metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-5-chloro­quinolin-8-olato)-κ3N,O:O;κ3O:N,O-bis­­[(acetato-κ2O,O′)lead(II)]

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 27 January 2009; accepted 29 January 2009; online 11 February 2009)

The mol­ecule of the title compound, [Pb2(C9H5ClNO)2(C2H3O2)2], lies about a center of inversion. The PbII atom is chelated by acetate and substituted quinolin-8-olate anions; the O atoms of the quinolin-8-olates also bridge to confer a five-coordinate status to each metal center. The geometry approximates a distorted Ψ-fac octa­hedron in which one of the sites is occupied by a stereochemically active lone pair.

Related literature

The structural chemistry of lead(II) 8-hydroxy­quinolinates has been reviewed, including bis­(μ-acetato)diacetatotetra­kis(μ-quinolin-8-olato)tetra­lead dihydrate (Shahverdizadeh et al., 2008[Shahverdizadeh, G. H., Soudi, A. A., Morsali, A. & Retailleau, P. (2008). Inorg. Chim. Acta, 361, 1875-1884.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2(C9H5ClNO)2(C2H3O2)2]

  • Mr = 889.65

  • Monoclinic, P 21 /n

  • a = 5.3049 (1) Å

  • b = 11.8200 (3) Å

  • c = 17.4928 (3) Å

  • β = 94.569 (1)°

  • V = 1093.38 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 15.67 mm−1

  • T = 100 (2) K

  • 0.10 × 0.03 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.303, Tmax = 0.745

  • 7713 measured reflections

  • 1925 independent reflections

  • 1655 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.00

  • 1925 reflections

  • 155 parameters

  • 72 restraints

  • H-atom parameters constrained

  • Δρmax = 5.25 e Å−3

  • Δρmin = −3.38 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

The structural chemistry of lead(II) 8-hydroxyquinolinates has been reviewed; for bis(µ-acetato)diacetatotetrakis(µ-quinolin-8-olato)tetralead dihydrate in particular, see: Shahverdizadeh et al. (2008).

Experimental top

Lead acetate (0.38 g, 1 mmol) and 5-chloro-8-hydroxyquinoline (0.32 g, 2 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Crystals were collected from the side arm after 1 day.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

The crystal diffracted strongly owing to the presence of the heavy metal atom. However, this introduced severe absorption problems that could not be corrected analytically as the crystal did not have regular faces. Although a sphere of reflections was measured, multi-scan treatment only marginally improved the quality. The final difference Fourier map had large peaks/deep holes near the lead atom. The anisotropic displacement factors of the carbon atoms were restrained to be nearly isotropic.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Pb2(CH3CO2)2(C9H5ClNO)2; ellipsoids are drawn at the 70% probability level and H atoms of arbitrary radius. Unlabelled atoms are related by 1-x, 1-y, 1-z.
Bis(µ-5-chloroquinolin-8-οlato)- κ3N,O:O;κ3O:N,O- bis[(acetato-κ2O,O')lead(II)] top
Crystal data top
[Pb2(C9H5ClNO)2(C2H3O2)2]F(000) = 816
Mr = 889.65Dx = 2.702 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4123 reflections
a = 5.3049 (1) Åθ = 2.9–28.3°
b = 11.8200 (3) ŵ = 15.67 mm1
c = 17.4928 (3) ÅT = 100 K
β = 94.569 (1)°Yellow, prism
V = 1093.38 (4) Å30.10 × 0.03 × 0.02 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
1925 independent reflections
Radiation source: fine-focus sealed tube1655 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.303, Tmax = 0.745k = 1314
7713 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0761P)2]
where P = (Fo2 + 2Fc2)/3
1925 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 5.25 e Å3
72 restraintsΔρmin = 3.38 e Å3
Crystal data top
[Pb2(C9H5ClNO)2(C2H3O2)2]V = 1093.38 (4) Å3
Mr = 889.65Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.3049 (1) ŵ = 15.67 mm1
b = 11.8200 (3) ÅT = 100 K
c = 17.4928 (3) Å0.10 × 0.03 × 0.02 mm
β = 94.569 (1)°
Data collection top
Bruker SMART APEX
diffractometer
1925 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1655 reflections with I > 2σ(I)
Tmin = 0.303, Tmax = 0.745Rint = 0.063
7713 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04072 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.00Δρmax = 5.25 e Å3
1925 reflectionsΔρmin = 3.38 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.63668 (6)0.60161 (3)0.421032 (17)0.01511 (18)
Cl10.4232 (4)0.30986 (19)0.20373 (12)0.0219 (5)
O10.3463 (11)0.4603 (5)0.4439 (3)0.0175 (13)
O20.2902 (11)0.7164 (6)0.4314 (4)0.0244 (14)
O30.6097 (12)0.8054 (6)0.4933 (4)0.0318 (16)
N10.3482 (13)0.5526 (6)0.3014 (4)0.0164 (15)
C10.1685 (16)0.4300 (8)0.3908 (5)0.0149 (17)
C20.0268 (17)0.3547 (8)0.4053 (5)0.0186 (18)
H20.03510.32590.45570.022*
C30.2105 (16)0.3205 (7)0.3474 (5)0.0186 (19)
H30.33920.26910.35940.022*
C40.2057 (16)0.3610 (8)0.2735 (5)0.0154 (17)
C50.0195 (16)0.4416 (7)0.2573 (5)0.0143 (18)
C60.1645 (16)0.4747 (7)0.3134 (5)0.0179 (18)
C70.0074 (17)0.4913 (8)0.1825 (5)0.0203 (19)
H70.12700.47070.14160.024*
C80.1763 (17)0.5679 (8)0.1710 (5)0.0193 (19)
H80.18630.60180.12210.023*
C90.3506 (19)0.5960 (7)0.2321 (6)0.021 (2)
H90.47840.64970.22320.025*
C100.3841 (15)0.7984 (8)0.4697 (5)0.0172 (18)
C110.202 (2)0.8912 (7)0.4903 (6)0.025 (2)
H11A0.12280.86980.53690.037*
H11B0.07130.90130.44810.037*
H11C0.29530.96220.49920.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0176 (2)0.0145 (2)0.0126 (2)0.00021 (12)0.00237 (15)0.00053 (12)
Cl10.0203 (10)0.0240 (11)0.0198 (11)0.0012 (9)0.0085 (9)0.0023 (9)
O10.021 (3)0.014 (3)0.017 (3)0.005 (2)0.005 (3)0.001 (3)
O20.022 (3)0.027 (4)0.023 (3)0.006 (3)0.007 (3)0.005 (3)
O30.026 (4)0.027 (4)0.041 (4)0.000 (3)0.004 (3)0.012 (3)
N10.022 (4)0.012 (4)0.015 (4)0.003 (3)0.002 (3)0.000 (3)
C10.017 (3)0.017 (3)0.010 (3)0.002 (3)0.005 (3)0.002 (3)
C20.021 (4)0.021 (4)0.013 (4)0.001 (4)0.003 (4)0.003 (4)
C30.019 (4)0.016 (4)0.020 (4)0.001 (3)0.004 (3)0.004 (3)
C40.016 (3)0.015 (3)0.013 (3)0.001 (3)0.008 (3)0.006 (3)
C50.020 (4)0.013 (4)0.009 (4)0.003 (3)0.002 (3)0.001 (3)
C60.018 (4)0.014 (4)0.021 (4)0.003 (3)0.000 (3)0.001 (3)
C70.026 (4)0.021 (4)0.013 (4)0.007 (4)0.006 (3)0.001 (4)
C80.024 (4)0.021 (4)0.012 (4)0.001 (4)0.000 (4)0.002 (4)
C90.025 (5)0.017 (4)0.022 (5)0.000 (3)0.008 (4)0.006 (4)
C100.018 (4)0.023 (4)0.010 (4)0.005 (4)0.005 (3)0.010 (4)
C110.031 (5)0.020 (5)0.022 (5)0.003 (4)0.003 (4)0.004 (4)
Geometric parameters (Å, º) top
Pb1—O22.303 (6)C2—H20.9500
Pb1—O12.328 (6)C3—C41.380 (13)
Pb1—O1i2.469 (6)C3—H30.9500
Pb1—N12.559 (7)C4—C51.417 (13)
Pb1—O32.729 (7)C5—C61.384 (13)
Pb1—C102.848 (9)C5—C71.441 (12)
Cl1—C41.722 (9)C7—C81.356 (13)
O1—C11.319 (11)C7—H70.9500
O1—Pb1i2.469 (6)C8—C91.397 (15)
O2—C101.257 (11)C8—H80.9500
O3—C101.237 (10)C9—H90.9500
N1—C91.317 (12)C10—C111.524 (13)
N1—C61.370 (11)C11—H11A0.9800
C1—C21.404 (13)C11—H11B0.9800
C1—C61.451 (13)C11—H11C0.9800
C2—C31.407 (13)
O2—Pb1—O182.3 (2)C2—C3—H3119.6
O2—Pb1—O1i93.9 (2)C3—C4—C5119.1 (8)
O1—Pb1—O1i66.3 (2)C3—C4—Cl1118.8 (7)
O2—Pb1—N176.6 (2)C5—C4—Cl1122.2 (7)
O1—Pb1—N167.5 (2)C6—C5—C4120.7 (8)
O1i—Pb1—N1133.6 (2)C6—C5—C7116.7 (8)
O2—Pb1—O351.1 (2)C4—C5—C7122.6 (8)
O1—Pb1—O3119.6 (2)N1—C6—C5123.4 (8)
O1i—Pb1—O379.5 (2)N1—C6—C1115.5 (8)
N1—Pb1—O3121.9 (2)C5—C6—C1121.0 (8)
O2—Pb1—C1025.6 (2)C8—C7—C5119.4 (9)
O1—Pb1—C10101.6 (2)C8—C7—H7120.3
O1i—Pb1—C1086.5 (2)C5—C7—H7120.3
N1—Pb1—C1099.5 (2)C7—C8—C9119.0 (8)
O3—Pb1—C1025.5 (2)C7—C8—H8120.5
C1—O1—Pb1121.3 (5)C9—C8—H8120.5
C1—O1—Pb1i124.2 (5)N1—C9—C8123.9 (8)
Pb1—O1—Pb1i113.7 (2)N1—C9—H9118.1
C10—O2—Pb1102.2 (5)C8—C9—H9118.1
C10—O3—Pb182.6 (5)O3—C10—O2124.1 (9)
C9—N1—C6117.6 (8)O3—C10—C11119.2 (8)
C9—N1—Pb1128.0 (6)O2—C10—C11116.7 (8)
C6—N1—Pb1114.4 (6)O3—C10—Pb171.9 (5)
O1—C1—C2122.8 (8)O2—C10—Pb152.2 (4)
O1—C1—C6120.9 (8)C11—C10—Pb1168.8 (6)
C2—C1—C6116.3 (8)C10—C11—H11A109.5
C1—C2—C3122.1 (8)C10—C11—H11B109.5
C1—C2—H2119.0H11A—C11—H11B109.5
C3—C2—H2119.0C10—C11—H11C109.5
C4—C3—C2120.7 (8)H11A—C11—H11C109.5
C4—C3—H3119.6H11B—C11—H11C109.5
O2—Pb1—O1—C173.2 (6)Cl1—C4—C5—C6175.1 (6)
O1i—Pb1—O1—C1170.9 (8)C3—C4—C5—C7177.6 (8)
N1—Pb1—O1—C15.5 (6)Cl1—C4—C5—C73.6 (12)
O3—Pb1—O1—C1109.5 (6)C9—N1—C6—C51.4 (12)
C10—Pb1—O1—C190.1 (6)Pb1—N1—C6—C5176.2 (6)
O2—Pb1—O1—Pb1i97.7 (3)C9—N1—C6—C1179.6 (8)
O1i—Pb1—O1—Pb1i0.0Pb1—N1—C6—C12.0 (9)
N1—Pb1—O1—Pb1i176.4 (3)C4—C5—C6—N1179.6 (8)
O3—Pb1—O1—Pb1i61.4 (3)C7—C5—C6—N11.7 (12)
C10—Pb1—O1—Pb1i80.8 (3)C4—C5—C6—C11.5 (12)
O1—Pb1—O2—C10138.8 (5)C7—C5—C6—C1179.8 (8)
O1i—Pb1—O2—C1073.4 (5)O1—C1—C6—N12.8 (12)
N1—Pb1—O2—C10152.6 (6)C2—C1—C6—N1176.6 (8)
O3—Pb1—O2—C100.3 (5)O1—C1—C6—C5179.0 (8)
O2—Pb1—O3—C100.3 (5)C2—C1—C6—C51.6 (12)
O1—Pb1—O3—C1049.2 (6)C6—C5—C7—C81.2 (12)
O1i—Pb1—O3—C10104.0 (5)C4—C5—C7—C8179.9 (8)
N1—Pb1—O3—C1031.3 (6)C5—C7—C8—C90.4 (13)
O2—Pb1—N1—C993.9 (7)C6—N1—C9—C80.6 (13)
O1—Pb1—N1—C9179.0 (8)Pb1—N1—C9—C8176.6 (6)
O1i—Pb1—N1—C9176.4 (6)C7—C8—C9—N10.1 (14)
O3—Pb1—N1—C969.1 (8)Pb1—O3—C10—O20.4 (8)
C10—Pb1—N1—C982.3 (7)Pb1—O3—C10—C11177.7 (7)
O2—Pb1—N1—C683.4 (6)Pb1—O2—C10—O30.5 (10)
O1—Pb1—N1—C63.7 (5)Pb1—O2—C10—C11177.9 (6)
O1i—Pb1—N1—C60.9 (7)O2—Pb1—C10—O3179.5 (8)
O3—Pb1—N1—C6108.1 (6)O1—Pb1—C10—O3137.8 (5)
C10—Pb1—N1—C695.0 (6)O1i—Pb1—C10—O372.9 (5)
Pb1—O1—C1—C2172.5 (7)N1—Pb1—C10—O3153.5 (5)
Pb1i—O1—C1—C22.6 (11)O1—Pb1—C10—O241.8 (6)
Pb1—O1—C1—C66.8 (10)O1i—Pb1—C10—O2106.7 (5)
Pb1i—O1—C1—C6176.8 (6)N1—Pb1—C10—O227.0 (6)
O1—C1—C2—C3178.1 (8)O3—Pb1—C10—O2179.5 (8)
C6—C1—C2—C32.6 (13)O2—Pb1—C10—C1110 (3)
C1—C2—C3—C40.4 (14)O1—Pb1—C10—C1132 (3)
C2—C3—C4—C52.8 (13)O1i—Pb1—C10—C1197 (3)
C2—C3—C4—Cl1176.0 (7)N1—Pb1—C10—C1137 (3)
C3—C4—C5—C63.7 (13)O3—Pb1—C10—C11170 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pb2(C9H5ClNO)2(C2H3O2)2]
Mr889.65
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)5.3049 (1), 11.8200 (3), 17.4928 (3)
β (°) 94.569 (1)
V3)1093.38 (4)
Z2
Radiation typeMo Kα
µ (mm1)15.67
Crystal size (mm)0.10 × 0.03 × 0.02
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.303, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
7713, 1925, 1655
Rint0.063
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.00
No. of reflections1925
No. of parameters155
No. of restraints72
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)5.25, 3.38

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationShahverdizadeh, G. H., Soudi, A. A., Morsali, A. & Retailleau, P. (2008). Inorg. Chim. Acta, 361, 1875–1884.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds