organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(2,3-di­chloro­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 16 June 2008; accepted 20 June 2008; online 25 June 2008)

Two independent mol­ecules comprise the asymmetric unit in the title compound, C13H8Cl3NO, each with the amide N—H and C=O bonds trans to each other. The mol­ecules are linked into chains through inter­molecular N—H⋯O and N—H⋯Cl hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.], 2007[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2007). Acta Cryst. E63, o3789.], 2008[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1300.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Cl3NO

  • Mr = 300.55

  • Monoclinic, P c

  • a = 12.310 (1) Å

  • b = 7.8307 (6) Å

  • c = 14.407 (2) Å

  • β = 111.52 (1)°

  • V = 1292.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 299 (2) K

  • 0.75 × 0.75 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.624, Tmax = 0.885

  • 5882 measured reflections

  • 3936 independent reflections

  • 3430 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.104

  • S = 1.14

  • 3936 reflections

  • 326 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 365 Friedel pairs

  • Flack parameter: 0.12 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.86 2.16 2.850 (3) 137
N1—H1N⋯Cl3 0.86 2.64 3.114 (3) 116
N2—H2N⋯O1i 0.86 2.05 2.896 (3) 167
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 .

Supporting information


Comment top

In the present work, the structure of 2-chloro-N-(2,3-dichlorophenyl)- benzamide (I, N23DCP2CBA) has been determined to explore the effect of substituents on the structures of benzanilides (Gowda et al., 2003; 2007; 2008). The amide N—H and C=O bonds in each of the two molecules comprising the crystallographic asymmetric unit are trans to each other (Fig. 1), similar to that observed in 2-chloro-N-(phenyl)-benzamide (NP2CBA) (Gowda et al., 2003), 2-chloro-N-(2-chlorophenyl)-benzamide (N2CP2CBA) (Gowda et al., 2007), and 2-chloro-N-(3-chlorophenyl)-benzamide (N3CP2CBA) (Gowda et al., 2008). In one of the molecules, the conformation of the N—H bond is syn to both the ortho and meta-chloro groups in the aniline ring and of the C=O bond group is also syn to the ortho-chloro group in the benzoyl ring. By contrast, the conformations of these bonds in the second independent molecule are intermediate between syn and anti to the respective groups. The above conformations are in contrast to the syn conformations of both the amide N—H and C=O bonds, with respect to the ortho-chloro groups in the benzoyl and aniline rings, respectively, observed in N2CP2CBA (Gowda et al., 2007). Further, in N3CP2CBA, the conformation of the C=O bond is syn to the ortho-chloro group of the benzoyl ring, while the N—H bond is anti to the meta-chloro group of the aniline ring (Gowda et al., 2008). The –NHCO– group makes the dihedral angles of 42.24 (14)° (molecule 1), 48.89 (12)° (molecule 2), and 35.31 (19)° (molecule 1), 41.88 (13)° (molecule 2) with the benzoyl and aniline rings, respectively. The benzoyl and aniline rings form the dihedral angles of 12.30 (10)° (molecule 1) and 7.25 (9)°) (molecule 2). In the crystal structure of (I), the molecules are linked by intermolecular N—H···O and N—H···Cl hydrogen bonds (Table 1) forming chains running along the a axis, as shown in Fig. 2.

Related literature top

For related literature, see: Gowda et al. (2003; 2007; 2008).

Experimental top

Compound (I) was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was confirmed by melting point, and IR and NMR spectra. Single crystals were obtained from an ethanolic solution of (I)

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N, C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
2-Chloro-N-(2,3-dichlorophenyl)benzamide top
Crystal data top
C13H8Cl3NOF(000) = 608
Mr = 300.55Dx = 1.545 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 3409 reflections
a = 12.310 (1) Åθ = 2.6–27.5°
b = 7.8307 (6) ŵ = 0.69 mm1
c = 14.407 (2) ÅT = 299 K
β = 111.52 (1)°Thick plate, colourless
V = 1292.0 (2) Å30.75 × 0.75 × 0.18 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3936 independent reflections
Radiation source: fine-focus sealed tube3430 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1513
Tmin = 0.624, Tmax = 0.885k = 99
5882 measured reflectionsl = 1518
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0715P)2 + 0.0104P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.104(Δ/σ)max = 0.003
S = 1.14Δρmax = 0.29 e Å3
3936 reflectionsΔρmin = 0.28 e Å3
326 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0118 (14)
Primary atom site location: structure-invariant direct methodsAbsolute structure: (Flack, 1983), 365 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.12 (5)
Crystal data top
C13H8Cl3NOV = 1292.0 (2) Å3
Mr = 300.55Z = 4
Monoclinic, PcMo Kα radiation
a = 12.310 (1) ŵ = 0.69 mm1
b = 7.8307 (6) ÅT = 299 K
c = 14.407 (2) Å0.75 × 0.75 × 0.18 mm
β = 111.52 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3936 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3430 reflections with I > 2σ(I)
Tmin = 0.624, Tmax = 0.885Rint = 0.014
5882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.29 e Å3
S = 1.14Δρmin = 0.28 e Å3
3936 reflectionsAbsolute structure: (Flack, 1983), 365 Friedel pairs
326 parametersAbsolute structure parameter: 0.12 (5)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.80355 (8)0.16289 (10)0.22458 (7)0.0542 (2)
Cl20.53668 (10)0.25096 (14)0.12596 (9)0.0739 (3)
Cl31.08381 (10)0.01157 (12)0.38808 (9)0.0745 (3)
O10.8488 (2)0.4258 (3)0.36026 (18)0.0537 (6)
N10.8566 (2)0.2051 (3)0.26179 (19)0.0411 (6)
H1N0.90280.14260.24370.049*
C10.7362 (3)0.1682 (4)0.2183 (2)0.0359 (6)
C20.7006 (3)0.0018 (4)0.1965 (2)0.0420 (7)
C30.5819 (3)0.0414 (5)0.1521 (3)0.0493 (8)
C40.4996 (3)0.0858 (5)0.1303 (3)0.0566 (9)
H40.42060.05890.10180.068*
C50.5342 (4)0.2543 (5)0.1510 (3)0.0597 (10)
H50.47830.34030.13570.072*
C60.6515 (3)0.2954 (5)0.1941 (3)0.0498 (8)
H60.67380.40910.20710.060*
C70.9063 (3)0.3294 (4)0.3292 (2)0.0388 (7)
C81.0362 (3)0.3540 (4)0.3601 (2)0.0379 (7)
C91.1208 (3)0.2248 (5)0.3829 (3)0.0478 (8)
C101.2384 (4)0.2639 (6)0.4080 (3)0.0613 (10)
H101.29360.17690.42260.074*
C111.2727 (3)0.4310 (6)0.4112 (3)0.0629 (10)
H111.35130.45690.42760.076*
C121.1924 (4)0.5604 (5)0.3904 (3)0.0576 (9)
H121.21640.67350.39310.069*
C131.0746 (3)0.5220 (4)0.3654 (3)0.0455 (7)
H131.02060.61040.35190.055*
Cl40.61868 (9)0.43793 (11)0.06792 (10)0.0700 (3)
Cl50.41892 (8)0.16238 (16)0.14120 (9)0.0747 (3)
Cl61.22481 (9)0.23655 (14)0.13296 (10)0.0727 (3)
O20.9822 (2)0.1549 (3)0.13253 (16)0.0436 (5)
N20.8590 (2)0.2974 (3)0.00345 (19)0.0400 (6)
H2N0.85030.38820.03900.048*
C140.7697 (3)0.1737 (4)0.0342 (2)0.0351 (6)
C150.6526 (3)0.2227 (4)0.0670 (2)0.0412 (7)
C160.5648 (3)0.1028 (4)0.0983 (2)0.0422 (7)
C170.5907 (3)0.0713 (5)0.0947 (3)0.0485 (8)
H170.53140.15250.11330.058*
C180.7064 (3)0.1199 (4)0.0630 (3)0.0471 (8)
H180.72500.23510.06180.056*
C190.7949 (3)0.0002 (4)0.0329 (2)0.0413 (7)
H190.87230.03590.01150.050*
C200.9589 (3)0.2819 (4)0.0796 (2)0.0347 (6)
C211.0337 (3)0.4382 (4)0.1036 (2)0.0364 (6)
C221.1550 (3)0.4300 (4)0.1294 (2)0.0432 (7)
C231.2224 (3)0.5764 (6)0.1521 (3)0.0598 (9)
H231.30260.56970.16800.072*
C241.1699 (4)0.7327 (5)0.1510 (3)0.0635 (11)
H241.21490.83160.16560.076*
C251.0513 (4)0.7428 (5)0.1285 (3)0.0604 (10)
H251.01680.84790.12970.072*
C260.9839 (3)0.5976 (4)0.1043 (2)0.0464 (8)
H260.90370.60600.08820.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0515 (5)0.0378 (4)0.0674 (5)0.0092 (4)0.0148 (4)0.0055 (4)
Cl20.0619 (7)0.0521 (5)0.0969 (8)0.0162 (5)0.0164 (6)0.0149 (5)
Cl30.0614 (6)0.0395 (5)0.1037 (8)0.0091 (5)0.0080 (6)0.0133 (5)
O10.0443 (14)0.0479 (13)0.0663 (14)0.0016 (11)0.0173 (11)0.0199 (12)
N10.0360 (14)0.0392 (13)0.0486 (14)0.0038 (11)0.0162 (11)0.0078 (11)
C10.0353 (15)0.0343 (15)0.0375 (15)0.0061 (12)0.0127 (12)0.0007 (12)
C20.0448 (17)0.0418 (17)0.0389 (16)0.0093 (15)0.0149 (13)0.0026 (13)
C30.0467 (19)0.0471 (18)0.0511 (19)0.0055 (16)0.0147 (15)0.0106 (15)
C40.0379 (19)0.060 (2)0.064 (2)0.0022 (17)0.0095 (15)0.0069 (18)
C50.043 (2)0.053 (2)0.074 (3)0.0176 (17)0.0104 (17)0.0041 (18)
C60.050 (2)0.0376 (17)0.055 (2)0.0071 (15)0.0115 (15)0.0063 (15)
C70.0414 (17)0.0326 (15)0.0438 (16)0.0041 (13)0.0172 (13)0.0011 (13)
C80.0400 (17)0.0393 (16)0.0336 (14)0.0029 (13)0.0128 (12)0.0023 (12)
C90.0426 (19)0.0434 (18)0.0506 (18)0.0012 (15)0.0090 (14)0.0056 (14)
C100.044 (2)0.068 (2)0.064 (2)0.0131 (18)0.0096 (16)0.0015 (19)
C110.042 (2)0.073 (3)0.071 (2)0.007 (2)0.0159 (17)0.003 (2)
C120.054 (2)0.055 (2)0.065 (2)0.0116 (18)0.0231 (17)0.0018 (18)
C130.0457 (19)0.0384 (16)0.0527 (19)0.0038 (15)0.0185 (15)0.0002 (14)
Cl40.0492 (5)0.0352 (4)0.1229 (9)0.0110 (4)0.0283 (5)0.0141 (5)
Cl50.0330 (4)0.0743 (7)0.1059 (8)0.0019 (5)0.0126 (4)0.0079 (6)
Cl60.0455 (5)0.0593 (6)0.1157 (9)0.0121 (5)0.0322 (5)0.0116 (6)
O20.0459 (13)0.0357 (11)0.0453 (11)0.0033 (10)0.0119 (9)0.0058 (9)
N20.0359 (14)0.0321 (12)0.0449 (14)0.0007 (11)0.0065 (11)0.0086 (10)
C140.0328 (15)0.0351 (15)0.0367 (14)0.0006 (12)0.0119 (11)0.0055 (12)
C150.0423 (18)0.0341 (16)0.0485 (17)0.0067 (14)0.0184 (14)0.0075 (13)
C160.0329 (16)0.0432 (17)0.0510 (18)0.0021 (13)0.0161 (14)0.0028 (14)
C170.047 (2)0.0457 (18)0.0525 (19)0.0114 (16)0.0185 (15)0.0047 (15)
C180.054 (2)0.0301 (15)0.0572 (19)0.0024 (14)0.0201 (16)0.0038 (14)
C190.0352 (16)0.0394 (16)0.0454 (17)0.0053 (14)0.0101 (13)0.0010 (13)
C200.0359 (16)0.0339 (14)0.0383 (15)0.0072 (13)0.0184 (12)0.0006 (12)
C210.0363 (16)0.0335 (15)0.0374 (15)0.0019 (13)0.0111 (12)0.0031 (12)
C220.0395 (18)0.0407 (17)0.0472 (17)0.0038 (14)0.0133 (13)0.0028 (14)
C230.043 (2)0.067 (2)0.060 (2)0.0104 (19)0.0078 (16)0.0007 (19)
C240.077 (3)0.0399 (19)0.054 (2)0.0137 (19)0.0003 (19)0.0006 (15)
C250.074 (3)0.0357 (17)0.0509 (19)0.0061 (18)0.0013 (17)0.0010 (14)
C260.0487 (19)0.0397 (16)0.0413 (17)0.0060 (15)0.0052 (14)0.0001 (14)
Geometric parameters (Å, º) top
Cl1—C21.728 (3)Cl4—C151.735 (3)
Cl2—C31.730 (4)Cl5—C161.735 (3)
Cl3—C91.739 (4)Cl6—C221.733 (3)
O1—C71.226 (4)O2—C201.222 (4)
N1—C71.353 (4)N2—C201.371 (4)
N1—C11.411 (4)N2—C141.409 (4)
N1—H1N0.8600N2—H2N0.8600
C1—C61.391 (5)C14—C191.395 (4)
C1—C21.401 (4)C14—C151.396 (4)
C2—C31.397 (5)C15—C161.377 (5)
C3—C41.373 (5)C16—C171.397 (5)
C4—C51.384 (6)C17—C181.380 (5)
C4—H40.9300C17—H170.9300
C5—C61.384 (6)C18—C191.381 (5)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—H190.9300
C7—C81.507 (5)C20—C211.493 (4)
C8—C131.390 (5)C21—C261.393 (4)
C8—C91.402 (5)C21—C221.402 (4)
C9—C101.392 (6)C22—C231.382 (5)
C10—C111.371 (6)C23—C241.382 (6)
C10—H100.9300C23—H230.9300
C11—C121.370 (6)C24—C251.376 (7)
C11—H110.9300C24—H240.9300
C12—C131.392 (5)C25—C261.375 (5)
C12—H120.9300C25—H250.9300
C13—H130.9300C26—H260.9300
C7—N1—C1126.2 (3)C20—N2—C14124.1 (3)
C7—N1—H1N116.9C20—N2—H2N118.0
C1—N1—H1N116.9C14—N2—H2N118.0
C6—C1—C2118.7 (3)C19—C14—C15118.0 (3)
C6—C1—N1122.2 (3)C19—C14—N2121.5 (3)
C2—C1—N1119.1 (3)C15—C14—N2120.5 (3)
C3—C2—C1120.2 (3)C16—C15—C14120.8 (3)
C3—C2—Cl1119.9 (3)C16—C15—Cl4120.1 (3)
C1—C2—Cl1119.9 (3)C14—C15—Cl4119.0 (3)
C4—C3—C2120.3 (3)C15—C16—C17120.8 (3)
C4—C3—Cl2119.1 (3)C15—C16—Cl5121.3 (3)
C2—C3—Cl2120.6 (3)C17—C16—Cl5117.9 (3)
C3—C4—C5119.9 (3)C18—C17—C16118.4 (3)
C3—C4—H4120.0C18—C17—H17120.8
C5—C4—H4120.0C16—C17—H17120.8
C6—C5—C4120.4 (4)C17—C18—C19121.1 (3)
C6—C5—H5119.8C17—C18—H18119.4
C4—C5—H5119.8C19—C18—H18119.4
C5—C6—C1120.6 (4)C18—C19—C14120.8 (3)
C5—C6—H6119.7C18—C19—H19119.6
C1—C6—H6119.7C14—C19—H19119.6
O1—C7—N1122.3 (3)O2—C20—N2123.1 (3)
O1—C7—C8120.4 (3)O2—C20—C21122.6 (3)
N1—C7—C8117.1 (3)N2—C20—C21114.2 (2)
C13—C8—C9117.5 (3)C26—C21—C22117.9 (3)
C13—C8—C7116.1 (3)C26—C21—C20120.0 (3)
C9—C8—C7126.4 (3)C22—C21—C20122.0 (3)
C10—C9—C8121.0 (3)C23—C22—C21120.9 (3)
C10—C9—Cl3117.6 (3)C23—C22—Cl6118.0 (3)
C8—C9—Cl3121.3 (3)C21—C22—Cl6121.1 (3)
C11—C10—C9119.8 (4)C22—C23—C24119.7 (4)
C11—C10—H10120.1C22—C23—H23120.2
C9—C10—H10120.1C24—C23—H23120.2
C12—C11—C10120.7 (4)C25—C24—C23120.3 (4)
C12—C11—H11119.6C25—C24—H24119.9
C10—C11—H11119.6C23—C24—H24119.9
C11—C12—C13119.7 (4)C26—C25—C24120.1 (4)
C11—C12—H12120.1C26—C25—H25119.9
C13—C12—H12120.1C24—C25—H25119.9
C8—C13—C12121.3 (3)C25—C26—C21121.1 (3)
C8—C13—H13119.4C25—C26—H26119.5
C12—C13—H13119.4C21—C26—H26119.5
C7—N1—C1—C636.2 (5)C20—N2—C14—C1943.2 (4)
C7—N1—C1—C2145.3 (3)C20—N2—C14—C15136.7 (3)
C6—C1—C2—C30.5 (5)C19—C14—C15—C160.8 (4)
N1—C1—C2—C3179.1 (3)N2—C14—C15—C16179.2 (3)
C6—C1—C2—Cl1179.5 (3)C19—C14—C15—Cl4179.2 (2)
N1—C1—C2—Cl10.8 (4)N2—C14—C15—Cl40.7 (4)
C1—C2—C3—C40.6 (5)C14—C15—C16—C172.3 (5)
Cl1—C2—C3—C4179.5 (3)Cl4—C15—C16—C17177.8 (3)
C1—C2—C3—Cl2179.4 (3)C14—C15—C16—Cl5178.9 (2)
Cl1—C2—C3—Cl20.7 (4)Cl4—C15—C16—Cl51.1 (4)
C2—C3—C4—C51.0 (6)C15—C16—C17—C182.6 (5)
Cl2—C3—C4—C5179.9 (3)Cl5—C16—C17—C18178.5 (3)
C3—C4—C5—C60.5 (6)C16—C17—C18—C191.6 (5)
C4—C5—C6—C10.6 (6)C17—C18—C19—C140.3 (5)
C2—C1—C6—C51.0 (5)C15—C14—C19—C180.1 (5)
N1—C1—C6—C5179.6 (3)N2—C14—C19—C18179.8 (3)
C1—N1—C7—O10.1 (5)C14—N2—C20—O23.4 (5)
C1—N1—C7—C8175.7 (3)C14—N2—C20—C21173.0 (3)
O1—C7—C8—C1339.9 (4)O2—C20—C21—C26128.9 (3)
N1—C7—C8—C13135.9 (3)N2—C20—C21—C2647.5 (4)
O1—C7—C8—C9140.8 (3)O2—C20—C21—C2248.7 (4)
N1—C7—C8—C943.4 (4)N2—C20—C21—C22134.9 (3)
C13—C8—C9—C101.1 (5)C26—C21—C22—C231.8 (5)
C7—C8—C9—C10178.2 (3)C20—C21—C22—C23179.4 (3)
C13—C8—C9—Cl3175.0 (2)C26—C21—C22—Cl6178.6 (2)
C7—C8—C9—Cl35.7 (5)C20—C21—C22—Cl61.0 (4)
C8—C9—C10—C110.3 (6)C21—C22—C23—C241.1 (5)
Cl3—C9—C10—C11175.8 (3)Cl6—C22—C23—C24179.3 (3)
C9—C10—C11—C120.4 (6)C22—C23—C24—C250.6 (6)
C10—C11—C12—C130.3 (6)C23—C24—C25—C261.7 (6)
C9—C8—C13—C121.2 (5)C24—C25—C26—C211.0 (6)
C7—C8—C13—C12178.2 (3)C22—C21—C26—C250.7 (5)
C11—C12—C13—C80.5 (6)C20—C21—C26—C25178.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.862.162.850 (3)137
N1—H1N···Cl30.862.643.114 (3)116
N2—H2N···O1i0.862.052.896 (3)167
Symmetry code: (i) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC13H8Cl3NO
Mr300.55
Crystal system, space groupMonoclinic, Pc
Temperature (K)299
a, b, c (Å)12.310 (1), 7.8307 (6), 14.407 (2)
β (°) 111.52 (1)
V3)1292.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.75 × 0.75 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.624, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
5882, 3936, 3430
Rint0.014
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.104, 1.14
No. of reflections3936
No. of parameters326
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28
Absolute structure(Flack, 1983), 365 Friedel pairs
Absolute structure parameter0.12 (5)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.862.162.850 (3)137
N1—H1N···Cl30.862.643.114 (3)116
N2—H2N···O1i0.862.052.896 (3)167
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2007). Acta Cryst. E63, o3789.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1300.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds