metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Triclinic modification of di-n-butyl­bis­(2-hy­droxy­benzoato-κ2O1,O1′)tin(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 22 July 2008; accepted 28 July 2008; online 20 August 2008)

The Sn atom in the title compound, [Sn(C4H9)2(C7H5O3)2], is chelated by the carboxyl­ate groups of 2-hydroxy­benzoate liagnds, and exists in a six-coordinate skew-trapezoidal bipyramidal coordination geometry [C—Sn—C = 140.1 (3)°].

Related literature

For the monoclinic modification, see: Narula et al. (1992[Narula, S. P., Bharadwaj, S. K., Sharda, Y., Day, R. O., Howe, L. & Holmes, R. R. (1992). Organometallics, 11, 2206-2211.]). For a review of the structural chemistry of organotin carboxyl­ates, see: Tiekink (1991[Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.], 1994[Tiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-116.]). For a discussion of skew-trapezoidal bipyramidal diorganotin bis­(chelates), see: Ng et al. (1987[Ng, S. W., Chen, W., Kumar Das, V. G. & Mak, T. C. W. (1987). J. Organomet. Chem. 334, 295-305.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C4H9)2(C7H5O3)2]

  • Mr = 507.13

  • Triclinic, [P \overline 1]

  • a = 9.1652 (2) Å

  • b = 11.2111 (2) Å

  • c = 12.2620 (2) Å

  • α = 94.759 (1)°

  • β = 106.872 (1)°

  • γ = 108.586 (1)°

  • V = 1121.24 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 100 (2) K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.758, Tmax = 0.844

  • 11666 measured reflections

  • 5068 independent reflections

  • 4633 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.189

  • S = 1.18

  • 5068 reflections

  • 262 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 2.57 e Å−3

  • Δρmin = −1.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯O2 0.84 1.96 2.599 (9) 132
O6—H6o⋯O5 0.84 2.00 2.626 (8) 131

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Diorganotin dicarboxylates generally exist as monomeric molecules in which the carboxylate groups chelate in an anisobidentate manner (Tiekink, 1991; 1994). The R2Sn unit is bent, and the geometry at tin is described as being skew-trapezoidal bipyramidal (Ng et al., 1987). The title compound has been reported in a monoclinic form (Narula et al., 1992). This structure has one n-butyl group in a W conformation and the other in a U conformation. In the present triclinic modification (Scheme I, Fig. 1), both groups adopt a W conformation. Intramolecular O-H···O hydrogen bonds are noted (Table 1).

Related literature top

For the monoclinic modification, see: Narula et al. (1992). For a review of the structural chemistry of organotin carboxylates, see: Tiekink (1991, 1994). For a discussion of skew-trapezoidal bipyramidal diorganotin bis(chelates), see: Ng et al. (1987).

Experimental top

Dibutyltin oxide (2 g, 8 mmol) and salicylic acid (2.2 g, 16 mmol) were heated in toluene (100 ml) in a Dean-Stark water apparatus. Slow evaporation of the filtered solution yielded colorless crystals.

Refinement top

Carbon-bound H-atoms were placed in positions (C–H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C). The hydroxy H-atoms were similarly constrained (O–H 0.84 Å) but the hybridization of the oxygen atoms was assumed to be sp2.

The final difference Fourier map had a peak of 2.57 e Å-3 at 1.5 Å from the O5 and O6 atoms, and a deep hole of -1.40 e Å-3 at 1.5 Å from the H12 atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) plot of the triclinic form of [Sn(C4H9)2(C7H5O3] at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
di-n-butylbis(2-hydroxybenzoato-κ2O1,O1')tin(IV) top
Crystal data top
[Sn(C4H9)2(C7H5O3)2]Z = 2
Mr = 507.13F(000) = 516
Triclinic, P1Dx = 1.502 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1652 (2) ÅCell parameters from 6302 reflections
b = 11.2111 (2) Åθ = 2.5–27.7°
c = 12.2620 (2) ŵ = 1.17 mm1
α = 94.759 (1)°T = 100 K
β = 106.872 (1)°Block, colorless
γ = 108.586 (1)°0.25 × 0.20 × 0.15 mm
V = 1121.24 (4) Å3
Data collection top
Bruker SMART APEX
diffractometer
5068 independent reflections
Radiation source: fine-focus sealed tube4633 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 117
Tmin = 0.758, Tmax = 0.844k = 1414
11666 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0604P)2 + 8.6498P]
where P = (Fo2 + 2Fc2)/3
5068 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 2.57 e Å3
2 restraintsΔρmin = 1.40 e Å3
Crystal data top
[Sn(C4H9)2(C7H5O3)2]γ = 108.586 (1)°
Mr = 507.13V = 1121.24 (4) Å3
Triclinic, P1Z = 2
a = 9.1652 (2) ÅMo Kα radiation
b = 11.2111 (2) ŵ = 1.17 mm1
c = 12.2620 (2) ÅT = 100 K
α = 94.759 (1)°0.25 × 0.20 × 0.15 mm
β = 106.872 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5068 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4633 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.844Rint = 0.034
11666 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0592 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.18Δρmax = 2.57 e Å3
5068 reflectionsΔρmin = 1.40 e Å3
262 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.50157 (6)0.34322 (5)0.64132 (4)0.03511 (17)
O10.6039 (7)0.5445 (5)0.6922 (5)0.0424 (11)
O20.4303 (7)0.4748 (5)0.7850 (5)0.0495 (13)
O30.4148 (9)0.6313 (7)0.9462 (6)0.0687 (19)
H3O0.38020.55490.91110.103*
O40.6470 (6)0.3786 (5)0.5355 (4)0.0391 (11)
O50.5384 (8)0.1687 (6)0.5037 (5)0.0535 (14)
O60.5995 (9)0.0298 (5)0.3515 (6)0.0634 (18)
H6O0.54750.02760.39800.095*
C10.2603 (9)0.2912 (8)0.5242 (7)0.0452 (17)
H1A0.25220.36520.48730.054*
H1B0.24120.22010.46200.054*
C20.1264 (10)0.2505 (8)0.5755 (8)0.0512 (19)
H2A0.13540.32530.62960.061*
H2B0.01980.22430.51230.061*
C30.1281 (12)0.1422 (9)0.6398 (9)0.059 (2)
H3A0.22430.17380.71180.071*
H3B0.14100.07380.59110.071*
C40.0260 (15)0.0841 (11)0.6719 (11)0.077 (3)
H4A0.01590.01500.71400.116*
H4B0.12170.04960.60090.116*
H4C0.03890.15070.72120.116*
C50.6353 (10)0.2839 (7)0.7842 (7)0.0429 (16)
H5A0.60760.30660.85340.051*
H5B0.60340.18950.76690.051*
C60.8165 (10)0.3455 (7)0.8106 (7)0.0423 (16)
H6A0.84730.43990.82590.051*
H6B0.84360.32150.74150.051*
C70.9178 (12)0.3068 (9)0.9151 (8)0.059 (2)
H7A0.89170.33180.98450.070*
H7B0.88610.21240.90030.070*
C81.0967 (13)0.3666 (13)0.9401 (10)0.079 (3)
H8A1.15470.34111.00930.118*
H8B1.12880.46020.95380.118*
H8C1.12450.33810.87360.118*
C90.5369 (9)0.5664 (7)0.7668 (6)0.0391 (15)
C100.5867 (10)0.6976 (7)0.8301 (6)0.0391 (15)
C110.5246 (11)0.7235 (8)0.9170 (7)0.0466 (18)
C120.5768 (15)0.8474 (9)0.9784 (8)0.066 (3)
H120.53440.86481.03750.079*
C130.6896 (18)0.9447 (9)0.9535 (11)0.085 (4)
H130.72371.02980.99490.102*
C140.7559 (19)0.9206 (9)0.8676 (11)0.091 (5)
H140.83610.98840.85220.109*
C150.7029 (12)0.7971 (8)0.8060 (8)0.053 (2)
H150.74570.77990.74710.064*
C160.6292 (8)0.2670 (7)0.4830 (6)0.0350 (14)
C170.7181 (8)0.2616 (7)0.4013 (6)0.0344 (14)
C180.6975 (10)0.1431 (7)0.3404 (7)0.0420 (16)
C190.7814 (12)0.1408 (9)0.2613 (7)0.052 (2)
H190.76490.06150.21630.063*
C200.8863 (13)0.2521 (10)0.2488 (8)0.061 (2)
H200.94410.24890.19640.074*
C210.9105 (12)0.3695 (9)0.3108 (8)0.056 (2)
H210.98490.44630.30200.067*
C220.8242 (9)0.3729 (7)0.3858 (7)0.0419 (16)
H220.83800.45320.42760.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0326 (3)0.0370 (3)0.0356 (3)0.00980 (19)0.01499 (19)0.00458 (18)
O10.048 (3)0.040 (3)0.042 (3)0.015 (2)0.020 (2)0.006 (2)
O20.049 (3)0.045 (3)0.052 (3)0.010 (2)0.021 (3)0.006 (2)
O30.078 (5)0.059 (4)0.071 (4)0.009 (3)0.048 (4)0.003 (3)
O40.044 (3)0.038 (3)0.041 (3)0.014 (2)0.022 (2)0.006 (2)
O50.058 (4)0.046 (3)0.060 (4)0.010 (3)0.035 (3)0.010 (3)
O60.076 (4)0.036 (3)0.076 (4)0.006 (3)0.041 (4)0.002 (3)
C10.041 (4)0.054 (4)0.039 (4)0.014 (3)0.013 (3)0.011 (3)
C20.040 (4)0.051 (5)0.065 (5)0.017 (4)0.020 (4)0.019 (4)
C30.055 (5)0.055 (5)0.077 (6)0.019 (4)0.034 (5)0.022 (5)
C40.080 (7)0.070 (7)0.098 (8)0.019 (6)0.062 (7)0.014 (6)
C50.050 (4)0.040 (4)0.039 (4)0.012 (3)0.019 (3)0.010 (3)
C60.048 (4)0.039 (4)0.041 (4)0.013 (3)0.017 (3)0.010 (3)
C70.063 (6)0.057 (5)0.054 (5)0.024 (4)0.011 (4)0.016 (4)
C80.056 (6)0.104 (9)0.074 (7)0.037 (6)0.008 (5)0.020 (6)
C90.042 (4)0.046 (4)0.034 (3)0.021 (3)0.014 (3)0.008 (3)
C100.049 (4)0.036 (3)0.032 (3)0.017 (3)0.011 (3)0.009 (3)
C110.057 (5)0.044 (4)0.044 (4)0.017 (4)0.024 (4)0.008 (3)
C120.099 (8)0.055 (5)0.054 (5)0.027 (5)0.043 (5)0.003 (4)
C130.136 (11)0.037 (5)0.086 (8)0.010 (6)0.068 (8)0.001 (5)
C140.145 (12)0.038 (5)0.100 (9)0.007 (6)0.089 (9)0.002 (5)
C150.073 (6)0.044 (4)0.051 (5)0.017 (4)0.038 (4)0.009 (4)
C160.033 (3)0.040 (4)0.033 (3)0.013 (3)0.012 (3)0.007 (3)
C170.036 (3)0.041 (4)0.031 (3)0.017 (3)0.013 (3)0.008 (3)
C180.043 (4)0.039 (4)0.046 (4)0.013 (3)0.020 (3)0.008 (3)
C190.068 (6)0.055 (5)0.041 (4)0.026 (4)0.025 (4)0.003 (3)
C200.074 (6)0.082 (7)0.048 (5)0.039 (5)0.036 (5)0.018 (4)
C210.064 (6)0.059 (5)0.060 (5)0.023 (4)0.038 (5)0.028 (4)
C220.044 (4)0.043 (4)0.048 (4)0.020 (3)0.022 (3)0.016 (3)
Geometric parameters (Å, º) top
Sn1—C12.118 (8)C6—H6A0.9900
Sn1—C52.117 (8)C6—H6B0.9900
Sn1—O12.106 (5)C7—C81.485 (15)
Sn1—O22.561 (6)C7—H7A0.9900
Sn1—O42.090 (5)C7—H7B0.9900
Sn1—O52.645 (6)C8—H8A0.9800
O1—C91.288 (9)C8—H8B0.9800
O2—C91.259 (9)C8—H8C0.9800
O3—C111.348 (10)C9—C101.467 (10)
O3—H3O0.8400C10—C111.396 (11)
O4—C161.296 (8)C10—C151.395 (11)
O5—C161.247 (9)C11—C121.386 (12)
O6—C181.346 (9)C12—C131.368 (15)
O6—H6O0.8400C12—H120.9500
C1—C21.501 (11)C13—C141.408 (15)
C1—H1A0.9900C13—H130.9500
C1—H1B0.9900C14—C151.382 (12)
C2—C31.503 (12)C14—H140.9500
C2—H2A0.9900C15—H150.9500
C2—H2B0.9900C16—C171.472 (9)
C3—C41.534 (13)C17—C221.383 (10)
C3—H3A0.9900C17—C181.397 (10)
C3—H3B0.9900C18—C191.405 (11)
C4—H4A0.9800C19—C201.362 (14)
C4—H4B0.9800C19—H190.9500
C4—H4C0.9800C20—C211.382 (14)
C5—C61.503 (11)C20—H200.9500
C5—H5A0.9900C21—C221.382 (11)
C5—H5B0.9900C21—H210.9500
C6—C71.533 (11)C22—H220.9500
O4—Sn1—O182.3 (2)H6A—C6—H6B107.7
O4—Sn1—C5104.7 (3)C8—C7—C6113.3 (8)
O1—Sn1—C5102.1 (3)C8—C7—H7A108.9
O4—Sn1—C1104.1 (3)C6—C7—H7A108.9
O1—Sn1—C1108.7 (3)C8—C7—H7B108.9
C1—Sn1—C5140.1 (3)C6—C7—H7B108.9
O4—Sn1—O2137.44 (19)H7A—C7—H7B107.7
O1—Sn1—O255.25 (19)C7—C8—H8A109.5
C5—Sn1—O288.1 (3)C7—C8—H8B109.5
C1—Sn1—O289.0 (3)H8A—C8—H8B109.5
O4—Sn1—O553.64 (18)C7—C8—H8C109.5
O1—Sn1—O5135.77 (19)H8A—C8—H8C109.5
C5—Sn1—O587.8 (3)H8B—C8—H8C109.5
C1—Sn1—O587.5 (3)O2—C9—O1119.5 (7)
O2—Sn1—O5168.92 (18)O2—C9—C10120.8 (7)
C9—O1—Sn1102.7 (5)O1—C9—C10119.6 (7)
C9—O2—Sn182.4 (4)C11—C10—C15119.7 (7)
C11—O3—H3O120.0C11—C10—C9121.1 (7)
C16—O4—Sn1106.0 (4)C15—C10—C9119.2 (7)
C16—O5—Sn181.3 (4)O3—C11—C12117.1 (8)
C18—O6—H6O120.0O3—C11—C10122.6 (7)
C2—C1—Sn1116.0 (5)C12—C11—C10120.3 (8)
C2—C1—H1A108.3C13—C12—C11119.7 (9)
Sn1—C1—H1A108.3C13—C12—H12120.1
C2—C1—H1B108.3C11—C12—H12120.1
Sn1—C1—H1B108.3C12—C13—C14121.0 (9)
H1A—C1—H1B107.4C12—C13—H13119.5
C3—C2—C1114.3 (7)C14—C13—H13119.5
C3—C2—H2A108.7C15—C14—C13119.2 (9)
C1—C2—H2A108.7C15—C14—H14120.4
C3—C2—H2B108.7C13—C14—H14120.4
C1—C2—H2B108.7C14—C15—C10120.2 (8)
H2A—C2—H2B107.6C14—C15—H15119.9
C2—C3—C4114.0 (9)C10—C15—H15119.9
C2—C3—H3A108.8O5—C16—O4119.1 (6)
C4—C3—H3A108.8O5—C16—C17122.5 (7)
C2—C3—H3B108.8O4—C16—C17118.4 (6)
C4—C3—H3B108.8C22—C17—C18119.7 (7)
H3A—C3—H3B107.7C22—C17—C16120.5 (6)
C3—C4—H4A109.5C18—C17—C16119.9 (6)
C3—C4—H4B109.5O6—C18—C19117.5 (7)
H4A—C4—H4B109.5O6—C18—C17123.8 (7)
C3—C4—H4C109.5C19—C18—C17118.7 (7)
H4A—C4—H4C109.5C20—C19—C18120.2 (8)
H4B—C4—H4C109.5C20—C19—H19119.9
C6—C5—Sn1111.8 (5)C18—C19—H19119.9
C6—C5—H5A109.2C19—C20—C21121.5 (8)
Sn1—C5—H5A109.2C19—C20—H20119.2
C6—C5—H5B109.2C21—C20—H20119.2
Sn1—C5—H5B109.2C22—C21—C20118.6 (8)
H5A—C5—H5B107.9C22—C21—H21120.7
C5—C6—C7113.4 (7)C20—C21—H21120.7
C5—C6—H6A108.9C17—C22—C21121.3 (8)
C7—C6—H6A108.9C17—C22—H22119.4
C5—C6—H6B108.9C21—C22—H22119.4
C7—C6—H6B108.9
O4—Sn1—O1—C9179.6 (5)Sn1—O1—C9—O24.1 (8)
C5—Sn1—O1—C976.9 (5)Sn1—O1—C9—C10175.5 (5)
C1—Sn1—O1—C977.3 (5)O2—C9—C10—C113.9 (11)
O2—Sn1—O1—C92.1 (4)O1—C9—C10—C11175.7 (7)
O5—Sn1—O1—C9176.4 (4)O2—C9—C10—C15178.8 (8)
O4—Sn1—O2—C95.8 (6)O1—C9—C10—C151.7 (11)
O1—Sn1—O2—C92.1 (4)C15—C10—C11—O3178.5 (9)
C5—Sn1—O2—C9104.0 (5)C9—C10—C11—O31.2 (13)
C1—Sn1—O2—C9115.8 (5)C15—C10—C11—C120.7 (13)
O5—Sn1—O2—C9172.4 (9)C9—C10—C11—C12178.0 (8)
O1—Sn1—O4—C16176.7 (5)O3—C11—C12—C13179.2 (11)
C5—Sn1—O4—C1676.2 (5)C10—C11—C12—C130.0 (17)
C1—Sn1—O4—C1675.8 (5)C11—C12—C13—C141 (2)
O2—Sn1—O4—C16179.8 (4)C12—C13—C14—C151 (2)
O5—Sn1—O4—C160.2 (4)C13—C14—C15—C101 (2)
O4—Sn1—O5—C160.2 (4)C11—C10—C15—C140.2 (15)
O1—Sn1—O5—C165.1 (6)C9—C10—C15—C14177.6 (10)
C5—Sn1—O5—C16110.3 (5)Sn1—O5—C16—O40.3 (6)
C1—Sn1—O5—C16109.4 (5)Sn1—O5—C16—C17179.9 (7)
O2—Sn1—O5—C16178.7 (9)Sn1—O4—C16—O50.4 (8)
O4—Sn1—C1—C2175.7 (6)Sn1—O4—C16—C17179.8 (5)
O1—Sn1—C1—C297.9 (6)O5—C16—C17—C22176.5 (7)
C5—Sn1—C1—C240.6 (9)O4—C16—C17—C223.2 (10)
O2—Sn1—C1—C245.3 (6)O5—C16—C17—C182.4 (11)
O5—Sn1—C1—C2124.2 (6)O4—C16—C17—C18177.9 (7)
Sn1—C1—C2—C355.4 (10)C22—C17—C18—O6178.7 (8)
C1—C2—C3—C4169.0 (9)C16—C17—C18—O60.2 (12)
O4—Sn1—C5—C630.8 (6)C22—C17—C18—C192.3 (11)
O1—Sn1—C5—C654.3 (6)C16—C17—C18—C19178.8 (7)
C1—Sn1—C5—C6165.7 (5)O6—C18—C19—C20177.9 (9)
O2—Sn1—C5—C6108.1 (5)C17—C18—C19—C203.0 (13)
O5—Sn1—C5—C682.2 (5)C18—C19—C20—C211.5 (15)
Sn1—C5—C6—C7178.9 (6)C19—C20—C21—C220.7 (15)
C5—C6—C7—C8179.3 (9)C18—C17—C22—C210.1 (12)
Sn1—O2—C9—O13.3 (6)C16—C17—C22—C21179.0 (7)
Sn1—O2—C9—C10176.3 (7)C20—C21—C22—C171.4 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O20.841.962.599 (9)132
O6—H6o···O50.842.002.626 (8)131

Experimental details

Crystal data
Chemical formula[Sn(C4H9)2(C7H5O3)2]
Mr507.13
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.1652 (2), 11.2111 (2), 12.2620 (2)
α, β, γ (°)94.759 (1), 106.872 (1), 108.586 (1)
V3)1121.24 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.758, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
11666, 5068, 4633
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.189, 1.18
No. of reflections5068
No. of parameters262
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.57, 1.40

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O20.841.962.599 (9)132
O6—H6o···O50.842.002.626 (8)131
 

Acknowledgements

We thank the University of Malaya for funding this study (SF022/2007 A, FS339/2008 A) and also for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNarula, S. P., Bharadwaj, S. K., Sharda, Y., Day, R. O., Howe, L. & Holmes, R. R. (1992). Organometallics, 11, 2206–2211.  CSD CrossRef CAS Web of Science Google Scholar
First citationNg, S. W., Chen, W., Kumar Das, V. G. & Mak, T. C. W. (1987). J. Organomet. Chem. 334, 295–305.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1–23.  CrossRef CAS Web of Science Google Scholar
First citationTiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71–116.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds