameters (Å, º) top
Cu1—O1i1.940 (2)N2—H2B0.912 (18)
Cu1—O11.940 (2)C1—C21.482 (4)
Cu1—N2i1.970 (3)C2—C71.377 (5)
Cu1—N21.970 (3)C2—C31.385 (5)
Cu1—O32.589 (2)C3—C41.369 (5)
O1—C11.261 (3)C3—H30.9300
O2—N31.249 (3)C4—C51.355 (7)
O3—N31.231 (3)C4—H40.9300
O4—N31.233 (3)C5—C61.378 (7)
N1—C11.314 (4)C5—H50.9300
N1—N21.413 (3)C6—C71.397 (5)
N1—H10.911 (17)C6—H60.9300
N2—H2A0.929 (18)C7—H70.9300
O1i—Cu1—O1180.00 (3)O4—N3—O2118.7 (3)
O1i—Cu1—N2i83.53 (9)O1—C1—N1120.2 (3)
O1—Cu1—N2i96.47 (9)O1—C1—C2120.4 (3)
O1i—Cu1—N296.47 (9)N1—C1—C2119.4 (3)
O1—Cu1—N283.53 (9)C7—C2—C3119.7 (3)
N2i—Cu1—N2180.00 (14)C7—C2—C1122.2 (3)
O1i—Cu1—O397.51 (8)C3—C2—C1118.0 (3)
O1—Cu1—O382.49 (8)C4—C3—C2120.0 (4)
N2i—Cu1—O395.12 (8)C4—C3—H3120.0
N2—Cu1—O384.88 (8)C2—C3—H3120.0
C1—O1—Cu1112.10 (18)C5—C4—C3121.2 (5)
N3—O3—Cu1116.74 (17)C5—C4—H4119.4
C1—N1—N2117.4 (2)C3—C4—H4119.4
C1—N1—H1125.2 (19)C4—C5—C6119.7 (4)
N2—N1—H1117.4 (19)C4—C5—H5120.2
N1—N2—Cu1106.71 (17)C6—C5—H5120.2
N1—N2—H2A108.4 (19)C5—C6—C7120.2 (4)
Cu1—N2—H2A111 (2)C5—C6—H6119.9
N1—N2—H2B109.6 (19)C7—C6—H6119.9
Cu1—N2—H2B113 (2)C2—C7—C6119.2 (4)
H2A—N2—H2B108 (3)C2—C7—H7120.4
O3—N3—O4121.4 (3)C6—C7—H7120.4
O3—N3—O2119.8 (3)
N2i—Cu1—O1—C1179.41 (19)N2—N1—C1—O11.4 (4)
N2—Cu1—O1—C10.59 (19)N2—N1—C1—C2178.8 (2)
O3—Cu1—O1—C185.07 (19)O1—C1—C2—C7157.9 (3)
O1i—Cu1—O3—N3105.7 (2)N1—C1—C2—C722.2 (4)
O1—Cu1—O3—N374.3 (2)O1—C1—C2—C319.0 (4)
N2i—Cu1—O3—N321.6 (2)N1—C1—C2—C3160.8 (3)
N2—Cu1—O3—N3158.4 (2)C7—C2—C3—C41.9 (5)
C1—N1—N2—Cu11.7 (3)C1—C2—C3—C4179.0 (3)
O1i—Cu1—N2—N1178.82 (16)C2—C3—C4—C51.5 (6)
O1—Cu1—N2—N11.18 (16)C3—C4—C5—C60.3 (7)
O3—Cu1—N2—N181.82 (16)C4—C5—C6—C70.4 (7)
Cu1—O3—N3—O4146.4 (2)C3—C2—C7—C61.2 (5)
Cu1—O3—N3—O234.6 (3)C1—C2—C7—C6178.2 (3)
Cu1—O1—C1—N10.2 (3)C5—C6—C7—C20.1 (6)
Cu1—O1—C1—C2179.91 (19)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4ii0.91 (2)1.94 (2)2.794 (4)156 (3)
N1—H1···N3ii0.91 (2)2.64 (2)3.371 (4)138 (2)
N2—H2A···O2i0.93 (2)2.03 (2)2.813 (3)141 (3)
N2—H2A···O3ii0.93 (2)2.60 (3)3.186 (3)122 (2)
N2—H2B···O2iii0.91 (2)1.97 (2)2.834 (3)159 (3)
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C7H8N2O)2]
Mr459.86
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.259 (5), 10.078 (5), 9.762 (4)
β (°) 106.85 (1)
V3)966.0 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3237, 1768, 1278
Rint0.029
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.05
No. of reflections1768
No. of parameters145
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.26

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.911 (17)1.94 (2)2.794 (4)156 (3)
N1—H1···N3i0.911 (17)2.64 (2)3.371 (4)138 (2)
N2—H2A···O2ii0.929 (18)2.03 (2)2.813 (3)141 (3)
N2—H2A···O3i0.929 (18)2.60 (3)3.186 (3)122 (2)
N2—H2B···O2iii0.912 (18)1.97 (2)2.834 (3)159 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No. 6314PS804).

References

First citationDespaigne, A. A. R., Da Silva, J. G., do Carmo, A. C. M., Piro, O. E., Castellano, E. E. & Beraldo, H. (2009). Inorg. Chim. Acta, 362, 2117–2122.  Web of Science CSD CrossRef CAS Google Scholar
First citationHernández-Gil, J., Perelló, L., Ortiz, R., Alzuet, G., González-Álvarez, M. & Liu-González, M. (2009). Polyhedron, 28, 138–144.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSousa-Pedrares, A., Camiña, N., Romero, J., Durán, M. L., García-Vázquez, J. A. & Sousa, A. (2008). Polyhedron, 27, 3391–3397.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds