organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

2-[4-(4,5-Di­hydro-1H-pyrrol-2-yl)phen­yl]-4,5-di­hydro-1H-imidazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 15 November 2008; accepted 17 November 2008; online 22 November 2008)

The mol­ecule of the title compound, C12H14N4, lies about a crystallographic inversion centre. The five- and six-membered rings are twisted from each other, forming a dihedral angle of 18.06 (7)°. In the crystal structure, neighbouring mol­ecules are linked by inter­molecular N—H⋯N hydrogen bonds into one-dimensional infinite chains forming 18-membered rings with R22(18) motifs. The crystal structure is further stabilized by weak inter­molecular ππ stacking [centroid–centroid distance = 3.8254 (6) Å] and C—H⋯π inter­actions.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure and synthesis, see: Stibrany et al. (2004[Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o527-o529.]). For applications, see: Blancafort (1978[Blancafort, P. (1978). Drugs Fut. 3, 592-592.]); Chan (1993[Chan, S. (1993). Clin. Sci. 85, 671-677.]); Vizi (1986[Vizi, E. S. (1986). Med. Res. Rev. 6, 431-449.]); Li et al. (1996[Li, H. Y., Drummond, S., De Lucca, I. & Boswell, G. A. (1996). Tetrahedron, 52, 11153-11162.]); Ueno et al. (1995[Ueno, M., Imaizumi, K., Sugita, T., Takata, I. & Takeshita, M. (1995). Int. J. Immunopharmacol. 17, 597-603.]); Corey & Grogan (1999[Corey, E. J. & Grogan, M. J. (1999). Org. Lett. 1, 157-160.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N4

  • Mr = 214.27

  • Triclinic, [P \overline 1]

  • a = 4.8863 (2) Å

  • b = 5.1472 (2) Å

  • c = 10.2295 (4) Å

  • α = 104.414 (2)°

  • β = 93.885 (2)°

  • γ = 94.207 (2)°

  • V = 247.52 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100.0 (1) K

  • 0.56 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.986

  • 4616 measured reflections

  • 1296 independent reflections

  • 1208 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.07

  • 1296 reflections

  • 101 parameters

  • All H-atom parameters refined

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1/C2/N2/C3 imidazoline ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N2i 0.87 (2) 2.18 (2) 3.0060 (13) 158.1 (15)
C2—H2BCg1ii 1.015 (15) 2.980 (15) 3.8882 (11) 149.6 (11)
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Imidazoline derivatives are of great importance because they exhibit significant biological and pharmacological activities including anti-hypertensive (Blancafort 1978), anti-hyperglycemic (Chan 1993), anti-depressive (Vizi 1986), anti-hypercholesterolemic (Li et al., 1996) and anti-inflammatory (Ueno et al., 1995) activities. These compounds are also used as catalysts and synthetic intermediates in some organic reactions (Corey & Grogan 1999). In consideration of the important applications of imidazolines, herein the crystal structure of the title compound, (I), is reported.

In compound (I), Fig. 1, bond lengths and angles are within the normal ranges and are comparable with a related structure (Stibrany et al., 2004). The molecule lies about a crystallographic inversion centre. The five- and six-membered rings are twisted from each other, forming a dihedral angle of 18.06 (7)°. Intermolecular N—H···N hydrogen bonds form 18-membered rings producing R22(18) ring motifs to link molecules into one-dimensional infinite chains along the b-axis, Table 1 and Fig. 2. The crystal structure is further stabilized by weak intermolecular ππ stacking [Cg1···Cg2i = 3.8254 (6) Å; (i) 1 + x, y, z] and C—H···π (Cg1 and Cg2 are the centroids of the N1/C1/C2/N2/C3 imidazoline ring and the benzene ring, respectively) interactions, Table 1.

Related literature top

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure and synthesis, see: Stibrany et al. (2004). For applications, see: Blancafort (1978); Chan (1993); Vizi (1986); Li et al. (1996); Ueno et al. (1995); Corey & Grogan (1999).

Experimental top

The synthetic method used for the preparation of (I) was based on previous work (Stibrany et al. 2004), except that 1,4-dicyanobenzene (10 mmol) and ethylenediamine (40 mmol) were used. Single crystals suitable for X-ray diffraction were obtained by evaporation of a methanol solution of (I) held at room temperature.

Refinement top

All hydrogen atoms were located from a difference Fourier map and refined freely: C—H ranged from 0.961 (16) to 1.015 (15) Å and N—H was 0.874 (18) Å.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms. Unlabelled atoms are related by -x + 1, -y, -z.
[Figure 2] Fig. 2. Partial crystal packing in (I), viewed down the a-axis showing one-dimensional infinite chains along the b-axis mediated by intermolecular N—H···N interactions (dashed lines).
2-[4-(4,5-Dihydro-1H-pyrrol-2-yl)-phenyl]-4,5-dihydro-1H-imidazole top
Crystal data top
C12H14N4Z = 1
Mr = 214.27F(000) = 114
Triclinic, P1Dx = 1.437 Mg m3
Hall symbol: -P 1Melting point: 312 K
a = 4.8863 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.1472 (2) ÅCell parameters from 3789 reflections
c = 10.2295 (4) Åθ = 2.5–30.3°
α = 104.414 (2)°µ = 0.09 mm1
β = 93.885 (2)°T = 100 K
γ = 94.207 (2)°Block, colourless
V = 247.52 (2) Å30.56 × 0.17 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1296 independent reflections
Radiation source: fine-focus sealed tube1208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 29.0°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 66
Tmin = 0.950, Tmax = 0.986k = 66
4616 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.0714P]
where P = (Fo2 + 2Fc2)/3
1296 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C12H14N4γ = 94.207 (2)°
Mr = 214.27V = 247.52 (2) Å3
Triclinic, P1Z = 1
a = 4.8863 (2) ÅMo Kα radiation
b = 5.1472 (2) ŵ = 0.09 mm1
c = 10.2295 (4) ÅT = 100 K
α = 104.414 (2)°0.56 × 0.17 × 0.15 mm
β = 93.885 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1296 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1208 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.986Rint = 0.026
4616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116All H-atom parameters refined
S = 1.07Δρmax = 0.42 e Å3
1296 reflectionsΔρmin = 0.24 e Å3
101 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.99649 (17)0.02202 (18)0.30177 (9)0.0140 (2)
N21.05027 (18)0.42785 (18)0.25064 (9)0.0161 (2)
C11.2376 (2)0.1595 (2)0.39310 (10)0.0148 (2)
C21.2547 (2)0.4433 (2)0.36664 (10)0.0158 (2)
C30.92585 (19)0.1869 (2)0.21989 (10)0.0124 (2)
C40.70754 (19)0.08912 (19)0.10716 (10)0.0124 (2)
C50.6787 (2)0.2263 (2)0.00581 (10)0.0138 (2)
C60.5270 (2)0.1391 (2)0.09997 (10)0.0135 (2)
H1A1.402 (3)0.062 (3)0.3667 (15)0.020 (3)*
H1B1.212 (3)0.169 (3)0.4906 (16)0.024 (4)*
H2A1.443 (3)0.498 (3)0.3429 (16)0.026 (4)*
H2B1.214 (3)0.587 (3)0.4488 (15)0.020 (3)*
H50.802 (3)0.383 (3)0.0096 (16)0.025 (4)*
H60.537 (3)0.239 (3)0.1687 (15)0.020 (3)*
H1N10.989 (3)0.151 (4)0.2656 (17)0.029 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0135 (4)0.0131 (4)0.0147 (4)0.0009 (3)0.0033 (3)0.0041 (3)
N20.0147 (4)0.0150 (4)0.0177 (5)0.0009 (3)0.0044 (3)0.0047 (3)
C10.0125 (4)0.0157 (5)0.0153 (5)0.0008 (3)0.0030 (3)0.0037 (4)
C20.0144 (5)0.0153 (5)0.0167 (5)0.0011 (4)0.0038 (3)0.0041 (4)
C30.0102 (4)0.0142 (5)0.0130 (4)0.0015 (3)0.0006 (3)0.0036 (3)
C40.0098 (4)0.0134 (5)0.0133 (4)0.0009 (3)0.0000 (3)0.0025 (3)
C50.0109 (4)0.0143 (5)0.0159 (5)0.0009 (3)0.0001 (3)0.0041 (3)
C60.0128 (4)0.0140 (5)0.0142 (5)0.0002 (3)0.0003 (3)0.0049 (3)
Geometric parameters (Å, º) top
N1—C31.3780 (13)C2—H2B1.015 (15)
N1—C11.4700 (12)C3—C41.4787 (13)
N1—H1N10.874 (18)C4—C51.3973 (14)
N2—C31.2944 (13)C4—C61.4000 (14)
N2—C21.4808 (12)C5—C6i1.3881 (13)
C1—C21.5479 (14)C5—H50.961 (16)
C1—H1A0.997 (14)C6—C5i1.3881 (13)
C1—H1B1.004 (16)C6—H60.970 (15)
C2—H2A1.006 (16)
C3—N1—C1107.38 (8)C1—C2—H2B112.1 (9)
C3—N1—H1N1118.4 (11)H2A—C2—H2B106.8 (12)
C1—N1—H1N1119.9 (10)N2—C3—N1116.89 (9)
C3—N2—C2106.43 (8)N2—C3—C4123.28 (9)
N1—C1—C2102.00 (8)N1—C3—C4119.77 (9)
N1—C1—H1A108.9 (8)C5—C4—C6118.99 (9)
C2—C1—H1A112.8 (9)C5—C4—C3119.82 (9)
N1—C1—H1B112.3 (9)C6—C4—C3121.19 (9)
C2—C1—H1B111.4 (9)C6i—C5—C4120.61 (9)
H1A—C1—H1B109.3 (12)C6i—C5—H5119.7 (9)
N2—C2—C1106.30 (8)C4—C5—H5119.6 (9)
N2—C2—H2A109.2 (9)C5i—C6—C4120.40 (9)
C1—C2—H2A111.9 (9)C5i—C6—H6117.6 (9)
N2—C2—H2B110.6 (8)C4—C6—H6122.0 (9)
C3—N1—C1—C29.79 (10)N1—C3—C4—C5165.14 (9)
C3—N2—C2—C13.06 (11)N2—C3—C4—C6161.93 (10)
N1—C1—C2—N27.84 (10)N1—C3—C4—C615.11 (14)
C2—N2—C3—N13.71 (12)C6—C4—C5—C6i0.46 (16)
C2—N2—C3—C4179.17 (8)C3—C4—C5—C6i179.29 (8)
C1—N1—C3—N29.24 (12)C5—C4—C6—C5i0.46 (16)
C1—N1—C3—C4173.53 (8)C3—C4—C6—C5i179.29 (8)
N2—C3—C4—C517.82 (14)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2ii0.87 (2)2.18 (2)3.0060 (13)158.1 (15)
C2—H2B···Cg1iii1.015 (15)2.980 (15)3.8882 (11)149.6 (11)
Symmetry codes: (ii) x, y1, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H14N4
Mr214.27
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)4.8863 (2), 5.1472 (2), 10.2295 (4)
α, β, γ (°)104.414 (2), 93.885 (2), 94.207 (2)
V3)247.52 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.56 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.950, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
4616, 1296, 1208
Rint0.026
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.07
No. of reflections1296
No. of parameters101
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.42, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.87 (2)2.18 (2)3.0060 (13)158.1 (15)
C2—H2B···Cg1ii1.015 (15)2.980 (15)3.8882 (11)149.6 (11)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.
 

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for a Science Fund grant (No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for a Research University Golden Goose grant (No. 1001/PFIZIK/811012).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlancafort, P. (1978). Drugs Fut. 3, 592–592.  CrossRef Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, S. (1993). Clin. Sci. 85, 671–677.  CAS PubMed Web of Science Google Scholar
First citationCorey, E. J. & Grogan, M. J. (1999). Org. Lett. 1, 157–160.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, H. Y., Drummond, S., De Lucca, I. & Boswell, G. A. (1996). Tetrahedron, 52, 11153–11162.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o527–o529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUeno, M., Imaizumi, K., Sugita, T., Takata, I. & Takeshita, M. (1995). Int. J. Immunopharmacol. 17, 597–603.  CrossRef CAS PubMed Web of Science Google Scholar
First citationVizi, E. S. (1986). Med. Res. Rev. 6, 431–449.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds