organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro­quinoxaline

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 29 January 2009; accepted 29 January 2009; online 4 February 2009)

In the title compound, C8H5ClN2, the planar mol­ecules are arranged with their Cl atoms in close contact [Cl⋯Cl = 3.808 (1) and 3.881 (1) Å], indicating weak Cl⋯Cl inter­actions, which give rise to a supra­molecular chain.

Related literature

The title compound is a reagent in the synthesis of chloro­quinoxaline sulfamide, which is active against human cancers. For the synthesis of other phamaceutically active derivatives through conventional and other synthetic routes, see: Bhattacharjee et al. (2008[Bhattacharjee, G., Sondhi, S. M., Dinodia, M. & Mishra, S. K. (2008). Ind. J. Chem. Technol. 15, 72-74.]); Cuenca et al. (2008[Cuenca, A., Perez, S., Yepez, A., Paredes, L., Montecinos, L., Llovera, L. & Rodriguez, C. (2008). J. Heterocycl. Chem. 45, 1199-1201.]); Hassan et al. (2006[Hassan, S. Y., Khattab, S. N., Bekhit, A. A. & Amer, A. (2006). Bioorg. Med. Chem. Lett. 16, 1753-1756.]); Rangisetty et al. (2001[Rangisetty, J. B., Gupta, C. N. V. H. B., Prasad, A. L., Srinivas, P., Sridhar, N., Parimoo, P. & Veeranjaneyulu, A. (2001). J. Pharm. Pharmacol. 53, 1409-1413.]); Rizzo et al. (2002[Rizzo, A., Campos, G., Alvarez, A. & Cuenca, A. (2002). Synth. Commun. 32, 813-817.]); Sugimoto et al. (2003[Sugimoto, O., Yamada, S. & Tanji, K. (2003). J. Org. Chem. 68, 2054-2057.]).

[Scheme 1]

Experimental

Crystal data
  • C8H5ClN2

  • Mr = 164.59

  • Monoclinic, P 21 /n

  • a = 9.1299 (2) Å

  • b = 3.8082 (1) Å

  • c = 21.0777 (6) Å

  • β = 93.028 (2)°

  • V = 731.82 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 118 (2) K

  • 0.20 × 0.06 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.916, Tmax = 0.991

  • 6145 measured reflections

  • 1659 independent reflections

  • 1173 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.099

  • S = 1.03

  • 1659 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

The title compound is the reagent for the synthesis of chloroquinoxaline sulfamide, which is active against human cancers. For the synthesis of other phamaceutically active derivatives through conventional and other synthetic routes, see: Bhattacharjee et al. (2008); Cuenca et al. (2008); Hassan et al. (2006); Rangisetty et al. (2001); Rizzo et al. (2002); Sugimoto et al. (2003).

Experimental top

The compound was returned unchanged in an attempt at coupling it wih benzoquinone. Crystals were obtained from recrystallization from a chloroform/ether mixture.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C8H5ClN2; ellipsoids are drawn at the 70% probability level and H atoms of arbitrary radius.
[Figure 2] Fig. 2. Chain structure in C8H5ClN2; the Cl···Cl contacts are shown as dashed bonds.
2-Chloroquinoxaline top
Crystal data top
C8H5ClN2F(000) = 336
Mr = 164.59Dx = 1.494 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1328 reflections
a = 9.1299 (2) Åθ = 2.4–28.1°
b = 3.8082 (1) ŵ = 0.44 mm1
c = 21.0777 (6) ÅT = 118 K
β = 93.028 (2)°Prism, colorless
V = 731.82 (3) Å30.20 × 0.06 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1659 independent reflections
Radiation source: fine-focus sealed tube1173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.916, Tmax = 0.991k = 44
6145 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.1632P]
where P = (Fo2 + 2Fc2)/3
1659 reflections(Δ/σ)max = 0.001
100 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C8H5ClN2V = 731.82 (3) Å3
Mr = 164.59Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1299 (2) ŵ = 0.44 mm1
b = 3.8082 (1) ÅT = 118 K
c = 21.0777 (6) Å0.20 × 0.06 × 0.02 mm
β = 93.028 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1659 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1173 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.991Rint = 0.048
6145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
1659 reflectionsΔρmin = 0.30 e Å3
100 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.60849 (6)0.47749 (15)0.58158 (3)0.03308 (19)
N10.88157 (18)0.6668 (4)0.57567 (8)0.0202 (4)
N20.8977 (2)0.9189 (4)0.70202 (8)0.0248 (4)
C10.7733 (2)0.6552 (5)0.61274 (10)0.0219 (5)
C20.7783 (2)0.7779 (6)0.67617 (10)0.0261 (5)
H20.69380.75750.70030.031*
C31.0163 (2)0.9407 (5)0.66453 (9)0.0194 (4)
C41.1478 (2)1.0934 (5)0.68919 (10)0.0231 (5)
H41.15401.18160.73140.028*
C51.2662 (2)1.1150 (5)0.65264 (10)0.0250 (5)
H51.35491.21650.66960.030*
C61.2576 (2)0.9872 (5)0.58970 (10)0.0254 (5)
H61.34081.00490.56460.030*
C71.1318 (2)0.8385 (5)0.56422 (10)0.0214 (4)
H71.12750.75280.52180.026*
C81.0086 (2)0.8132 (5)0.60139 (9)0.0179 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0215 (3)0.0305 (3)0.0466 (4)0.0056 (2)0.0042 (2)0.0009 (3)
N10.0187 (9)0.0178 (8)0.0239 (9)0.0000 (7)0.0020 (7)0.0008 (7)
N20.0286 (10)0.0243 (9)0.0219 (9)0.0009 (8)0.0049 (8)0.0013 (7)
C10.0190 (10)0.0185 (10)0.0277 (11)0.0005 (8)0.0029 (9)0.0043 (9)
C20.0252 (12)0.0257 (11)0.0278 (12)0.0006 (9)0.0067 (9)0.0018 (10)
C30.0234 (10)0.0148 (9)0.0200 (10)0.0022 (8)0.0005 (8)0.0027 (8)
C40.0316 (12)0.0177 (10)0.0194 (11)0.0007 (8)0.0047 (9)0.0008 (8)
C50.0247 (11)0.0198 (10)0.0296 (12)0.0018 (8)0.0066 (9)0.0028 (9)
C60.0222 (11)0.0232 (11)0.0310 (12)0.0007 (9)0.0032 (9)0.0045 (10)
C70.0256 (11)0.0192 (10)0.0195 (10)0.0028 (9)0.0019 (8)0.0000 (9)
C80.0188 (10)0.0144 (9)0.0201 (10)0.0014 (8)0.0031 (8)0.0028 (8)
Geometric parameters (Å, º) top
Cl1—C11.746 (2)C4—C51.363 (3)
N1—C11.293 (3)C4—H40.9500
N1—C81.372 (2)C5—C61.411 (3)
N2—C21.308 (3)C5—H50.9500
N2—C31.376 (3)C6—C71.365 (3)
C1—C21.415 (3)C6—H60.9500
C2—H20.9500C7—C81.408 (3)
C3—C41.409 (3)C7—H70.9500
C3—C81.415 (3)
C1—N1—C8115.61 (17)C3—C4—H4119.9
C2—N2—C3116.68 (18)C4—C5—C6120.3 (2)
N1—C1—C2124.93 (19)C4—C5—H5119.9
N1—C1—Cl1117.21 (16)C6—C5—H5119.9
C2—C1—Cl1117.87 (16)C7—C6—C5121.13 (19)
N2—C2—C1120.92 (19)C7—C6—H6119.4
N2—C2—H2119.5C5—C6—H6119.4
C1—C2—H2119.5C6—C7—C8119.33 (19)
N2—C3—C4119.62 (18)C6—C7—H7120.3
N2—C3—C8121.21 (18)C8—C7—H7120.3
C4—C3—C8119.18 (18)N1—C8—C7119.43 (18)
C5—C4—C3120.18 (19)N1—C8—C3120.65 (18)
C5—C4—H4119.9C7—C8—C3119.91 (18)
C8—N1—C1—C20.5 (3)C4—C5—C6—C70.3 (3)
C8—N1—C1—Cl1178.97 (14)C5—C6—C7—C80.2 (3)
C3—N2—C2—C10.0 (3)C1—N1—C8—C7179.61 (18)
N1—C1—C2—N20.6 (3)C1—N1—C8—C30.0 (3)
Cl1—C1—C2—N2178.91 (16)C6—C7—C8—N1179.40 (18)
C2—N2—C3—C4179.27 (19)C6—C7—C8—C30.2 (3)
C2—N2—C3—C80.5 (3)N2—C3—C8—N10.6 (3)
N2—C3—C4—C5179.69 (18)C4—C3—C8—N1179.22 (18)
C8—C3—C4—C50.5 (3)N2—C3—C8—C7179.87 (17)
C3—C4—C5—C60.5 (3)C4—C3—C8—C70.3 (3)

Experimental details

Crystal data
Chemical formulaC8H5ClN2
Mr164.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)118
a, b, c (Å)9.1299 (2), 3.8082 (1), 21.0777 (6)
β (°) 93.028 (2)
V3)731.82 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.20 × 0.06 × 0.02
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.916, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
6145, 1659, 1173
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 1.03
No. of reflections1659
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.30

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

I thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBhattacharjee, G., Sondhi, S. M., Dinodia, M. & Mishra, S. K. (2008). Ind. J. Chem. Technol. 15, 72–74.  CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCuenca, A., Perez, S., Yepez, A., Paredes, L., Montecinos, L., Llovera, L. & Rodriguez, C. (2008). J. Heterocycl. Chem. 45, 1199–1201.  CrossRef CAS Google Scholar
First citationHassan, S. Y., Khattab, S. N., Bekhit, A. A. & Amer, A. (2006). Bioorg. Med. Chem. Lett. 16, 1753–1756.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRangisetty, J. B., Gupta, C. N. V. H. B., Prasad, A. L., Srinivas, P., Sridhar, N., Parimoo, P. & Veeranjaneyulu, A. (2001). J. Pharm. Pharmacol. 53, 1409–1413.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRizzo, A., Campos, G., Alvarez, A. & Cuenca, A. (2002). Synth. Commun. 32, 813–817.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSugimoto, O., Yamada, S. & Tanji, K. (2003). J. Org. Chem. 68, 2054–2057.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds