organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-6-methyl-2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 30 April 2009; accepted 30 April 2009; online 7 May 2009)

In the title compound, C18H19ClN4O3, the dihydro­pyrimidin­one ring adopts a flattened boat conformation. The dihedral angle between the phenyl and pyrazole rings is 43.39 (6)°. An intra­molecular C—H⋯O contact generates an S(8) ring motif that stabilizes the mol­ecular conformation and precludes the carbonyl O atom of the ester group from forming inter­molecular inter­actions. Mol­ecules are linked into centrosymmetric dimers by pairs of N—H⋯O hydrogen bonds and the dimers are linked into infinite chains along [101] by N—H⋯N hydrogen bonds.

Related literature

For medicinal applications of pyrimidinone derivatives, see: Atwal (1990[Atwal, K. S. (1990). J. Med. Chem. 33, 1510-1518.]); Desai et al. (2006[Desai, B., Dallinger, D. & Kappe, C. O. (2006). Tetrahedron, 62, 4651-4664.]); Wipf & Cunningham (1995[Wipf, P. & Cunningham, A. (1995). Tetrahedron Lett. 36, 7819-7822.]); Bedia et al. (2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]). For a related structure, see: Fun et al. (2009[Fun, H.-K., Yeap, C. S., Babu, M. & Kalluraya, B. (2009). Acta Cryst. E65, o1188-o1189.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19ClN4O3

  • Mr = 374.82

  • Triclinic, [P \overline 1]

  • a = 7.9083 (2) Å

  • b = 10.2600 (2) Å

  • c = 10.9075 (3) Å

  • α = 93.394 (1)°

  • β = 99.379 (1)°

  • γ = 90.203 (1)°

  • V = 871.58 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 110 K

  • 0.56 × 0.26 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.875, Tmax = 0.950

  • 18224 measured reflections

  • 5048 independent reflections

  • 4355 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.05

  • 5048 reflections

  • 257 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯N2i 0.863 (16) 2.233 (16) 3.0601 (14) 160.7 (14)
N4—H1N4⋯O1ii 0.882 (17) 1.960 (17) 2.8418 (13) 176.8 (17)
C18—H18C⋯O3 0.96 2.59 3.2850 (15) 129
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrimidinones have drawn widespread attention due to their medicinal applications (Atwal, 1990). A variety of dihydropyrimidinone derivatives have been screened for anti-hypertension (Desai et al., 2006), anti-bacterial and anti-carcinogenic (Wipf & Cunningham, 1995), and anti-tuberculosis activity (Bedia et al., 2006). Prompted by these observations and in continuation of our work in this area, herein we report the crystal structure of the title compound, (I).

In (I), Fig. 1, the dihydropyrimidinone ring adopts a flattened boat conformation. The dihedral angle between the phenyl ring and the pyrazole ring is 43.39 (6)°. Bond lengths and angles are within normal ranges and comparable to a related structure (Fun et al., 2009). An intramolecular C18—H18C···O3 contact generates a S(8) ring motif (Bernstein et al., 1995) which stabilises the molecular conformation and precludes the O3 atom from forming intermolecular contacts. The molecules are linked into centrosymmetric dimers by N—H···O hydrogen bonds (Table 1). The dimers are further linked into infinite chains along [101] by N—H···N hydrogen bonds (Fig. 2).

Related literature top

For medicinal applications of pyrimidinone derivatives, see: Atwal (1990); Desai et al. (2006); Wipf & Cunningham (1995); Bedia et al. (2006). For a related structure, see: Fun et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

For related literature, see: Allen et al. (1987).

Experimental top

Compound (I) was obtained by refluxing a mixture of 1-phenyl-3-methyl-5-chloropyrazole-4-aldehyde (0.01 mol), ethyl acetoacetate (0.015 mol) and urea (0.01 mol) in ethanol (25 ml). The excess alcohol was removed under reduced pressure. After cooling the reaction mixture to room temperature, the contents were poured into ice-cold water (100 ml). The solid mass separated was collected by filtration and dried. Crystals were obtained from ethanol by slow evaporation (Yield 59%).

Refinement top

The N-bound H atoms were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms. An intramolecular C—H···O contact is shown as dashed lines.
[Figure 2] Fig. 2. A view of the crystal packing in (I), showing an infinite chain along the [101] direction. Intermolecular hydrogen bonds are shown as dashed lines.
Ethyl 4-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-6-methyl-2-oxo- 1,2,3,4-tetrahydropyrimidine-5-carboxylate top
Crystal data top
C18H19ClN4O3Z = 2
Mr = 374.82F(000) = 392
Triclinic, P1Dx = 1.428 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9083 (2) ÅCell parameters from 9944 reflections
b = 10.2600 (2) Åθ = 2.6–35.8°
c = 10.9075 (3) ŵ = 0.25 mm1
α = 93.394 (1)°T = 110 K
β = 99.379 (1)°Block, colourless
γ = 90.203 (1)°0.56 × 0.26 × 0.21 mm
V = 871.58 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5048 independent reflections
Radiation source: fine-focus sealed tube4355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.875, Tmax = 0.950k = 1414
18224 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.3283P]
where P = (Fo2 + 2Fc2)/3
5048 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C18H19ClN4O3γ = 90.203 (1)°
Mr = 374.82V = 871.58 (4) Å3
Triclinic, P1Z = 2
a = 7.9083 (2) ÅMo Kα radiation
b = 10.2600 (2) ŵ = 0.25 mm1
c = 10.9075 (3) ÅT = 110 K
α = 93.394 (1)°0.56 × 0.26 × 0.21 mm
β = 99.379 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5048 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4355 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.950Rint = 0.026
18224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.48 e Å3
5048 reflectionsΔρmin = 0.30 e Å3
257 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 110.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16502 (4)0.27288 (3)0.28593 (3)0.01867 (8)
O10.09492 (11)0.60474 (9)0.13406 (8)0.01980 (18)
O20.64558 (11)0.20298 (9)0.00629 (8)0.02096 (19)
O30.77714 (11)0.29869 (9)0.18745 (8)0.02079 (19)
N10.40982 (13)0.25693 (10)0.48878 (9)0.01486 (19)
N20.57439 (13)0.29637 (10)0.53670 (9)0.01546 (19)
N30.36526 (13)0.54573 (10)0.21278 (9)0.01470 (19)
N40.21476 (13)0.43462 (10)0.03761 (9)0.0162 (2)
C10.41198 (18)0.06888 (12)0.61334 (11)0.0202 (2)
H1A0.52860.06000.61160.024*
C20.3256 (2)0.01924 (13)0.67359 (12)0.0253 (3)
H2A0.38440.08840.71150.030*
C30.1527 (2)0.00483 (14)0.67768 (12)0.0265 (3)
H3A0.09510.06540.71650.032*
C40.06518 (18)0.09986 (14)0.62404 (12)0.0254 (3)
H4A0.05030.11060.62890.030*
C50.14923 (16)0.18874 (13)0.56301 (11)0.0202 (2)
H5A0.09100.25940.52760.024*
C60.32146 (16)0.17084 (11)0.55550 (10)0.0161 (2)
C70.36219 (14)0.30274 (11)0.37349 (10)0.0143 (2)
C80.49610 (14)0.37464 (11)0.34481 (10)0.0132 (2)
C90.62520 (14)0.36737 (11)0.45051 (10)0.0144 (2)
C100.50187 (14)0.44856 (11)0.22960 (10)0.0135 (2)
H10A0.61170.49600.24190.016*
C110.21883 (15)0.53209 (11)0.13033 (10)0.0150 (2)
C120.35013 (15)0.35289 (11)0.02438 (10)0.0146 (2)
C130.49312 (14)0.35937 (11)0.11231 (10)0.0140 (2)
C140.65113 (15)0.28596 (11)0.10717 (11)0.0155 (2)
C150.80143 (17)0.13146 (13)0.00265 (12)0.0223 (3)
H15A0.82430.07160.06350.027*
H15B0.89830.19120.00390.027*
C160.7726 (2)0.05757 (18)0.12749 (15)0.0387 (4)
H16A0.87460.01120.13900.058*
H16B0.74560.11770.19180.058*
H16C0.67930.00340.13140.058*
C170.31577 (17)0.26349 (13)0.09159 (12)0.0201 (2)
H17A0.207 (3)0.2792 (18)0.1382 (18)0.034 (5)*
H17B0.316 (3)0.175 (2)0.0718 (18)0.038 (5)*
H17C0.398 (2)0.2794 (18)0.1447 (17)0.034 (5)*
C180.79965 (15)0.42889 (12)0.47221 (12)0.0187 (2)
H18A0.85300.41880.55660.028*
H18B0.79020.52010.45750.028*
H18C0.86790.38740.41640.028*
H1N30.367 (2)0.6038 (15)0.2734 (15)0.016 (4)*
H1N40.120 (2)0.4247 (17)0.0173 (17)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01327 (13)0.02560 (15)0.01588 (13)0.00443 (10)0.00218 (9)0.00376 (10)
O10.0153 (4)0.0211 (4)0.0210 (4)0.0060 (3)0.0022 (3)0.0012 (3)
O20.0159 (4)0.0277 (5)0.0182 (4)0.0091 (3)0.0006 (3)0.0024 (3)
O30.0145 (4)0.0270 (5)0.0195 (4)0.0048 (3)0.0011 (3)0.0009 (3)
N10.0128 (4)0.0176 (4)0.0136 (4)0.0006 (3)0.0002 (3)0.0026 (3)
N20.0128 (4)0.0175 (4)0.0149 (4)0.0011 (3)0.0010 (3)0.0006 (3)
N30.0139 (4)0.0149 (4)0.0140 (4)0.0030 (3)0.0013 (3)0.0004 (3)
N40.0122 (5)0.0200 (5)0.0149 (4)0.0032 (4)0.0019 (4)0.0010 (4)
C10.0254 (6)0.0195 (5)0.0158 (5)0.0032 (5)0.0035 (4)0.0025 (4)
C20.0378 (8)0.0200 (6)0.0182 (6)0.0003 (5)0.0033 (5)0.0047 (5)
C30.0361 (8)0.0271 (6)0.0160 (6)0.0124 (6)0.0031 (5)0.0039 (5)
C40.0224 (6)0.0350 (7)0.0190 (6)0.0072 (5)0.0037 (5)0.0033 (5)
C50.0192 (6)0.0236 (6)0.0179 (5)0.0001 (4)0.0027 (4)0.0033 (4)
C60.0201 (6)0.0164 (5)0.0115 (5)0.0015 (4)0.0021 (4)0.0010 (4)
C70.0132 (5)0.0161 (5)0.0129 (5)0.0009 (4)0.0002 (4)0.0014 (4)
C80.0110 (5)0.0147 (5)0.0133 (5)0.0017 (4)0.0004 (4)0.0009 (4)
C90.0125 (5)0.0150 (5)0.0147 (5)0.0022 (4)0.0002 (4)0.0004 (4)
C100.0100 (5)0.0159 (5)0.0141 (5)0.0011 (4)0.0000 (4)0.0026 (4)
C110.0145 (5)0.0155 (5)0.0147 (5)0.0006 (4)0.0006 (4)0.0030 (4)
C120.0132 (5)0.0168 (5)0.0139 (5)0.0017 (4)0.0023 (4)0.0020 (4)
C130.0125 (5)0.0164 (5)0.0132 (5)0.0019 (4)0.0017 (4)0.0021 (4)
C140.0142 (5)0.0180 (5)0.0148 (5)0.0018 (4)0.0027 (4)0.0044 (4)
C150.0179 (6)0.0280 (6)0.0212 (6)0.0107 (5)0.0032 (5)0.0016 (5)
C160.0343 (8)0.0504 (10)0.0292 (8)0.0220 (7)0.0025 (6)0.0105 (7)
C170.0182 (6)0.0246 (6)0.0157 (5)0.0029 (5)0.0008 (4)0.0031 (4)
C180.0120 (5)0.0226 (6)0.0200 (6)0.0000 (4)0.0010 (4)0.0007 (4)
Geometric parameters (Å, º) top
Cl1—C71.7070 (12)C5—C61.3899 (17)
O1—C111.2378 (14)C5—H5A0.9300
O2—C141.3456 (14)C7—C81.3760 (16)
O2—C151.4505 (14)C8—C91.4158 (15)
O3—C141.2157 (14)C8—C101.5125 (15)
N1—C71.3641 (14)C9—C181.4924 (16)
N1—N21.3712 (13)C10—C131.5202 (15)
N1—C61.4268 (15)C10—H10A0.9800
N2—C91.3334 (15)C12—C131.3570 (15)
N3—C111.3468 (14)C12—C171.5047 (16)
N3—C101.4695 (14)C13—C141.4685 (15)
N3—H1N30.862 (16)C15—C161.5020 (19)
N4—C111.3760 (15)C15—H15A0.9700
N4—C121.3828 (14)C15—H15B0.9700
N4—H1N40.883 (18)C16—H16A0.9600
C1—C21.3886 (18)C16—H16B0.9600
C1—C61.3932 (17)C16—H16C0.9600
C1—H1A0.9300C17—H17A0.95 (2)
C2—C31.383 (2)C17—H17B0.95 (2)
C2—H2A0.9300C17—H17C0.956 (19)
C3—C41.387 (2)C18—H18A0.9600
C3—H3A0.9300C18—H18B0.9600
C4—C51.3887 (18)C18—H18C0.9600
C4—H4A0.9300
C14—O2—C15115.79 (9)C8—C10—C13112.92 (9)
C7—N1—N2110.16 (9)N3—C10—H10A107.5
C7—N1—C6130.02 (10)C8—C10—H10A107.5
N2—N1—C6119.60 (9)C13—C10—H10A107.5
C9—N2—N1105.46 (9)O1—C11—N3122.70 (10)
C11—N3—C10125.12 (9)O1—C11—N4120.82 (10)
C11—N3—H1N3117.1 (10)N3—C11—N4116.45 (10)
C10—N3—H1N3115.4 (10)C13—C12—N4119.61 (10)
C11—N4—C12124.24 (10)C13—C12—C17127.57 (10)
C11—N4—H1N4117.5 (11)N4—C12—C17112.82 (10)
C12—N4—H1N4118.3 (11)C12—C13—C14125.95 (10)
C2—C1—C6119.05 (12)C12—C13—C10120.88 (10)
C2—C1—H1A120.5C14—C13—C10113.16 (9)
C6—C1—H1A120.5O3—C14—O2122.46 (11)
C3—C2—C1120.45 (12)O3—C14—C13122.92 (11)
C3—C2—H2A119.8O2—C14—C13114.63 (10)
C1—C2—H2A119.8O2—C15—C16106.46 (10)
C2—C3—C4120.08 (13)O2—C15—H15A110.4
C2—C3—H3A120.0C16—C15—H15A110.4
C4—C3—H3A120.0O2—C15—H15B110.4
C3—C4—C5120.28 (13)C16—C15—H15B110.4
C3—C4—H4A119.9H15A—C15—H15B108.6
C5—C4—H4A119.9C15—C16—H16A109.5
C4—C5—C6119.22 (12)C15—C16—H16B109.5
C4—C5—H5A120.4H16A—C16—H16B109.5
C6—C5—H5A120.4C15—C16—H16C109.5
C5—C6—C1120.82 (12)H16A—C16—H16C109.5
C5—C6—N1120.71 (11)H16B—C16—H16C109.5
C1—C6—N1118.47 (11)C12—C17—H17A111.0 (11)
N1—C7—C8108.70 (10)C12—C17—H17B111.1 (12)
N1—C7—Cl1123.11 (9)H17A—C17—H17B106.9 (16)
C8—C7—Cl1128.18 (9)C12—C17—H17C110.3 (11)
C7—C8—C9103.79 (10)H17A—C17—H17C106.4 (16)
C7—C8—C10128.17 (10)H17B—C17—H17C111.0 (17)
C9—C8—C10128.00 (10)C9—C18—H18A109.5
N2—C9—C8111.88 (10)C9—C18—H18B109.5
N2—C9—C18120.43 (10)H18A—C18—H18B109.5
C8—C9—C18127.69 (11)C9—C18—H18C109.5
N3—C10—C8111.17 (9)H18A—C18—H18C109.5
N3—C10—C13110.10 (9)H18B—C18—H18C109.5
C7—N1—N2—C90.68 (12)C11—N3—C10—C8103.04 (12)
C6—N1—N2—C9175.80 (10)C11—N3—C10—C1322.87 (15)
C6—C1—C2—C30.95 (19)C7—C8—C10—N357.33 (15)
C1—C2—C3—C41.6 (2)C9—C8—C10—N3120.05 (12)
C2—C3—C4—C51.8 (2)C7—C8—C10—C1367.00 (15)
C3—C4—C5—C60.54 (19)C9—C8—C10—C13115.62 (12)
C4—C5—C6—C13.09 (18)C10—N3—C11—O1166.80 (11)
C4—C5—C6—N1177.20 (11)C10—N3—C11—N415.22 (16)
C2—C1—C6—C53.29 (18)C12—N4—C11—O1177.43 (11)
C2—C1—C6—N1176.99 (11)C12—N4—C11—N30.59 (17)
C7—N1—C6—C546.54 (17)C11—N4—C12—C135.61 (18)
N2—N1—C6—C5139.45 (11)C11—N4—C12—C17174.82 (11)
C7—N1—C6—C1133.75 (13)N4—C12—C13—C14175.52 (11)
N2—N1—C6—C140.27 (15)C17—C12—C13—C145.0 (2)
N2—N1—C7—C80.59 (13)N4—C12—C13—C104.26 (17)
C6—N1—C7—C8175.05 (11)C17—C12—C13—C10175.23 (11)
N2—N1—C7—Cl1179.88 (8)N3—C10—C13—C1216.61 (15)
C6—N1—C7—Cl15.67 (17)C8—C10—C13—C12108.30 (12)
N1—C7—C8—C90.25 (12)N3—C10—C13—C14163.20 (9)
Cl1—C7—C8—C9179.49 (9)C8—C10—C13—C1471.89 (12)
N1—C7—C8—C10177.62 (10)C15—O2—C14—O31.48 (17)
Cl1—C7—C8—C101.62 (18)C15—O2—C14—C13178.58 (10)
N1—N2—C9—C80.52 (12)C12—C13—C14—O3177.86 (12)
N1—N2—C9—C18178.99 (10)C10—C13—C14—O31.93 (17)
C7—C8—C9—N20.18 (13)C12—C13—C14—O22.20 (17)
C10—C8—C9—N2178.06 (10)C10—C13—C14—O2178.00 (10)
C7—C8—C9—C18179.29 (11)C14—O2—C15—C16173.84 (12)
C10—C8—C9—C181.41 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N2i0.863 (16)2.233 (16)3.0601 (14)160.7 (14)
N4—H1N4···O1ii0.882 (17)1.960 (17)2.8418 (13)176.8 (17)
C18—H18C···O30.962.593.2850 (15)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H19ClN4O3
Mr374.82
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)7.9083 (2), 10.2600 (2), 10.9075 (3)
α, β, γ (°)93.394 (1), 99.379 (1), 90.203 (1)
V3)871.58 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.56 × 0.26 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.875, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
18224, 5048, 4355
Rint0.026
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.05
No. of reflections5048
No. of parameters257
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.30

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N2i0.863 (16)2.233 (16)3.0601 (14)160.7 (14)
N4—H1N4···O1ii0.882 (17)1.960 (17)2.8418 (13)176.8 (17)
C18—H18C···O30.962.593.2850 (15)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose (grant No. 1001/PFIZIK/811012). CSY thanks the Malaysian government and Universiti Sains Malaysia for the award of the post of Research Officer under Science Fund (grant No. 305/PFIZIK/613312).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAtwal, K. S. (1990). J. Med. Chem. 33, 1510–1518.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesai, B., Dallinger, D. & Kappe, C. O. (2006). Tetrahedron, 62, 4651–4664.  Web of Science CrossRef CAS Google Scholar
First citationFun, H.-K., Yeap, C. S., Babu, M. & Kalluraya, B. (2009). Acta Cryst. E65, o1188–o1189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWipf, P. & Cunningham, A. (1995). Tetrahedron Lett. 36, 7819–7822.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds