metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Low-temperature redetermination of aqua­chloridotri­phenyl­tin(IV)–1,10-phenanthroline (1/1)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 28 July 2008; accepted 30 July 2008; online 6 August 2008)

The crystal structure of the title compound, [Sn(C6H5)3Cl(H2O)]·C12H8N2, which was refined in the triclinic space group P[\overline{1}] [Fu, Gao, Ma & Zhang (2005[Fu, C.-X., Gao, Z.-H., Ma, C.-L. & Zhang, J.-H. (2005). Chin. J. Synth. Chem. 13, 55-57.]). Chin. J. Synth. Chem. 13, 55–57], has been redetermined in the monoclinic space group C2/c from low-temperature diffraction measurements. The Sn atom is five-coordinate in a trans-C3SnClO trigonal-bipyramidal geometry; the coordinated water mol­ecule forms a pair of hydrogen bonds to the nitro­gen heterocycle.

Related literature

For a description of the title compound in the triclinic space group P[\overline{1}], see: Fu et al. (2005[Fu, C.-X., Gao, Z.-H., Ma, C.-L. & Zhang, J.-H. (2005). Chin. J. Synth. Chem. 13, 55-57.]). Aqua­chlorido­tri(p-chloro­phen­yl)tin.1,10-phenanthroline exists as a hydrogen-bonded dinuclear compound, see: Ng & Kumar Das (1996[Ng, S. W. & Kumar Das, V. G. (1996). J. Organomet. Chem. 513, 105-108.]). This study also mentions the existence of a monoclinic P21/c modification of the title compound. This modification is, in fact, commensurately modulated; see: Rae et al. (2005[Rae, A. D., Haller, K. J. & Ng, S. W. (2005). J. Sci. Technol. Tropics, 1, 157-163.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3Cl(H2O)]·C12H8N2

  • Mr = 583.66

  • Monoclinic, C 2/c

  • a = 16.3739 (2) Å

  • b = 17.3120 (2) Å

  • c = 18.4295 (2) Å

  • β = 105.602 (1)°

  • V = 5031.6 (1) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 100 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.768, Tmax = 0.894

  • 23117 measured reflections

  • 5746 independent reflections

  • 5333 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.052

  • S = 1.01

  • 5746 reflections

  • 324 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.84 (1) 1.91 (1) 2.716 (2) 159 (3)
O1—H2o⋯N2 0.84 (1) 2.03 (2) 2.757 (2) 144 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Interest in aquachlorotriphenyltin.1,10-phenanthroline (Scheme I) involves the existence of a monoclinic P21/c modification [11.960 (1), 12.220 (1), 17.854 (1) Å, β 92.41 (1) °] (Ng & Kumar Das, 1996) that is, in fact, commensurately modulated in P21/n [21.1053 (5), 12.2347 (3), 51.772 (2) Å,101.525 (2) °] (Rae et al., 2005). The compound has the coordinated water molecules of two aquachlorotriphenyltin entities each forming hydrogen bonds to two N-heterocycles. A reported triclinic modification (Fu et al., 2005) has an unit cell [P1: 12.064 (4), 12.075 (4), 18.603 (6) Å, 89.562 (6), 99.567 (5), 72.702 (5) °; V 2672 (5) Å3] that readily transforms to a monoclinic C2/c unit cell. In the correct symmetry, the tin atom is five-coordinate in a trans-C3SnClO trigonal bipyramidal geometry; the coordinated water molecule forms a pair of hydrogen bonds to one N-heterocycle only (Fig. 1, Table 1).

Related literature top

For a description of the title compound in the triclinic space group P1, see: Fu et al. (2005). Aquachlorotri(p-chlorophenyl)tin.1,10-phenanthroline exists as a hydrogen-bonded dinuclear compound, see: Ng & Kumar Das (1996). This study also mentions the existence of a monoclinic P21/c modification of the title compound. This modification is, in fact, commensurately modulated; see: Rae et al. (2005).

Experimental top

Triphenyltin chloride (0.39 g, 1 mmol) and 1,10-phenanthroline monohydrate (0.20 g, 1 mmol) were dissolved in hot ethanol (10 ml). Crystals of the compound separated after a day.

Refinement top

The carbon-bound hydrogen atoms were placed at calculated positions with C—H = 0.95 Å, and with U(H) = 1.2Ueq(C). The water H-atoms were refined with a distance restraint of O—H 0.84±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) plot of monoclinic SnCl(H2O)(C6H5)3.C12H8N2 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Hydrogen bonds are shown as dashed lines.
aquachloridotriphenyltin(IV)–1,10-phenanthroline (1/1) top
Crystal data top
[Sn(C6H5)3Cl(H2O)]·C12H8N2F(000) = 2352
Mr = 583.66Dx = 1.541 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9047 reflections
a = 16.3739 (2) Åθ = 2.3–28.3°
b = 17.3120 (2) ŵ = 1.15 mm1
c = 18.4295 (2) ÅT = 100 K
β = 105.602 (1)°Block, colorless
V = 5031.6 (1) Å30.30 × 0.20 × 0.10 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
5746 independent reflections
Radiation source: fine-focus sealed tube5333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2121
Tmin = 0.768, Tmax = 0.894k = 2222
23117 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0231P)2 + 10.9613P]
where P = (Fo2 + 2Fc2)/3
5746 reflections(Δ/σ)max = 0.001
324 parametersΔρmax = 0.72 e Å3
2 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Sn(C6H5)3Cl(H2O)]·C12H8N2V = 5031.6 (1) Å3
Mr = 583.66Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.3739 (2) ŵ = 1.15 mm1
b = 17.3120 (2) ÅT = 100 K
c = 18.4295 (2) Å0.30 × 0.20 × 0.10 mm
β = 105.602 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5746 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5333 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.894Rint = 0.015
23117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0202 restraints
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0231P)2 + 10.9613P]
where P = (Fo2 + 2Fc2)/3
5746 reflectionsΔρmax = 0.72 e Å3
324 parametersΔρmin = 0.60 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.283489 (7)0.505787 (6)0.562615 (6)0.01482 (4)
Cl10.18859 (3)0.44885 (2)0.44433 (2)0.02027 (8)
O10.37284 (8)0.56254 (7)0.67064 (7)0.0195 (2)
H1O0.3578 (17)0.6082 (8)0.6762 (16)0.050 (8)*
H2O0.4223 (9)0.5695 (16)0.6674 (16)0.053 (8)*
N10.36099 (9)0.71863 (8)0.67875 (8)0.0188 (3)
N20.50883 (9)0.65084 (9)0.65883 (8)0.0216 (3)
C10.34419 (10)0.58146 (9)0.50254 (9)0.0172 (3)
C20.40237 (12)0.55391 (11)0.46606 (11)0.0264 (4)
H20.41150.49990.46360.032*
C30.44752 (13)0.60528 (14)0.43296 (12)0.0343 (5)
H30.48720.58610.40810.041*
C40.43462 (13)0.68404 (13)0.43620 (12)0.0330 (5)
H40.46620.71890.41460.040*
C50.37588 (13)0.71172 (11)0.47086 (11)0.0287 (4)
H50.36620.76570.47230.034*
C60.33064 (12)0.66094 (10)0.50385 (10)0.0214 (3)
H60.29010.68060.52750.026*
C70.33380 (10)0.39676 (9)0.60801 (10)0.0179 (3)
C80.36605 (13)0.38717 (11)0.68536 (11)0.0274 (4)
H80.37160.43060.71780.033*
C90.39024 (15)0.31425 (13)0.71554 (13)0.0366 (5)
H90.41200.30820.76850.044*
C100.38270 (13)0.25093 (11)0.66890 (13)0.0331 (5)
H100.39820.20120.68980.040*
C110.35274 (12)0.25958 (10)0.59211 (13)0.0292 (4)
H110.34930.21610.56000.035*
C120.32755 (11)0.33198 (10)0.56158 (11)0.0218 (3)
H120.30590.33750.50860.026*
C130.18329 (10)0.54725 (9)0.60574 (10)0.0178 (3)
C140.19228 (12)0.54833 (10)0.68337 (10)0.0217 (3)
H140.24440.53270.71710.026*
C150.12560 (13)0.57213 (10)0.71168 (11)0.0264 (4)
H150.13210.57240.76450.032*
C160.04974 (13)0.59533 (11)0.66251 (12)0.0292 (4)
H160.00430.61170.68180.035*
C170.03984 (12)0.59478 (11)0.58568 (12)0.0281 (4)
H170.01220.61100.55220.034*
C180.10621 (11)0.57037 (10)0.55742 (11)0.0222 (3)
H180.09890.56940.50450.027*
C190.29276 (11)0.75240 (11)0.68954 (10)0.0226 (4)
H190.24980.72040.69940.027*
C200.27997 (12)0.83268 (11)0.68733 (11)0.0273 (4)
H200.23010.85430.69590.033*
C210.34104 (13)0.87859 (11)0.67250 (11)0.0282 (4)
H210.33400.93310.67040.034*
C220.41470 (12)0.84523 (10)0.66025 (10)0.0234 (4)
C230.42300 (11)0.76392 (10)0.66440 (9)0.0184 (3)
C240.47983 (13)0.89168 (11)0.64384 (11)0.0300 (4)
H240.47370.94630.64130.036*
C250.54943 (13)0.85914 (12)0.63203 (11)0.0309 (4)
H250.59150.89100.62060.037*
C260.56146 (12)0.77707 (12)0.63629 (10)0.0257 (4)
C270.49893 (11)0.72867 (10)0.65276 (9)0.0201 (3)
C280.63516 (12)0.74201 (14)0.62609 (11)0.0326 (5)
H280.67810.77270.61450.039*
C290.64472 (13)0.66405 (14)0.63288 (11)0.0346 (5)
H290.69420.63950.62650.042*
C300.57960 (12)0.62074 (12)0.64960 (11)0.0283 (4)
H300.58680.56640.65460.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01639 (6)0.01177 (6)0.01746 (6)0.00055 (4)0.00652 (4)0.00002 (4)
Cl10.02075 (19)0.01617 (18)0.0221 (2)0.00109 (14)0.00273 (15)0.00226 (14)
O10.0198 (6)0.0156 (6)0.0235 (6)0.0023 (5)0.0066 (5)0.0015 (5)
N10.0187 (7)0.0197 (7)0.0170 (7)0.0021 (5)0.0033 (6)0.0004 (5)
N20.0213 (7)0.0260 (7)0.0176 (7)0.0007 (6)0.0051 (6)0.0019 (6)
C10.0168 (8)0.0183 (8)0.0160 (8)0.0034 (6)0.0033 (6)0.0001 (6)
C20.0241 (9)0.0281 (9)0.0296 (10)0.0026 (7)0.0118 (8)0.0030 (7)
C30.0222 (9)0.0508 (13)0.0341 (11)0.0009 (9)0.0152 (8)0.0082 (9)
C40.0270 (10)0.0426 (11)0.0272 (10)0.0153 (9)0.0035 (8)0.0114 (9)
C50.0363 (11)0.0216 (9)0.0234 (9)0.0116 (8)0.0002 (8)0.0035 (7)
C60.0264 (9)0.0188 (8)0.0183 (8)0.0031 (7)0.0046 (7)0.0003 (6)
C70.0151 (7)0.0169 (7)0.0240 (9)0.0004 (6)0.0091 (6)0.0027 (6)
C80.0338 (10)0.0258 (9)0.0240 (9)0.0089 (8)0.0102 (8)0.0037 (7)
C90.0460 (13)0.0365 (11)0.0307 (11)0.0169 (10)0.0161 (10)0.0148 (9)
C100.0320 (10)0.0213 (9)0.0506 (13)0.0112 (8)0.0190 (10)0.0157 (9)
C110.0227 (9)0.0150 (8)0.0517 (13)0.0007 (7)0.0132 (9)0.0005 (8)
C120.0180 (8)0.0179 (8)0.0300 (9)0.0011 (6)0.0074 (7)0.0003 (7)
C130.0191 (8)0.0112 (7)0.0254 (9)0.0023 (6)0.0102 (7)0.0011 (6)
C140.0243 (9)0.0168 (8)0.0260 (9)0.0002 (7)0.0102 (7)0.0006 (6)
C150.0363 (10)0.0198 (8)0.0288 (10)0.0002 (7)0.0189 (8)0.0015 (7)
C160.0291 (10)0.0226 (9)0.0439 (12)0.0031 (7)0.0235 (9)0.0005 (8)
C170.0209 (9)0.0248 (9)0.0403 (11)0.0038 (7)0.0114 (8)0.0035 (8)
C180.0232 (9)0.0188 (8)0.0264 (9)0.0005 (6)0.0095 (7)0.0018 (7)
C190.0197 (8)0.0270 (9)0.0196 (9)0.0000 (7)0.0028 (7)0.0005 (7)
C200.0246 (9)0.0276 (9)0.0267 (10)0.0069 (7)0.0019 (8)0.0024 (7)
C210.0341 (10)0.0200 (8)0.0242 (9)0.0044 (7)0.0030 (8)0.0001 (7)
C220.0275 (9)0.0213 (8)0.0168 (8)0.0039 (7)0.0018 (7)0.0010 (6)
C230.0205 (8)0.0196 (8)0.0126 (7)0.0029 (6)0.0002 (6)0.0000 (6)
C240.0372 (11)0.0223 (9)0.0245 (10)0.0112 (8)0.0018 (8)0.0049 (7)
C250.0312 (10)0.0364 (11)0.0219 (9)0.0183 (8)0.0015 (8)0.0057 (8)
C260.0227 (9)0.0377 (10)0.0154 (8)0.0088 (8)0.0032 (7)0.0010 (7)
C270.0200 (8)0.0261 (8)0.0134 (8)0.0048 (7)0.0027 (6)0.0005 (6)
C280.0231 (9)0.0547 (13)0.0214 (9)0.0102 (9)0.0082 (8)0.0015 (9)
C290.0236 (9)0.0586 (14)0.0239 (10)0.0023 (9)0.0104 (8)0.0066 (9)
C300.0279 (10)0.0360 (10)0.0211 (9)0.0032 (8)0.0068 (8)0.0055 (8)
Geometric parameters (Å, º) top
Sn1—C12.127 (2)C12—H120.9500
Sn1—C72.138 (2)C13—C181.393 (2)
Sn1—C132.131 (2)C13—C141.398 (2)
Sn1—O12.346 (1)C14—C151.393 (2)
Sn1—Cl12.5132 (4)C14—H140.9500
O1—H1O0.84 (1)C15—C161.386 (3)
O1—H2O0.84 (1)C15—H150.9500
N1—C191.322 (2)C16—C171.381 (3)
N1—C231.364 (2)C16—H160.9500
N2—C301.323 (2)C17—C181.391 (2)
N2—C271.358 (2)C17—H170.9500
C1—C61.395 (2)C18—H180.9500
C1—C21.390 (2)C19—C201.405 (3)
C2—C31.397 (3)C19—H190.9500
C2—H20.9500C20—C211.361 (3)
C3—C41.384 (3)C20—H200.9500
C3—H30.9500C21—C221.409 (3)
C4—C51.376 (3)C21—H210.9500
C4—H40.9500C22—C231.414 (2)
C5—C61.390 (2)C22—C241.432 (3)
C5—H50.9500C23—C271.452 (2)
C6—H60.9500C24—C251.340 (3)
C7—C121.398 (2)C24—H240.9500
C7—C81.391 (3)C25—C261.434 (3)
C8—C91.393 (3)C25—H250.9500
C8—H80.9500C26—C281.408 (3)
C9—C101.378 (3)C26—C271.418 (2)
C9—H90.9500C28—C291.361 (3)
C10—C111.376 (3)C28—H280.9500
C10—H100.9500C29—C301.404 (3)
C11—C121.390 (2)C29—H290.9500
C11—H110.9500C30—H300.9500
C1—Sn1—C7124.25 (6)C14—C13—Sn1120.42 (13)
C1—Sn1—C13120.08 (6)C13—C14—C15120.64 (18)
C1—Sn1—O184.93 (5)C13—C14—H14119.7
C1—Sn1—Cl193.24 (5)C15—C14—H14119.7
C7—Sn1—C13113.94 (6)C16—C15—C14119.73 (18)
C7—Sn1—Cl194.38 (5)C16—C15—H15120.1
C7—Sn1—O187.19 (6)C14—C15—H15120.1
C13—Sn1—O184.80 (6)C15—C16—C17120.38 (17)
C13—Sn1—Cl195.58 (5)C15—C16—H16119.8
O1—Sn1—Cl1178.06 (3)C17—C16—H16119.8
Sn1—O1—H1o111.1 (19)C16—C17—C18119.86 (18)
Sn1—O1—H2o113 (2)C16—C17—H17120.1
H1o—O1—H2o101 (3)C18—C17—H17120.1
C19—N1—C23118.57 (15)C17—C18—C13120.82 (18)
C30—N2—C27118.00 (16)C17—C18—H18119.6
C6—C1—C2118.67 (16)C13—C18—H18119.6
C6—C1—Sn1119.99 (12)N1—C19—C20123.95 (17)
C2—C1—Sn1121.17 (13)N1—C19—H19118.0
C1—C2—C3120.32 (18)C20—C19—H19118.0
C1—C2—H2119.8C21—C20—C19118.14 (17)
C3—C2—H2119.8C21—C20—H20120.9
C4—C3—C2120.23 (19)C19—C20—H20120.9
C4—C3—H3119.9C20—C21—C22119.97 (17)
C2—C3—H3119.9C20—C21—H21120.0
C5—C4—C3119.82 (17)C22—C21—H21120.0
C5—C4—H4120.1C23—C22—C21118.24 (17)
C3—C4—H4120.1C23—C22—C24120.29 (18)
C4—C5—C6120.27 (18)C21—C22—C24121.47 (17)
C4—C5—H5119.9N1—C23—C22121.12 (16)
C6—C5—H5119.9N1—C23—C27119.92 (15)
C5—C6—C1120.67 (17)C22—C23—C27118.95 (16)
C5—C6—H6119.7C25—C24—C22120.82 (18)
C1—C6—H6119.7C25—C24—H24119.6
C12—C7—C8118.48 (16)C22—C24—H24119.6
C12—C7—Sn1120.79 (13)C24—C25—C26121.20 (17)
C8—C7—Sn1120.45 (13)C24—C25—H25119.4
C9—C8—C7120.42 (19)C26—C25—H25119.4
C9—C8—H8119.8C28—C26—C27117.91 (18)
C7—C8—H8119.8C28—C26—C25122.01 (18)
C10—C9—C8120.2 (2)C27—C26—C25120.06 (18)
C10—C9—H9119.9N2—C27—C26121.80 (17)
C8—C9—H9119.9N2—C27—C23119.53 (15)
C11—C10—C9120.17 (18)C26—C27—C23118.66 (16)
C11—C10—H10119.9C29—C28—C26119.80 (18)
C9—C10—H10119.9C29—C28—H28120.1
C10—C11—C12119.95 (18)C26—C28—H28120.1
C10—C11—H11120.0C28—C29—C30118.33 (19)
C12—C11—H11120.0C28—C29—H29120.8
C11—C12—C7120.72 (18)C30—C29—H29120.8
C11—C12—H12119.6N2—C30—C29124.1 (2)
C7—C12—H12119.6N2—C30—H30117.9
C18—C13—C14118.56 (16)C29—C30—H30117.9
C18—C13—Sn1120.95 (13)
C13—Sn1—C1—C612.62 (16)C18—C13—C14—C150.1 (2)
C7—Sn1—C1—C6151.49 (13)Sn1—C13—C14—C15177.11 (13)
O1—Sn1—C1—C668.37 (14)C13—C14—C15—C160.3 (3)
Cl1—Sn1—C1—C6110.98 (13)C14—C15—C16—C170.2 (3)
C13—Sn1—C1—C2172.10 (14)C15—C16—C17—C180.4 (3)
C7—Sn1—C1—C223.79 (17)C16—C17—C18—C130.8 (3)
O1—Sn1—C1—C2106.90 (15)C14—C13—C18—C170.7 (3)
Cl1—Sn1—C1—C273.75 (14)Sn1—C13—C18—C17177.66 (13)
C6—C1—C2—C31.4 (3)C23—N1—C19—C200.2 (3)
Sn1—C1—C2—C3173.93 (15)N1—C19—C20—C210.6 (3)
C1—C2—C3—C40.0 (3)C19—C20—C21—C220.3 (3)
C2—C3—C4—C51.3 (3)C20—C21—C22—C230.4 (3)
C3—C4—C5—C61.2 (3)C20—C21—C22—C24179.42 (18)
C4—C5—C6—C10.2 (3)C19—N1—C23—C220.6 (2)
C2—C1—C6—C51.5 (3)C19—N1—C23—C27179.62 (15)
Sn1—C1—C6—C5173.91 (13)C21—C22—C23—N10.9 (3)
C1—Sn1—C7—C1278.22 (15)C24—C22—C23—N1178.92 (16)
C13—Sn1—C7—C12116.81 (13)C21—C22—C23—C27179.32 (16)
O1—Sn1—C7—C12160.15 (13)C24—C22—C23—C270.8 (3)
Cl1—Sn1—C7—C1218.72 (13)C23—C22—C24—C250.1 (3)
C1—Sn1—C7—C8108.01 (14)C21—C22—C24—C25179.75 (18)
C13—Sn1—C7—C856.97 (16)C22—C24—C25—C260.7 (3)
O1—Sn1—C7—C826.08 (14)C24—C25—C26—C28178.24 (19)
Cl1—Sn1—C7—C8155.05 (14)C24—C25—C26—C270.4 (3)
C12—C7—C8—C91.0 (3)C30—N2—C27—C260.6 (3)
Sn1—C7—C8—C9172.95 (15)C30—N2—C27—C23178.48 (16)
C7—C8—C9—C100.2 (3)C28—C26—C27—N20.1 (3)
C8—C9—C10—C111.2 (3)C25—C26—C27—N2178.60 (17)
C9—C10—C11—C122.0 (3)C28—C26—C27—C23179.23 (16)
C10—C11—C12—C71.2 (3)C25—C26—C27—C230.5 (3)
C8—C7—C12—C110.2 (3)N1—C23—C27—N22.2 (2)
Sn1—C7—C12—C11173.66 (13)C22—C23—C27—N2178.03 (16)
C1—Sn1—C13—C1866.35 (15)N1—C23—C27—C26178.62 (16)
C7—Sn1—C13—C18127.99 (13)C22—C23—C27—C261.1 (2)
O1—Sn1—C13—C18147.42 (13)C27—C26—C28—C290.6 (3)
Cl1—Sn1—C13—C1830.67 (13)C25—C26—C28—C29178.06 (19)
C1—Sn1—C13—C14116.71 (13)C26—C28—C29—C300.4 (3)
C7—Sn1—C13—C1448.95 (15)C27—N2—C30—C290.9 (3)
O1—Sn1—C13—C1435.64 (13)C28—C29—C30—N20.4 (3)
Cl1—Sn1—C13—C14146.27 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.84 (1)1.91 (1)2.716 (2)159 (3)
O1—H2o···N20.84 (1)2.03 (2)2.757 (2)144 (3)

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3Cl(H2O)]·C12H8N2
Mr583.66
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)16.3739 (2), 17.3120 (2), 18.4295 (2)
β (°) 105.602 (1)
V3)5031.6 (1)
Z8
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.768, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
23117, 5746, 5333
Rint0.015
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.052, 1.01
No. of reflections5746
No. of parameters324
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0231P)2 + 10.9613P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.72, 0.60

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.84 (1)1.91 (1)2.716 (2)159 (3)
O1—H2o···N20.84 (1)2.03 (2)2.757 (2)144 (3)
 

Acknowledgements

The University of Malaya is thanked for supporting this study through the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFu, C.-X., Gao, Z.-H., Ma, C.-L. & Zhang, J.-H. (2005). Chin. J. Synth. Chem. 13, 55–57.  CAS Google Scholar
First citationNg, S. W. & Kumar Das, V. G. (1996). J. Organomet. Chem. 513, 105–108.  CAS Google Scholar
First citationRae, A. D., Haller, K. J. & Ng, S. W. (2005). J. Sci. Technol. Tropics, 1, 157–163.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds