organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(4-Nitro­phen­­oxy)hexa­nol

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany, and cAlchemist SAC, PO Box 321, Faisalabad 38000, Pakistan
*Correspondence e-mail: zareenakhter@yahoo.com

(Received 4 May 2009; accepted 7 May 2009; online 14 May 2009)

The title compound, C12H17NO4, features an almost planar mol­ecule (r.m.s. deviation for all non-H atoms = 0.070 Å). All methyl­ene C—C bonds adopt an anti­periplanar conformation. In the crystal structure the mol­ecules lie in planes parallel to (1[\overline{1}]2) and the packing is stabilized by O—H⋯O hydrogen bonds.

Related literature

For background material on polymers and their properties, see: Manners (1999[Manners, I. (1999). Pure Appl. Chem. 71, 1471-1476.]); Jarzabek et al. (1999[Jarzabek, B., Schab-Balcerzak, E., Chamenko, T., Sek. D., Cisowski, J., Shiotani, A. & Kohda, M. (1999). J. Appl. Polym. Sci. 74, 2404-2413.]) Schab-Balcerzak et al. (2002[Schab-Balcerzak, E., Sek, D., Volozhin, A., Chamenko, T. & Jarzabek, B. (2002). Eur. Polym. J. 38, 423-430.]); Choi et al. (2004[Choi, E. J., Ahn, J. C., Chien, L. C., Lee, C. K., Zin, W. C., Kim, D. C. & Shin, S. T. (2004). Macromolecules, 37, 71-78.]); Hsiao & Lin (2004[Hsiao, S. H. & Lin, K. H. (2004). Polymer, 45, 7877-7885.]); Shao et al. (2007[Shao, Y., Li, Y., Zhao, X., Ma, T., Gong, C. & Yang, F. (2007). Eur. Polym. J. 43, 4389-4397.]); Shockravi et al. (2007[Shockravi, A., Mehdipour-Ataei, S., Abouzari-Lotf, E. & Zakeri, M. (2007). Eur. Polym. J. 43, 620-627.]); Yin et al. (1998[Yin, J., Ye, Y. F. & Wang, Z. G. (1998). Eur. Polym. J. 34, 1839-1843.]). For studies on a related compound, see: Saeed et al. (2008[Saeed, M. A., Akhter, Z., Khan, M. S., Iqbal, N. & Butt, M. S. (2008). Polym. Degrad. Stab. 93, 1762-1769.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17NO4

  • Mr = 239.27

  • Triclinic, [P \overline 1]

  • a = 5.4410 (7) Å

  • b = 10.2270 (11) Å

  • c = 11.3333 (14) Å

  • α = 96.993 (9)°

  • β = 103.818 (10)°

  • γ = 99.516 (10)°

  • V = 595.34 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.25 × 0.24 × 0.12 mm

Data collection
  • STOE IPDS II diffractometer

  • Absorption correction: none

  • 5002 measured reflections

  • 2105 independent reflections

  • 1694 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.185

  • S = 1.04

  • 2105 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.83 (5) 2.10 (5) 2.905 (2) 163 (4)
Symmetry code: (i) x-1, y+1, z+1.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polymers are ubiquitous because of their tremendous processing advantage over ceramics and metals (Manners, 1999). Therefore, much research in recent years has focused upon producing speciality polymers with a better balance of properties (Shockravi et al., 2007). The goal can be achieved by inducing desired modifications in the polymer core structure (Saeed et al., 2008). Flexible linkages such as for the aryl-ether moiety (Shao et al., 2007) and/or methylene spacers (Yin et al., 1998) can be introduced into the macro chain in order to obtain desirable polymers. It has been recognized that the incorporation of an aryl-ether moiety generally imparts enhanced solubility and processability while maintaining the toughness of the polymers (Hsiao & Lin, 2004). Moreover, the addition of aliphatic methylene spacers between the aromatic moieties increases the degree of freedom by reducing the segmental barrier and effectively disrupts potential intermolecular interactions (Schab-Balcerzak et al., 2002). Furthermore, the inclusion of these flexible linkages in the polymer core structure also imparts mesogenic (Choi et al., 2004) and optical properties (Jarzabek et al., 1999) to the resulting polymer. Thus, the final polymer produced by the introduction of these linkages exhibits not an enhancement in its processability but also an improvement in its performance (Jarzabek et al., 1999). The title compound, (I), Fig. 1, is a flexible nitro-alcohol precursor with built-in aliphatic (methylene) groups along with aryl-ether moiety, which was prepared as part of our quest to design and synthesize structurally modified monomers for processable high performance polymers (Saeed et al., 2008).

Related literature top

For background material on polymers and their properties, see: Manners (1999); Jarzabek et al. (1999) Schab-Balcerzak et al. (2002); Choi et al. (2004); Hsiao & Lin (2004); Shao et al. (2007); Shockravi et al. (2007); (Yin et al., 1998). For studies on a related polymer, see: Saeed et al. (2008).

Experimental top

The title compound (I) was synthesized by Williamson's etherification of 1,6-hexane diol and p-nitrochlorobenzene. A three-necked round bottom flask equipped with reflux condenser, thermometer and nitrogen inlet was charged with a suspension of 1,6-hexane diol (2.5 g; 21 mmol) and anhydrous potassium carbonate (2.93 g; 21 mmol) in dimethylformamide (60 ml) and stirred for 30 mins. Then p-nitrochlorobenzene (3.33 g; 21 mmol) was added dropwise to the suspension and the resulting mixture was heated to 383 K for 6 h. The reaction mixture was poured into 500 ml of chilled water, cooled to room temperature and the crude product was filtered as a light-yellow solid mass. The product was then washed thoroughly with water, dissolved in ethanol and set aside for crystallization. Yield 74%, m.p. 357 K.

Refinement top

H atoms were geometrically positioned and refined using a riding model with fixed individual displacement parameters [U(H) = 1.2 Ueq(C)] using a riding model with C—H(aromatic) = 0.95Å and CH(methylene) = 0.99 Å. The hydroxyl-H was refined freely; O—H = 0.83 (5) Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of (I) with the atom numbering scheme. Displacement ellipsoids are at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.
6-(4-Nitrophenoxy)hexanol top
Crystal data top
C12H17NO4Z = 2
Mr = 239.27F(000) = 256
Triclinic, P1Dx = 1.335 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4410 (7) ÅCell parameters from 4859 reflections
b = 10.2270 (11) Åθ = 3.8–25.6°
c = 11.3333 (14) ŵ = 0.10 mm1
α = 96.993 (9)°T = 173 K
β = 103.818 (10)°Plate, yellow
γ = 99.516 (10)°0.25 × 0.24 × 0.12 mm
V = 595.34 (12) Å3
Data collection top
STOE IPDS II two-circle-
diffractometer
1694 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.074
Graphite monochromatorθmax = 25.0°, θmin = 3.8°
ω scansh = 66
5002 measured reflectionsk = 1212
2105 independent reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.185 w = 1/[σ2(Fo2) + (0.1186P)2 + 0.0716P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2105 reflectionsΔρmax = 0.31 e Å3
159 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (8)
Crystal data top
C12H17NO4γ = 99.516 (10)°
Mr = 239.27V = 595.34 (12) Å3
Triclinic, P1Z = 2
a = 5.4410 (7) ÅMo Kα radiation
b = 10.2270 (11) ŵ = 0.10 mm1
c = 11.3333 (14) ÅT = 173 K
α = 96.993 (9)°0.25 × 0.24 × 0.12 mm
β = 103.818 (10)°
Data collection top
STOE IPDS II two-circle-
diffractometer
1694 reflections with I > 2σ(I)
5002 measured reflectionsRint = 0.074
2105 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.185H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.31 e Å3
2105 reflectionsΔρmin = 0.33 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7262 (3)0.23792 (17)0.02359 (16)0.0296 (4)
O10.1593 (3)1.17994 (15)0.78559 (16)0.0418 (5)
H10.058 (9)1.200 (5)0.826 (4)0.107 (15)*
O20.2906 (3)0.47709 (14)0.32079 (13)0.0310 (4)
O30.6941 (3)0.11523 (15)0.04278 (16)0.0428 (5)
O40.8558 (3)0.30971 (15)0.07523 (14)0.0385 (5)
C10.0903 (4)1.0372 (2)0.7533 (2)0.0321 (5)
H1A0.09801.00870.71530.039*
H1B0.13490.99540.82780.039*
C20.2376 (4)0.9931 (2)0.6628 (2)0.0313 (5)
H2A0.42481.01510.70460.038*
H2B0.20811.04440.59380.038*
C30.1586 (4)0.8432 (2)0.6108 (2)0.0297 (5)
H3A0.18950.79160.67950.036*
H3B0.02870.82090.56930.036*
C40.3067 (4)0.8006 (2)0.51947 (19)0.0304 (5)
H4A0.28060.85470.45250.036*
H4B0.49350.82070.56200.036*
C50.2263 (4)0.6526 (2)0.46311 (19)0.0307 (5)
H5A0.25550.59750.52920.037*
H5B0.03950.63140.42050.037*
C60.3777 (4)0.6177 (2)0.37264 (19)0.0310 (5)
H6A0.35050.67290.30640.037*
H6B0.56450.63650.41500.037*
C110.4034 (4)0.4260 (2)0.23531 (18)0.0259 (5)
C120.5917 (4)0.5012 (2)0.19465 (19)0.0292 (5)
H120.64920.59480.22550.035*
C130.6963 (4)0.4383 (2)0.10791 (19)0.0289 (5)
H130.82530.48860.07850.035*
C140.6111 (4)0.3028 (2)0.06527 (18)0.0260 (5)
C150.4211 (4)0.2257 (2)0.10414 (19)0.0305 (5)
H150.36490.13210.07340.037*
C160.3156 (4)0.2890 (2)0.18899 (19)0.0295 (5)
H160.18240.23890.21600.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0340 (9)0.0249 (9)0.0317 (9)0.0102 (7)0.0134 (8)0.0030 (7)
O10.0510 (10)0.0244 (8)0.0567 (11)0.0068 (7)0.0347 (9)0.0067 (7)
O20.0334 (8)0.0262 (8)0.0349 (8)0.0050 (6)0.0182 (7)0.0067 (6)
O30.0568 (11)0.0237 (9)0.0532 (10)0.0128 (7)0.0276 (8)0.0055 (7)
O40.0477 (10)0.0330 (9)0.0428 (9)0.0097 (7)0.0290 (8)0.0012 (6)
C10.0358 (11)0.0231 (11)0.0404 (12)0.0063 (8)0.0196 (9)0.0037 (8)
C20.0319 (11)0.0290 (12)0.0348 (11)0.0060 (9)0.0171 (9)0.0043 (9)
C30.0291 (10)0.0280 (11)0.0339 (11)0.0088 (8)0.0142 (9)0.0041 (8)
C40.0298 (10)0.0289 (11)0.0340 (11)0.0071 (9)0.0153 (9)0.0037 (8)
C50.0314 (11)0.0314 (12)0.0315 (11)0.0092 (9)0.0149 (9)0.0029 (8)
C60.0366 (11)0.0260 (11)0.0322 (11)0.0080 (9)0.0168 (9)0.0057 (8)
C110.0271 (10)0.0270 (11)0.0256 (10)0.0098 (8)0.0109 (8)0.0022 (8)
C120.0338 (11)0.0227 (10)0.0317 (11)0.0054 (8)0.0141 (8)0.0040 (8)
C130.0327 (10)0.0247 (10)0.0316 (11)0.0061 (8)0.0155 (9)0.0013 (8)
C140.0292 (10)0.0246 (11)0.0258 (10)0.0098 (8)0.0108 (8)0.0030 (8)
C150.0361 (11)0.0208 (10)0.0346 (11)0.0066 (8)0.0128 (9)0.0039 (8)
C160.0316 (10)0.0242 (11)0.0343 (11)0.0038 (8)0.0160 (9)0.0011 (8)
Geometric parameters (Å, º) top
N1—O31.223 (2)C4—H4A0.9900
N1—O41.228 (2)C4—H4B0.9900
N1—C141.457 (2)C5—C61.506 (3)
O1—C11.425 (2)C5—H5A0.9900
O1—H10.83 (5)C5—H5B0.9900
O2—C111.362 (2)C6—H6A0.9900
O2—C61.441 (2)C6—H6B0.9900
C1—C21.516 (3)C11—C121.381 (3)
C1—H1A0.9900C11—C161.395 (3)
C1—H1B0.9900C12—C131.392 (3)
C2—C31.525 (3)C12—H120.9500
C2—H2A0.9900C13—C141.373 (3)
C2—H2B0.9900C13—H130.9500
C3—C41.522 (3)C14—C151.385 (3)
C3—H3A0.9900C15—C161.381 (3)
C3—H3B0.9900C15—H150.9500
C4—C51.517 (3)C16—H160.9500
O3—N1—O4122.51 (16)C6—C5—H5A109.5
O3—N1—C14119.32 (17)C4—C5—H5A109.5
O4—N1—C14118.16 (16)C6—C5—H5B109.5
C1—O1—H1105 (3)C4—C5—H5B109.5
C11—O2—C6117.46 (15)H5A—C5—H5B108.0
O1—C1—C2108.19 (17)O2—C6—C5108.46 (17)
O1—C1—H1A110.1O2—C6—H6A110.0
C2—C1—H1A110.1C5—C6—H6A110.0
O1—C1—H1B110.1O2—C6—H6B110.0
C2—C1—H1B110.1C5—C6—H6B110.0
H1A—C1—H1B108.4H6A—C6—H6B108.4
C1—C2—C3113.07 (17)O2—C11—C12123.92 (18)
C1—C2—H2A109.0O2—C11—C16115.44 (17)
C3—C2—H2A109.0C12—C11—C16120.64 (17)
C1—C2—H2B109.0C11—C12—C13119.14 (19)
C3—C2—H2B109.0C11—C12—H12120.4
H2A—C2—H2B107.8C13—C12—H12120.4
C4—C3—C2112.49 (18)C14—C13—C12119.37 (19)
C4—C3—H3A109.1C14—C13—H13120.3
C2—C3—H3A109.1C12—C13—H13120.3
C4—C3—H3B109.1C13—C14—C15122.40 (18)
C2—C3—H3B109.1C13—C14—N1118.70 (18)
H3A—C3—H3B107.8C15—C14—N1118.90 (18)
C5—C4—C3113.70 (17)C16—C15—C14118.02 (18)
C5—C4—H4A108.8C16—C15—H15121.0
C3—C4—H4A108.8C14—C15—H15121.0
C5—C4—H4B108.8C15—C16—C11120.41 (18)
C3—C4—H4B108.8C15—C16—H16119.8
H4A—C4—H4B107.7C11—C16—H16119.8
C6—C5—C4110.92 (17)
O1—C1—C2—C3173.95 (17)C12—C13—C14—C150.9 (3)
C1—C2—C3—C4179.61 (18)C12—C13—C14—N1178.77 (17)
C2—C3—C4—C5178.18 (17)O3—N1—C14—C13164.72 (18)
C3—C4—C5—C6179.28 (17)O4—N1—C14—C1314.2 (3)
C11—O2—C6—C5179.40 (16)O3—N1—C14—C1514.9 (3)
C4—C5—C6—O2179.08 (16)O4—N1—C14—C15166.11 (19)
C6—O2—C11—C121.1 (3)C13—C14—C15—C160.1 (3)
C6—O2—C11—C16179.11 (16)N1—C14—C15—C16179.60 (18)
O2—C11—C12—C13179.23 (18)C14—C15—C16—C111.3 (3)
C16—C11—C12—C131.0 (3)O2—C11—C16—C15178.36 (18)
C11—C12—C13—C140.4 (3)C12—C11—C16—C151.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.83 (5)2.10 (5)2.905 (2)163 (4)
Symmetry code: (i) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H17NO4
Mr239.27
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)5.4410 (7), 10.2270 (11), 11.3333 (14)
α, β, γ (°)96.993 (9), 103.818 (10), 99.516 (10)
V3)595.34 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.24 × 0.12
Data collection
DiffractometerSTOE IPDS II two-circle-
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5002, 2105, 1694
Rint0.074
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.185, 1.04
No. of reflections2105
No. of parameters159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.33

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.83 (5)2.10 (5)2.905 (2)163 (4)
Symmetry code: (i) x1, y+1, z+1.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Quaid-i-Azam University, and the Institute for Inorganic Chemistry, University of Frankfurt, for providing laboratory and analytical facilities.

References

First citationChoi, E. J., Ahn, J. C., Chien, L. C., Lee, C. K., Zin, W. C., Kim, D. C. & Shin, S. T. (2004). Macromolecules, 37, 71–78.  Web of Science CrossRef CAS Google Scholar
First citationHsiao, S. H. & Lin, K. H. (2004). Polymer, 45, 7877–7885.  Web of Science CrossRef CAS Google Scholar
First citationJarzabek, B., Schab-Balcerzak, E., Chamenko, T., Sek. D., Cisowski, J., Shiotani, A. & Kohda, M. (1999). J. Appl. Polym. Sci. 74, 2404–2413.  Google Scholar
First citationManners, I. (1999). Pure Appl. Chem. 71, 1471–1476.  Web of Science CrossRef CAS Google Scholar
First citationSaeed, M. A., Akhter, Z., Khan, M. S., Iqbal, N. & Butt, M. S. (2008). Polym. Degrad. Stab. 93, 1762–1769.  Google Scholar
First citationSchab-Balcerzak, E., Sek, D., Volozhin, A., Chamenko, T. & Jarzabek, B. (2002). Eur. Polym. J. 38, 423–430.  Web of Science CrossRef CAS Google Scholar
First citationShao, Y., Li, Y., Zhao, X., Ma, T., Gong, C. & Yang, F. (2007). Eur. Polym. J. 43, 4389–4397.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShockravi, A., Mehdipour-Ataei, S., Abouzari-Lotf, E. & Zakeri, M. (2007). Eur. Polym. J. 43, 620–627.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYin, J., Ye, Y. F. & Wang, Z. G. (1998). Eur. Polym. J. 34, 1839–1843.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds