organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3-Chloro­anilino)pyridine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 May 2009; accepted 26 May 2009; online 29 May 2009)

In the title compound, C11H9ClN, the dihedral angle between the aromatic ring planes is 44.2 (1)° and the bridging C—N—C bond angle is 127.60 (19)°. The amino N—H grouping makes a hydrogen bond to the pyridyl N atom of an adjacent mol­ecule across a center of inversion, generating a hydrogen-bonded dimer.

Related literature

For the crystal structure of the 4-chloro derivative, see: Fairuz et al. (2008[Fairuz, M. Z. A., Aiyub, Z., Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o1800.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9ClN2

  • Mr = 204.65

  • Triclinic, [P \overline 1]

  • a = 3.8954 (1) Å

  • b = 10.7804 (4) Å

  • c = 12.4548 (4) Å

  • α = 64.932 (2)°

  • β = 88.004 (2)°

  • γ = 88.240 (2)°

  • V = 473.40 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 119 K

  • 0.40 × 0.05 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.870, Tmax = 0.993

  • 5923 measured reflections

  • 2064 independent reflections

  • 1807 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.133

  • S = 1.07

  • 2064 reflections

  • 131 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.88 (1) 2.18 (1) 3.042 (3) 167 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structure of the 4-chloro derivative, see: Fairuz et al. (2008).

Experimental top

2-Chloropyridine (0.5 ml, 5.28 mmol) and 3-chloroaniline (0.67 g, 5.28 mmol) were heated at 423–433 K for 3 h. The solid was dissolved in water and extracted with ether. The ether extract was dried over sodium sulfate. The solvent was evaporated and the product recrystallized from ethanol to yield pale-purple crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation with U(H) fixed at 1.2U(C). The amino H-atom was located in a difference Fourier map and was refined with a distance restraint of N–H 0.88±0.01 Å; the isotropic temperature factor were refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the hydrogen-bonded (dashed lines) centrosymmetric dimer {C11H9ClN2}2 with molecules drawn at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-(3-Chloroanilino)pyridine top
Crystal data top
C11H9ClN2Z = 2
Mr = 204.65F(000) = 212
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8954 (1) ÅCell parameters from 1691 reflections
b = 10.7804 (4) Åθ = 3.2–27.7°
c = 12.4548 (4) ŵ = 0.36 mm1
α = 64.932 (2)°T = 119 K
β = 88.004 (2)°Prism, pale purple
γ = 88.240 (2)°0.40 × 0.05 × 0.02 mm
V = 473.40 (3) Å3
Data collection top
Bruker SMART APEX
diffractometer
2064 independent reflections
Radiation source: fine-focus sealed tube1807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.870, Tmax = 0.993k = 1314
5923 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.8P]
where P = (Fo2 + 2Fc2)/3
2064 reflections(Δ/σ)max = 0.001
131 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C11H9ClN2γ = 88.240 (2)°
Mr = 204.65V = 473.40 (3) Å3
Triclinic, P1Z = 2
a = 3.8954 (1) ÅMo Kα radiation
b = 10.7804 (4) ŵ = 0.36 mm1
c = 12.4548 (4) ÅT = 119 K
α = 64.932 (2)°0.40 × 0.05 × 0.02 mm
β = 88.004 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2064 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1807 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.993Rint = 0.019
5923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.37 e Å3
2064 reflectionsΔρmin = 0.29 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.67761 (16)0.15289 (6)0.94724 (5)0.0242 (2)
N10.7040 (6)0.3450 (2)0.62528 (17)0.0224 (5)
H10.654 (8)0.390 (3)0.5500 (11)0.024 (7)*
N20.5081 (5)0.5439 (2)0.63195 (17)0.0207 (4)
C10.4688 (6)0.6248 (2)0.6895 (2)0.0215 (5)
H1A0.35970.71180.64920.026*
C20.5768 (7)0.5897 (3)0.8032 (2)0.0237 (5)
H20.54130.65010.84040.028*
C30.7401 (7)0.4624 (2)0.8620 (2)0.0230 (5)
H30.81920.43510.94020.028*
C40.7861 (6)0.3767 (2)0.8060 (2)0.0206 (5)
H40.89820.29010.84430.025*
C50.6623 (6)0.4211 (2)0.69013 (19)0.0186 (5)
C60.8088 (6)0.2076 (2)0.6660 (2)0.0185 (5)
C70.7102 (6)0.1066 (2)0.77788 (19)0.0179 (5)
H70.57470.13060.83140.022*
C80.8122 (6)0.0275 (2)0.80912 (19)0.0179 (5)
C91.0038 (6)0.0685 (2)0.7336 (2)0.0209 (5)
H91.06770.16190.75650.025*
C101.0995 (6)0.0324 (3)0.6223 (2)0.0225 (5)
H101.23160.00750.56870.027*
C111.0045 (6)0.1685 (2)0.5891 (2)0.0201 (5)
H111.07310.23570.51320.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0325 (4)0.0186 (3)0.0169 (3)0.0002 (2)0.0003 (2)0.0032 (2)
N10.0351 (12)0.0172 (10)0.0128 (9)0.0037 (8)0.0029 (8)0.0044 (8)
N20.0263 (11)0.0173 (9)0.0156 (9)0.0010 (8)0.0006 (8)0.0043 (7)
C10.0234 (12)0.0194 (11)0.0205 (11)0.0009 (9)0.0027 (9)0.0076 (9)
C20.0287 (13)0.0228 (12)0.0222 (12)0.0034 (10)0.0036 (10)0.0119 (10)
C30.0297 (13)0.0224 (12)0.0158 (11)0.0051 (10)0.0008 (9)0.0069 (9)
C40.0225 (12)0.0183 (11)0.0194 (11)0.0007 (9)0.0038 (9)0.0061 (9)
C50.0227 (12)0.0169 (11)0.0135 (10)0.0034 (9)0.0011 (8)0.0038 (8)
C60.0192 (11)0.0185 (11)0.0173 (11)0.0007 (9)0.0028 (8)0.0071 (9)
C70.0191 (11)0.0204 (11)0.0139 (10)0.0021 (9)0.0005 (8)0.0070 (9)
C80.0198 (11)0.0166 (10)0.0139 (10)0.0013 (8)0.0022 (8)0.0029 (8)
C90.0227 (12)0.0180 (11)0.0224 (11)0.0032 (9)0.0038 (9)0.0091 (9)
C100.0209 (12)0.0286 (13)0.0201 (11)0.0026 (9)0.0002 (9)0.0126 (10)
C110.0202 (12)0.0244 (12)0.0145 (10)0.0011 (9)0.0004 (8)0.0071 (9)
Geometric parameters (Å, º) top
Cl1—C81.752 (2)C4—C51.411 (3)
N1—C51.376 (3)C4—H40.9500
N1—C61.400 (3)C6—C111.396 (3)
N1—H10.880 (10)C6—C71.406 (3)
N2—C51.345 (3)C7—C81.378 (3)
N2—C11.346 (3)C7—H70.9500
C1—C21.380 (3)C8—C91.386 (3)
C1—H1A0.9500C9—C101.398 (3)
C2—C31.397 (3)C9—H90.9500
C2—H20.9500C10—C111.386 (3)
C3—C41.378 (3)C10—H100.9500
C3—H30.9500C11—H110.9500
C5—N1—C6127.60 (19)N1—C6—C11118.1 (2)
C5—N1—H1114.3 (19)N1—C6—C7123.0 (2)
C6—N1—H1118.1 (19)C11—C6—C7118.8 (2)
C5—N2—C1117.3 (2)C8—C7—C6119.3 (2)
N2—C1—C2124.2 (2)C8—C7—H7120.4
N2—C1—H1A117.9C6—C7—H7120.4
C2—C1—H1A117.9C7—C8—C9122.7 (2)
C1—C2—C3117.8 (2)C7—C8—Cl1118.76 (18)
C1—C2—H2121.1C9—C8—Cl1118.48 (17)
C3—C2—H2121.1C8—C9—C10117.6 (2)
C4—C3—C2119.7 (2)C8—C9—H9121.2
C4—C3—H3120.1C10—C9—H9121.2
C2—C3—H3120.1C11—C10—C9121.0 (2)
C3—C4—C5118.2 (2)C11—C10—H10119.5
C3—C4—H4120.9C9—C10—H10119.5
C5—C4—H4120.9C10—C11—C6120.6 (2)
N2—C5—N1114.4 (2)C10—C11—H11119.7
N2—C5—C4122.7 (2)C6—C11—H11119.7
N1—C5—C4122.8 (2)
C5—N2—C1—C20.2 (4)C5—N1—C6—C737.1 (4)
N2—C1—C2—C30.6 (4)N1—C6—C7—C8177.1 (2)
C1—C2—C3—C40.4 (4)C11—C6—C7—C80.8 (3)
C2—C3—C4—C50.5 (4)C6—C7—C8—C91.4 (4)
C1—N2—C5—N1178.1 (2)C6—C7—C8—Cl1178.31 (17)
C1—N2—C5—C41.1 (4)C7—C8—C9—C101.1 (4)
C6—N1—C5—N2170.1 (2)Cl1—C8—C9—C10178.04 (18)
C6—N1—C5—C412.9 (4)C8—C9—C10—C110.2 (4)
C3—C4—C5—N21.3 (4)C9—C10—C11—C60.3 (4)
C3—C4—C5—N1178.1 (2)N1—C6—C11—C10176.5 (2)
C5—N1—C6—C11146.5 (2)C7—C6—C11—C100.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.88 (1)2.18 (1)3.042 (3)167 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H9ClN2
Mr204.65
Crystal system, space groupTriclinic, P1
Temperature (K)119
a, b, c (Å)3.8954 (1), 10.7804 (4), 12.4548 (4)
α, β, γ (°)64.932 (2), 88.004 (2), 88.240 (2)
V3)473.40 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.40 × 0.05 × 0.02
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.870, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5923, 2064, 1807
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 1.07
No. of reflections2064
No. of parameters131
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.29

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.88 (1)2.18 (1)3.042 (3)167 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the University of Malaya for supporting this study (FS314/2008 C, RG027/09AFR).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFairuz, M. Z. A., Aiyub, Z., Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o1800.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds