Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The polymeric structure of the title compound, poly[[diaquabis(μ-biphenyl-4,4′-disulfonato)tetrapotassium(I)] di­hydrate], {[K2(C12H8O6S2)(H2O)]·H2O}n, is based on an asymmetric unit comprising three independent and different potassium centres, one six-coordinate [K—O = 2.657 (3)–2.866 (5) Å], one seven-coordinate [K—O = 2.703 (3)–3.040 (4) Å], and the third ten-coordinate [K—O = 2.751 (3)–3.079 (4) Å], with two of these lying on crystallographic mirror planes. The four half-occupancy water mol­ecules also lie on the mirror planes with two coordinated (one monodentate, the other bidentate bridging) and two as mol­ecules of solvation. The inter­linked coordination polyhedra form chains which are joined laterally through the biphenyl residues as well as through head-to-tail water hydrogen-bonding inter­actions, giving a two-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807056930/tk2210sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807056930/tk2210Isup2.hkl
Contains datablock I

CCDC reference: 672688

Key indicators

  • Single-crystal X-ray study
  • T = 297 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.031
  • wR factor = 0.083
  • Data-to-parameter ratio = 10.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT420_ALERT_2_B D-H Without Acceptor O2W - H2W ... ? PLAT420_ALERT_2_B D-H Without Acceptor O1W - H12W ... ? PLAT420_ALERT_2_B D-H Without Acceptor O4W - H42W ... ?
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.61 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C5B PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C6B PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for K2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C1B PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C4B PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.56 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6 PLAT410_ALERT_2_C Short Intra H...H Contact H6A .. H6B .. 1.94 Ang.
Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 27.50 From the CIF: _reflns_number_total 2295 Count of symmetry unique reflns 1973 Completeness (_total/calc) 116.32% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 322 Fraction of Friedel pairs measured 0.163 Are heavy atom types Z>Si present yes PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 3 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 11 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Compounds of 4,4'-biphenyldisulfonic acid (BPDS) are not numerous in the crystallographic literature. The guanidinium salts have been used for the generation of 2-D structures for the formation of crystalline clathrates with aromatic hydrocarbons (Swift et al., 1998; Pivovar et al., 2002). The bis(alaninium) salt is also known (Liao et al., 2001). With coordination compounds, BDPDS is generally found as a dianionic counter ion (Cai et al., 2001; Usuki et al., 2002). We obtained X-ray diffraction quality crystals of the hydrated dipotassium salt of BPDS as an intermediate in the synthesis of BPDS, when recrystallized from water. The structure of this compound, K22+·C12H8O6S22-·2H2O (I) is reported here.

The structure of (I) is based on an asymmetric unit comprising three independent and different potassium centres, one six-coordinate (K2) [K–O range, 2.657 (3)–2.866 (5) Å], one seven- coordinate (K1) [K–O range, 2.703 (3)–3.040 (4) Å] and the third ten-coordinate (K3) [K–O range, 2.751 (3)–3.079 (4) Å], with two of these (K2 and K3) lying on crystallographic mirror planes (Fig. 1). The four half-occupancy water molecules also lie on the mirror planes with two coordinated [one monodentate (O1W on K2), and one bidentate (O2W, bridging K2 and K3)], and the other two (OW3, OW4) as molecules of solvation. The structure has pseudo 2/m symmetry, the 2-fold rotational symmetry along the b axis being upset largely by the differing roles of the water molecules in the structure. This was also consistent with the failure to obtain a solution of the structure in the space group C2/m.

The interlinked potassium coordination polyhedra form chains which extend down the b axix and are linked laterally across the c cell direction through the biphenyl residues of the BPDS ligands, giving a 2-D structure (Fig. 2). This is somewhat analogous to the 2-D but hydrogen-bonded guanidinium-BPDS open framework structures (Swift et al., 1998; Pivovar et al., 2002) which accommodate interstitial inert aromatic molecules. With (I), the water molecules are similarly accommodated in the interstitial spaces along the crystallographic mirror planes in linear head-to-tail interactions (Table 1) and also link the coordination polymer chains. In addition, the coordinated water molecules give lateral OH···Osulfonate interactions within the polymer chains.

Within the BPDS anion, the two phenyl rings (A and B) are close to co-planar [torsion angle C2A–C1A–C1B–C6B, -178.3 (5) °], which is similar to that found in the alaninium salt where the two residues are inversion related (Liao et al., 2001).

Related literature top

For other 4,4'-biphenyldisulfonate crystal structures, see: Swift et al. (1998); Liao et al. (2001); Cai et al. (2001); Usuki et al. (2002). For related literature, see: Pivovar et al. (2002). For synthesis, see: Feldmann (1931).

Experimental top

The title compound was obtained as colourless crystals from the room temperature evaporation of an aqueous solution of dipotassium 4,4-biphenyldisulfonate, an intermediate product in the synthesis of 4,4'-biphenyldisulfonic acid by the sulfonation of biphenyl using the procedure of Feldmann (1931).

Refinement top

Hydrogen atoms on the water molecules were located by difference methods but their positional and isotropic displacement parameters were fixed as located and Uiso(H) = 1.2Ueq(O), respectively; see Table 1 for distances. The aromatic H atoms were included in the refinement in their calculated positions (C–H = 0.94–0.95 Å) using a riding model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: MSC/AFC Diffractmeter Control Software (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC Diffractmeter Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the BPDS ligand, the three independent potassium coordination polyhedra and the water molecules in the asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen-bonding interactions associated with the water molecules. The two potassium ions (K2, K3) and the four water molecules (O1W–O4W) lie on a crystallographic mirror plane. Symmetry codes: (i) x - 1, y, z; (ii) x - 1, y, z + 1; (iii) x, y, z + 1; (iv) x - 1/2, -y + 1/2, z; (v) x - 1/2, -y + 1/2, z + 1; (vi) x - 1, -y, z + 1; (vii) x, -y, z + 1; (viii) x + 1, y, z; (ix) x, -y, z.
[Figure 2] Fig. 2. The 2-D hydrogen-bonded structure of (I) viewed down the a axis, showing K–Osulfonate coordination-polymer chains with the biphenyl step linkages, together with the water mediated hydrogen-bonding associations lying on the mirror planes at y = 0, 1/2.
dipotassium biphenyl-4,4'-disulfonate dihydrate top
Crystal data top
2K+·C12H8O6S22·2H2OF(000) = 872
Mr = 426.56Dx = 1.708 Mg m3
Monoclinic, CmMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yCell parameters from 25 reflections
a = 5.8316 (10) Åθ = 12.9–17.1°
b = 19.691 (7) ŵ = 0.86 mm1
c = 14.623 (2) ÅT = 297 K
β = 98.953 (13)°Block, colourless
V = 1658.7 (7) Å30.32 × 0.25 × 0.20 mm
Z = 4
Data collection top
Rigaku AFC 7R
diffractometer
2196 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.016
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ω–2θ scansh = 37
Absorption correction: ψ scan
(TEXSAN for Windows; Molecular Structure Corporation, 1999)
k = 025
Tmin = 0.774, Tmax = 0.849l = 1818
2295 measured reflections3 standard reflections every 150 min
2295 independent reflections intensity decay: 0.6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters not refined
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.1P)2 + 15.7726P]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max = 0.002
2295 reflectionsΔρmax = 0.40 e Å3
227 parametersΔρmin = 0.39 e Å3
2 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (8)
Crystal data top
2K+·C12H8O6S22·2H2OV = 1658.7 (7) Å3
Mr = 426.56Z = 4
Monoclinic, CmMo Kα radiation
a = 5.8316 (10) ŵ = 0.86 mm1
b = 19.691 (7) ÅT = 297 K
c = 14.623 (2) Å0.32 × 0.25 × 0.20 mm
β = 98.953 (13)°
Data collection top
Rigaku AFC 7R
diffractometer
2196 reflections with I > 2σ(I)
Absorption correction: ψ scan
(TEXSAN for Windows; Molecular Structure Corporation, 1999)
Rint = 0.016
Tmin = 0.774, Tmax = 0.8493 standard reflections every 150 min
2295 measured reflections intensity decay: 0.6%
2295 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters not refined
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.1P)2 + 15.7726P]
where P = (Fo2 + 2Fc2)/3
S = 0.88Δρmax = 0.40 e Å3
2295 reflectionsΔρmin = 0.39 e Å3
227 parametersAbsolute structure: Flack (1983)
2 restraintsAbsolute structure parameter: 0.02 (8)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.27341 (18)0.18494 (4)0.50427 (7)0.0306 (2)
K20.3806 (2)0.000000.66340 (8)0.0322 (3)
K30.8140 (2)0.000000.48912 (8)0.0331 (3)
S4A0.85074 (12)0.13645 (4)0.35496 (5)0.0216 (2)
S4B0.67991 (14)0.14568 (5)0.35851 (6)0.0255 (2)
O1W0.4854 (11)0.000000.8501 (4)0.080 (3)
O2W0.2800 (7)0.000000.4652 (3)0.0354 (12)
O41A0.8714 (6)0.20502 (15)0.3888 (2)0.0431 (9)
O41B0.9000 (5)0.12170 (17)0.40854 (18)0.0370 (9)
O42A0.6357 (5)0.10358 (17)0.39554 (19)0.0374 (9)
O42B0.4950 (6)0.09558 (17)0.3603 (2)0.0404 (10)
O43A1.0527 (5)0.09479 (17)0.3630 (2)0.0403 (10)
O43B0.6088 (6)0.21186 (17)0.3865 (2)0.0389 (9)
C1A0.7952 (7)0.15078 (19)0.0464 (3)0.0274 (10)
C1B0.7699 (7)0.1525 (2)0.0539 (3)0.0285 (10)
C2A0.6400 (8)0.1846 (3)0.1132 (3)0.0459 (15)
C2B0.5868 (9)0.1849 (2)0.0848 (3)0.0427 (14)
C3A0.6591 (9)0.1809 (2)0.2069 (3)0.0424 (15)
C3B0.5603 (8)0.1853 (2)0.1778 (3)0.0429 (15)
C4A0.8342 (7)0.14383 (19)0.2346 (2)0.0253 (10)
C4B0.7182 (7)0.1511 (2)0.2407 (3)0.0273 (10)
C5A0.9927 (8)0.1114 (3)0.1700 (3)0.0497 (16)
C5B0.9036 (10)0.1196 (4)0.2123 (3)0.065 (2)
C6A0.9716 (9)0.1150 (3)0.0765 (3)0.0533 (18)
C6B0.9281 (9)0.1203 (4)0.1193 (3)0.066 (2)
O3W0.3491 (11)0.000000.2133 (3)0.0608 (19)
O4W0.4275 (14)0.000000.0351 (5)0.083 (2)
H2A0.518700.209800.093000.0550*
H2B0.477800.207400.040900.0510*
H2W0.348000.039000.440000.0420*
H3A0.551600.203600.251800.0500*
H3B0.433800.207700.197900.0510*
H5A1.114000.086200.190200.0600*
H5B1.012600.097100.256200.0780*
H6A1.079100.092300.031600.0640*
H6B1.054600.097900.099200.0790*
H11W0.356000.000000.884000.0960*
H12W0.614000.000000.884000.0960*
H3W0.397000.038500.252000.0730*
H41W0.402000.000000.094000.0970*
H42W0.579400.000000.037500.0970*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0334 (4)0.0286 (4)0.0307 (3)0.0007 (4)0.0082 (3)0.0001 (4)
K20.0286 (6)0.0346 (6)0.0344 (6)0.00000.0083 (5)0.0000
K30.0357 (6)0.0317 (5)0.0325 (6)0.00000.0076 (5)0.0000
S4A0.0243 (4)0.0239 (4)0.0174 (4)0.0011 (3)0.0058 (3)0.0000 (3)
S4B0.0310 (4)0.0297 (4)0.0166 (4)0.0042 (4)0.0062 (3)0.0006 (3)
O1W0.073 (4)0.116 (6)0.045 (3)0.00000.005 (3)0.0000
O2W0.038 (2)0.036 (2)0.035 (2)0.00000.0147 (17)0.0000
O41A0.076 (2)0.0276 (14)0.0285 (14)0.0031 (16)0.0174 (15)0.0044 (11)
O41B0.0383 (16)0.0489 (17)0.0230 (13)0.0000 (14)0.0020 (11)0.0051 (12)
O42A0.0328 (14)0.0533 (18)0.0267 (14)0.0133 (14)0.0063 (11)0.0078 (12)
O42B0.0453 (17)0.0468 (19)0.0302 (14)0.0183 (15)0.0095 (13)0.0004 (13)
O43A0.0370 (16)0.057 (2)0.0279 (14)0.0217 (15)0.0085 (12)0.0012 (13)
O43B0.0518 (17)0.0391 (16)0.0277 (14)0.0023 (14)0.0120 (13)0.0056 (12)
C1A0.0342 (19)0.0320 (18)0.0168 (15)0.0031 (16)0.0068 (14)0.0009 (13)
C1B0.0317 (19)0.0359 (19)0.0181 (16)0.0004 (16)0.0041 (14)0.0003 (14)
C2A0.051 (3)0.069 (3)0.0196 (17)0.030 (2)0.0114 (18)0.0024 (18)
C2B0.049 (2)0.058 (3)0.0222 (19)0.024 (2)0.0086 (17)0.0073 (19)
C3A0.049 (3)0.059 (3)0.0196 (18)0.025 (2)0.0071 (17)0.0072 (17)
C3B0.050 (3)0.056 (3)0.0252 (19)0.025 (2)0.0140 (18)0.0019 (17)
C4A0.0306 (18)0.0305 (17)0.0154 (15)0.0001 (15)0.0057 (14)0.0018 (13)
C4B0.0318 (19)0.0332 (19)0.0170 (16)0.0034 (15)0.0041 (14)0.0016 (13)
C5A0.044 (2)0.084 (4)0.0220 (18)0.036 (3)0.0079 (17)0.001 (2)
C5B0.061 (3)0.116 (5)0.0188 (19)0.048 (3)0.012 (2)0.016 (2)
C6A0.052 (3)0.085 (4)0.0229 (18)0.037 (3)0.0059 (18)0.006 (2)
C6B0.054 (3)0.122 (5)0.023 (2)0.053 (3)0.014 (2)0.016 (3)
O3W0.080 (4)0.057 (3)0.040 (3)0.00000.008 (3)0.0000
O4W0.091 (5)0.104 (6)0.055 (4)0.00000.003 (4)0.0000
Geometric parameters (Å, º) top
K1—O43B2.850 (4)S4B—C4B1.775 (4)
K1—O41Bi2.703 (3)O1W—H12W0.8300
K1—O41Aii3.040 (4)O1W—H11W0.9700
K1—O43Aii3.058 (3)O2W—H2Wix0.9600
K1—O42Aiii2.866 (3)O2W—H2W0.9600
K1—O43Biv2.739 (3)O3W—H3W0.9600
K1—O41Av2.681 (3)O3W—H3Wix0.9600
K2—O1W2.703 (6)O4W—H41W0.9000
K2—O2W2.866 (5)O4W—H42W0.8800
K2—O43Aii2.657 (3)C1A—C6A1.375 (7)
K2—O42Aiii2.741 (3)C1A—C2A1.393 (6)
K2—O43Avi2.657 (3)C1A—C1B1.497 (6)
K2—O42Avii2.741 (3)C1B—C2B1.379 (6)
K3—O2W3.079 (4)C1B—C6B1.376 (7)
K3—O41B2.751 (3)C2A—C3A1.394 (6)
K3—O42B3.076 (4)C2B—C3B1.392 (6)
K3—O42Aiii2.938 (3)C3A—C4A1.367 (6)
K3—O43Aiii3.027 (3)C3B—C4B1.373 (6)
K3—O2Wviii2.793 (4)C4A—C5A1.372 (6)
K3—O41Bix2.751 (3)C4B—C5B1.366 (7)
K3—O42Bix3.076 (4)C5A—C6A1.394 (6)
K3—O42Avii2.938 (3)C5B—C6B1.389 (6)
K3—O43Avii3.027 (3)C2A—H2A0.9500
S4A—O41A1.450 (3)C2B—H2B0.9400
S4A—O42A1.453 (3)C3A—H3A0.9500
S4A—O43A1.455 (3)C3B—H3B0.9400
S4A—C4A1.784 (3)C5A—H5A0.9500
S4B—O41B1.454 (3)C5B—H5B0.9400
S4B—O42B1.465 (4)C6A—H6A0.9500
S4B—O43B1.446 (4)C6B—H6B0.9400
O41Bi—K1—O43B110.25 (9)O41Bix—K3—O42Bix48.53 (9)
O41Aii—K1—O43B160.66 (9)O41Bix—K3—O42Avii75.26 (9)
O43Aii—K1—O43B152.59 (10)O41Bix—K3—O43Avii71.01 (8)
O42Aiii—K1—O43B83.81 (9)O42Avii—K3—O42Bix72.09 (8)
O43B—K1—O43Biv71.84 (10)O42Bix—K3—O43Avii103.14 (9)
O41Av—K1—O43B95.63 (10)O42Avii—K3—O43Avii47.64 (8)
O41Aii—K1—O41Bi72.70 (9)O41A—S4A—O42A112.82 (19)
O41Bi—K1—O43Aii71.13 (9)O41A—S4A—O43A112.72 (19)
O41Bi—K1—O42Aiii118.54 (10)O41A—S4A—C4A106.33 (17)
O41Bi—K1—O43Biv80.84 (10)O42A—S4A—O43A111.95 (18)
O41Av—K1—O41Bi139.11 (11)O42A—S4A—C4A105.28 (17)
O41Aii—K1—O43Aii46.73 (8)O43A—S4A—C4A107.12 (18)
O41Aii—K1—O42Aiii112.09 (9)K3—S4B—O41B49.33 (13)
O41Aii—K1—O43Biv90.23 (10)K3—S4B—O42B62.39 (13)
O41Aii—K1—O41Av72.92 (10)K3—S4B—O43B129.77 (13)
O42Aiii—K1—O43Aii72.58 (9)K3—S4B—C4B122.20 (14)
O43Aii—K1—O43Biv133.53 (10)O41B—S4B—O42B111.53 (19)
O41Av—K1—O43Aii99.88 (9)O41B—S4B—O43B114.83 (19)
O42Aiii—K1—O43Biv153.45 (10)O41B—S4B—C4B105.87 (18)
O41Av—K1—O42Aiii94.61 (10)O42B—S4B—O43B111.0 (2)
O41Av—K1—O43Biv77.83 (9)O42B—S4B—C4B105.19 (18)
O1W—K2—O2W178.76 (17)O43B—S4B—C4B107.79 (18)
O1W—K2—O43Aii101.02 (12)K2—O2W—K380.85 (11)
O1W—K2—O42Aiii105.61 (11)K2—O2W—K3i85.61 (12)
O1W—K2—O43Avi101.02 (12)K3—O2W—K3i166.45 (17)
O1W—K2—O42Avii105.61 (11)K1x—O41A—S4A99.57 (16)
O2W—K2—O43Aii79.84 (9)K1xi—O41A—S4A158.5 (2)
O2W—K2—O42Aiii73.61 (8)K1x—O41A—K1xi85.21 (9)
O2W—K2—O43Avi79.84 (9)K3—O41B—S4B107.04 (16)
O2W—K2—O42Avii73.61 (8)K1viii—O41B—K3111.44 (10)
O42Aiii—K2—O43Aii81.09 (9)K1viii—O41B—S4B133.48 (19)
O43Aii—K2—O43Avi89.26 (10)K1xii—O42A—S4A118.71 (18)
O42Avii—K2—O43Aii152.93 (10)K2xii—O42A—S4A132.77 (17)
O42Aiii—K2—O43Avi152.93 (10)K3xii—O42A—S4A100.58 (15)
O42Aiii—K2—O42Avii96.15 (10)K1xii—O42A—K2xii100.58 (10)
O42Avii—K2—O43Avi81.09 (9)K1xii—O42A—K3xii113.15 (10)
S4B—K3—O2W78.47 (5)K2xii—O42A—K3xii85.52 (10)
S4B—K3—O41B23.63 (6)K3—O42B—S4B92.65 (15)
S4B—K3—O42B24.96 (7)K3xii—O43A—S4A96.74 (14)
S4B—K3—O42Aiii70.87 (6)K1x—O43A—S4A98.62 (15)
S4B—K3—O43Aiii85.56 (6)K2x—O43A—S4A163.26 (19)
S4B—K3—O2Wviii94.10 (6)K1x—O43A—K3xii95.55 (9)
S4B—K3—S4Bix111.64 (4)K2x—O43A—K3xii84.90 (9)
S4B—K3—O41Bix121.69 (7)K1x—O43A—K2x97.79 (9)
S4B—K3—O42Bix96.07 (7)K1—O43B—S4B104.92 (17)
S4B—K3—O42Avii145.18 (7)K1—O43B—K1xiii87.96 (9)
S4B—K3—O43Avii160.55 (7)K1xiii—O43B—S4B139.4 (2)
O2W—K3—O41B101.53 (8)H11W—O1W—H12W113.00
O2W—K3—O42B54.96 (9)K2—O1W—H11W117.00
O2W—K3—O42Aiii67.86 (8)K2—O1W—H12W130.00
O2W—K3—O43Aiii115.20 (9)K2—O2W—H2W111.00
O2W—K3—O2Wviii166.45 (13)K3—O2W—H2Wix65.00
S4Bix—K3—O2W78.47 (5)K2—O2W—H2Wix111.00
O2W—K3—O41Bix101.53 (8)K3—O2W—H2W65.00
O2W—K3—O42Bix54.96 (9)K3i—O2W—H2Wix121.00
O2W—K3—O42Avii67.86 (8)K3i—O2W—H2W121.00
O2W—K3—O43Avii115.20 (9)H2W—O2W—H2Wix106.00
O41B—K3—O42B48.53 (9)H3W—O3W—H3Wix104.00
O41B—K3—O42Aiii75.26 (9)H41W—O4W—H42W106.00
O41B—K3—O43Aiii71.01 (8)C2A—C1A—C6A117.2 (4)
O2Wviii—K3—O41B72.58 (8)C1B—C1A—C6A121.2 (4)
S4Bix—K3—O41B121.69 (7)C1B—C1A—C2A121.6 (4)
O41B—K3—O41Bix121.19 (10)C1A—C1B—C6B120.9 (4)
O41B—K3—O42Bix113.82 (9)C1A—C1B—C2B122.1 (4)
O41B—K3—O42Avii162.77 (10)C2B—C1B—C6B117.1 (4)
O41B—K3—O43Avii138.51 (9)C1A—C2A—C3A121.4 (4)
O42Aiii—K3—O42B72.09 (8)C1B—C2B—C3B122.1 (4)
O42B—K3—O43Aiii103.14 (9)C2A—C3A—C4A119.8 (4)
O2Wviii—K3—O42B115.52 (10)C2B—C3B—C4B119.1 (4)
S4Bix—K3—O42B96.07 (7)S4A—C4A—C3A119.6 (3)
O41Bix—K3—O42B113.82 (9)S4A—C4A—C5A120.5 (3)
O42B—K3—O42Bix75.45 (9)C3A—C4A—C5A119.9 (3)
O42Avii—K3—O42B122.82 (10)S4B—C4B—C3B120.5 (3)
O42B—K3—O43Avii169.11 (9)S4B—C4B—C5B119.5 (3)
O42Aiii—K3—O43Aiii47.64 (8)C3B—C4B—C5B120.0 (4)
O2Wviii—K3—O42Aiii120.66 (8)C4A—C5A—C6A119.9 (4)
S4Bix—K3—O42Aiii145.18 (7)C4B—C5B—C6B120.0 (5)
O41Bix—K3—O42Aiii162.77 (10)C1A—C6A—C5A121.7 (5)
O42Aiii—K3—O42Bix122.82 (10)C1B—C6B—C5B121.7 (5)
O42Aiii—K3—O42Avii87.93 (9)C1A—C2A—H2A118.00
O42Aiii—K3—O43Avii100.51 (9)C3A—C2A—H2A121.00
O2Wviii—K3—O43Aiii75.00 (9)C1B—C2B—H2B118.00
S4Bix—K3—O43Aiii160.55 (7)C3B—C2B—H2B120.00
O41Bix—K3—O43Aiii138.51 (9)C4A—C3A—H3A119.00
O42Bix—K3—O43Aiii169.11 (9)C2A—C3A—H3A121.00
O42Avii—K3—O43Aiii100.51 (9)C2B—C3B—H3B121.00
O43Aiii—K3—O43Avii76.15 (9)C4B—C3B—H3B120.00
S4Bix—K3—O2Wviii94.10 (6)C4A—C5A—H5A119.00
O2Wviii—K3—O41Bix72.58 (8)C6A—C5A—H5A121.00
O2Wviii—K3—O42Bix115.52 (10)C6B—C5B—H5B121.00
O2Wviii—K3—O42Avii120.66 (8)C4B—C5B—H5B119.00
O2Wviii—K3—O43Avii75.00 (9)C1A—C6A—H6A118.00
S4Bix—K3—O41Bix23.63 (6)C5A—C6A—H6A120.00
S4Bix—K3—O42Bix24.96 (7)C5B—C6B—H6B120.00
S4Bix—K3—O42Avii70.87 (6)C1B—C6B—H6B118.00
S4Bix—K3—O43Avii85.56 (6)
O41Bi—K1—O43B—S4B63.28 (18)S4B—K3—O42Aiii—K136.28 (8)
O41Bi—K1—O43B—K1xiii155.80 (9)S4B—K3—O42Aiii—K2135.88 (8)
O43Aii—K1—O43B—S4B24.6 (3)O2W—K3—O42Aiii—K148.71 (11)
O43Aii—K1—O43B—K1xiii116.35 (19)O41B—K3—O42Aiii—K160.57 (11)
O42Aiii—K1—O43B—S4B54.89 (16)O41B—K3—O42Aiii—K2160.18 (10)
O42Aiii—K1—O43B—K1xiii86.03 (10)O42B—K3—O42Aiii—K19.96 (11)
O43Biv—K1—O43B—S4B135.85 (18)O42B—K3—O42Aiii—K2109.57 (10)
O43Biv—K1—O43B—K1xiii83.23 (10)S4B—K3—O42Avii—K235.22 (15)
O41Av—K1—O43B—S4B148.94 (16)O42B—K3—O42Avii—K251.07 (12)
O41Av—K1—O43B—K1xiii8.02 (10)O42A—S4A—O41A—K1x112.87 (16)
O43B—K1—O41Bi—S4Bi92.7 (2)O42A—S4A—O41A—K1xi11.5 (6)
O43B—K1—O43Aii—K210.8 (2)O43A—S4A—O41A—K1x15.15 (19)
O43B—K1—O43Aii—S4Aii172.48 (16)O43A—S4A—O41A—K1xi116.5 (5)
O43B—K1—O42Aiii—K2145.49 (11)C4A—S4A—O41A—K1x132.23 (15)
O43B—K1—O42Aiii—K355.87 (11)C4A—S4A—O41A—K1xi126.4 (5)
O43B—K1—O42Aiii—S4Aiii61.65 (17)O41A—S4A—O42A—K1xii13.0 (2)
O43B—K1—O43Biv—K1iv165.58 (11)O41A—S4A—O42A—K2xii155.4 (2)
O43B—K1—O43Biv—S4Biv54.9 (3)O41A—S4A—O42A—K3xii110.94 (17)
O43B—K1—O41Av—S4Av96.8 (5)O43A—S4A—O42A—K1xii141.42 (17)
O43B—K1—O41Av—K1xiii7.24 (9)O43A—S4A—O42A—K2xii76.2 (3)
O1W—K2—O43Aii—K1125.43 (12)O43A—S4A—O42A—K3xii17.47 (19)
O2W—K2—O43Aii—K153.67 (9)C4A—S4A—O42A—K1xii102.53 (18)
O1W—K2—O42Aiii—K1121.86 (13)C4A—S4A—O42A—K2xii39.8 (3)
O2W—K2—O42Aiii—K159.14 (10)C4A—S4A—O42A—K3xii133.52 (14)
O2W—K3—S4B—O41B167.29 (17)O41A—S4A—O43A—K3xii111.70 (15)
O2W—K3—S4B—O42B18.15 (16)O41A—S4A—O43A—K1x15.01 (18)
O2W—K3—S4B—O43B77.0 (2)O42A—S4A—O43A—K3xii16.77 (18)
O2W—K3—S4B—C4B109.31 (18)O42A—S4A—O43A—K1x113.45 (15)
O41B—K3—S4B—O42B174.6 (2)C4A—S4A—O43A—K3xii131.69 (15)
O41B—K3—S4B—O43B90.3 (2)C4A—S4A—O43A—K1x131.62 (15)
O41B—K3—S4B—C4B83.4 (2)O41A—S4A—C4A—C3A59.0 (4)
O42B—K3—S4B—O41B174.6 (2)O41A—S4A—C4A—C5A122.4 (4)
O42B—K3—S4B—O43B95.2 (2)O42A—S4A—C4A—C3A60.9 (4)
O42B—K3—S4B—C4B91.2 (2)O42A—S4A—C4A—C5A117.7 (4)
O42Aiii—K3—S4B—O41B96.94 (16)O43A—S4A—C4A—C3A179.8 (3)
O42Aiii—K3—S4B—O42B88.50 (16)O43A—S4A—C4A—C5A1.6 (4)
O42Aiii—K3—S4B—O43B6.6 (2)K3—S4B—O41B—K1viii144.8 (3)
O42Aiii—K3—S4B—C4B179.66 (18)O42B—S4B—O41B—K35.2 (2)
O43Aiii—K3—S4B—O41B50.45 (16)O42B—S4B—O41B—K1viii150.0 (2)
O43Aiii—K3—S4B—O42B135.00 (15)O43B—S4B—O41B—K3122.13 (18)
O43Aiii—K3—S4B—O43B39.9 (2)O43B—S4B—O41B—K1viii22.7 (3)
O43Aiii—K3—S4B—C4B133.85 (17)C4B—S4B—O41B—K3119.08 (16)
O2Wviii—K3—S4B—O41B24.14 (17)C4B—S4B—O41B—K1viii96.1 (2)
O2Wviii—K3—S4B—O42B150.41 (16)O41B—S4B—O42B—K34.44 (17)
O2Wviii—K3—S4B—O43B114.4 (2)O43B—S4B—O42B—K3124.95 (15)
O2Wviii—K3—S4B—C4B59.26 (18)C4B—S4B—O42B—K3118.76 (15)
S4Bix—K3—S4B—O41B120.20 (16)K3—S4B—O43B—K144.0 (2)
S4Bix—K3—S4B—O42B54.36 (14)K3—S4B—O43B—K1xiii60.7 (3)
S4Bix—K3—S4B—O43B149.50 (19)O41B—S4B—O43B—K1100.68 (18)
S4Bix—K3—S4B—C4B36.80 (17)O41B—S4B—O43B—K1xiii4.0 (3)
O41Bix—K3—S4B—O41B96.17 (17)O42B—S4B—O43B—K126.9 (2)
O41Bix—K3—S4B—O42B78.38 (16)O42B—S4B—O43B—K1xiii131.6 (3)
O41Bix—K3—S4B—O43B173.5 (2)C4B—S4B—O43B—K1141.61 (16)
O41Bix—K3—S4B—C4B12.77 (19)C4B—S4B—O43B—K1xiii113.7 (3)
O42Bix—K3—S4B—O41B140.37 (17)K3—S4B—C4B—C3B142.0 (3)
O42Bix—K3—S4B—O42B34.19 (16)K3—S4B—C4B—C5B36.5 (5)
O42Bix—K3—S4B—O43B129.3 (2)O41B—S4B—C4B—C3B166.4 (3)
O42Bix—K3—S4B—C4B56.97 (18)O41B—S4B—C4B—C5B15.1 (5)
O42Avii—K3—S4B—O41B152.50 (19)O42B—S4B—C4B—C3B75.4 (4)
O42Avii—K3—S4B—O42B32.95 (18)O42B—S4B—C4B—C5B103.1 (5)
O42Avii—K3—S4B—O43B62.2 (2)O43B—S4B—C4B—C3B43.0 (4)
O42Avii—K3—S4B—C4B124.1 (2)O43B—S4B—C4B—C5B138.5 (4)
S4B—K3—O2W—K2122.40 (3)C2A—C1A—C1B—C2B3.0 (6)
O41B—K3—O2W—K2117.24 (7)C2A—C1A—C1B—C6B178.3 (5)
O42B—K3—O2W—K2131.64 (8)C6A—C1A—C1B—C2B176.3 (4)
S4B—K3—O41B—K1viii153.3 (2)C6A—C1A—C1B—C6B2.5 (7)
O2W—K3—O41B—S4B12.71 (17)C1B—C1A—C2A—C3A177.7 (4)
O2W—K3—O41B—K1viii140.62 (11)C6A—C1A—C2A—C3A1.6 (7)
O42B—K3—O41B—S4B3.06 (12)C1B—C1A—C6A—C5A178.1 (5)
O42B—K3—O41B—K1viii156.39 (16)C2A—C1A—C6A—C5A1.2 (8)
O42Aiii—K3—O41B—S4B75.87 (15)C1A—C1B—C2B—C3B178.6 (4)
O43Aiii—K3—O41B—S4B125.62 (17)C6B—C1B—C2B—C3B0.2 (7)
O2Wviii—K3—O41B—S4B154.69 (18)C1A—C1B—C6B—C5B178.0 (6)
S4Bix—K3—O41B—S4B70.76 (16)C2B—C1B—C6B—C5B0.8 (9)
O41Bix—K3—O41B—S4B98.52 (16)C1A—C2A—C3A—C4A0.5 (7)
O42Bix—K3—O41B—S4B43.89 (18)C1B—C2B—C3B—C4B1.5 (6)
O43Avii—K3—O41B—S4B165.15 (13)C2A—C3A—C4A—S4A177.5 (4)
O2W—K3—O42B—S4B158.11 (18)C2A—C3A—C4A—C5A1.1 (7)
O41B—K3—O42B—S4B2.91 (11)C2B—C3B—C4B—S4B175.8 (3)
O42Aiii—K3—O42B—S4B83.00 (14)C2B—C3B—C4B—C5B2.7 (7)
O43Aiii—K3—O42B—S4B46.38 (15)S4A—C4A—C5A—C6A177.1 (4)
O2Wviii—K3—O42B—S4B33.08 (17)C3A—C4A—C5A—C6A1.5 (7)
S4Bix—K3—O42B—S4B130.57 (13)S4B—C4B—C5B—C6B176.4 (5)
O41Bix—K3—O42B—S4B114.34 (14)C3B—C4B—C5B—C6B2.1 (9)
O42Bix—K3—O42B—S4B144.75 (16)C4A—C5A—C6A—C1A0.3 (8)
O42Avii—K3—O42B—S4B158.31 (12)C4B—C5B—C6B—C1B0.4 (10)
Symmetry codes: (i) x1, y, z; (ii) x1, y, z+1; (iii) x, y, z+1; (iv) x1/2, y+1/2, z; (v) x1/2, y+1/2, z+1; (vi) x1, y, z+1; (vii) x, y, z+1; (viii) x+1, y, z; (ix) x, y, z; (x) x+1, y, z1; (xi) x+1/2, y+1/2, z1; (xii) x, y, z1; (xiii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O4Wiii0.972.182.778 (9)119
O2W—H2W···O42B0.961.912.840 (5)162
O3W—H3W···O42B0.961.952.884 (5)162
O4W—H41W···O3W0.901.822.715 (9)180
O4W—H41W···O3W0.901.822.715 (9)180
C5A—H5A···O43A0.952.502.916 (5)106
C5B—H5B···O41B0.942.472.873 (5)106
Symmetry code: (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula2K+·C12H8O6S22·2H2O
Mr426.56
Crystal system, space groupMonoclinic, Cm
Temperature (K)297
a, b, c (Å)5.8316 (10), 19.691 (7), 14.623 (2)
β (°) 98.953 (13)
V3)1658.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.32 × 0.25 × 0.20
Data collection
DiffractometerRigaku AFC 7R
diffractometer
Absorption correctionψ scan
(TEXSAN for Windows; Molecular Structure Corporation, 1999)
Tmin, Tmax0.774, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
2295, 2295, 2196
Rint0.016
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 0.88
No. of reflections2295
No. of parameters227
No. of restraints2
H-atom treatmentH-atom parameters not refined
w = 1/[σ2(Fo2) + (0.1P)2 + 15.7726P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.40, 0.39
Absolute structureFlack (1983)
Absolute structure parameter0.02 (8)

Computer programs: MSC/AFC Diffractmeter Control Software (Molecular Structure Corporation, 1999), MSC/AFC Diffractmeter Control Software, TEXSAN for Windows (Molecular Structure Corporation, 1999), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.

Selected geometric parameters (Å, º) top
K1—O43B2.850 (4)K2—O42Avii2.741 (3)
K1—O41Bi2.703 (3)K3—O2W3.079 (4)
K1—O41Aii3.040 (4)K3—O41B2.751 (3)
K1—O43Aii3.058 (3)K3—O42B3.076 (4)
K1—O42Aiii2.866 (3)K3—O42Aiii2.938 (3)
K1—O43Biv2.739 (3)K3—O43Aiii3.027 (3)
K1—O41Av2.681 (3)K3—O2Wviii2.793 (4)
K2—O1W2.703 (6)K3—O41Bix2.751 (3)
K2—O2W2.866 (5)K3—O42Bix3.076 (4)
K2—O43Aii2.657 (3)K3—O42Avii2.938 (3)
K2—O42Aiii2.741 (3)K3—O43Avii3.027 (3)
K2—O43Avi2.657 (3)
O41Bi—K1—O43B110.25 (9)O41B—K3—O42B48.53 (9)
O41Aii—K1—O43B160.66 (9)O41B—K3—O42Aiii75.26 (9)
O43Aii—K1—O43B152.59 (10)O41B—K3—O43Aiii71.01 (8)
O42Aiii—K1—O43B83.81 (9)O2Wviii—K3—O41B72.58 (8)
O43B—K1—O43Biv71.84 (10)S4Bix—K3—O41B121.69 (7)
O41Av—K1—O43B95.63 (10)O41B—K3—O41Bix121.19 (10)
O41Aii—K1—O41Bi72.70 (9)O41B—K3—O42Bix113.82 (9)
O41Bi—K1—O43Aii71.13 (9)O41B—K3—O42Avii162.77 (10)
O41Bi—K1—O42Aiii118.54 (10)O41B—K3—O43Avii138.51 (9)
O41Bi—K1—O43Biv80.84 (10)O42Aiii—K3—O42B72.09 (8)
O41Av—K1—O41Bi139.11 (11)O42B—K3—O43Aiii103.14 (9)
O41Aii—K1—O43Aii46.73 (8)O2Wviii—K3—O42B115.52 (10)
O41Aii—K1—O42Aiii112.09 (9)S4Bix—K3—O42B96.07 (7)
O41Aii—K1—O43Biv90.23 (10)O41Bix—K3—O42B113.82 (9)
O41Aii—K1—O41Av72.92 (10)O42B—K3—O42Bix75.45 (9)
O42Aiii—K1—O43Aii72.58 (9)O42Avii—K3—O42B122.82 (10)
O43Aii—K1—O43Biv133.53 (10)O42B—K3—O43Avii169.11 (9)
O41Av—K1—O43Aii99.88 (9)O42Aiii—K3—O43Aiii47.64 (8)
O42Aiii—K1—O43Biv153.45 (10)O2Wviii—K3—O42Aiii120.66 (8)
O41Av—K1—O42Aiii94.61 (10)S4Bix—K3—O42Aiii145.18 (7)
O41Av—K1—O43Biv77.83 (9)O41Bix—K3—O42Aiii162.77 (10)
O1W—K2—O2W178.76 (17)O42Aiii—K3—O42Bix122.82 (10)
O1W—K2—O43Aii101.02 (12)O42Aiii—K3—O42Avii87.93 (9)
O1W—K2—O42Aiii105.61 (11)O42Aiii—K3—O43Avii100.51 (9)
O1W—K2—O43Avi101.02 (12)O2Wviii—K3—O43Aiii75.00 (9)
O1W—K2—O42Avii105.61 (11)S4Bix—K3—O43Aiii160.55 (7)
O2W—K2—O43Aii79.84 (9)O41Bix—K3—O43Aiii138.51 (9)
O2W—K2—O42Aiii73.61 (8)O42Bix—K3—O43Aiii169.11 (9)
O2W—K2—O43Avi79.84 (9)O42Avii—K3—O43Aiii100.51 (9)
O2W—K2—O42Avii73.61 (8)O43Aiii—K3—O43Avii76.15 (9)
O42Aiii—K2—O43Aii81.09 (9)S4Bix—K3—O2Wviii94.10 (6)
O43Aii—K2—O43Avi89.26 (10)O2Wviii—K3—O41Bix72.58 (8)
O42Avii—K2—O43Aii152.93 (10)O2Wviii—K3—O42Bix115.52 (10)
O42Aiii—K2—O43Avi152.93 (10)O2Wviii—K3—O42Avii120.66 (8)
O42Aiii—K2—O42Avii96.15 (10)O2Wviii—K3—O43Avii75.00 (9)
O42Avii—K2—O43Avi81.09 (9)S4Bix—K3—O41Bix23.63 (6)
S4B—K3—O2W78.47 (5)S4Bix—K3—O42Bix24.96 (7)
S4B—K3—O41B23.63 (6)S4Bix—K3—O42Avii70.87 (6)
S4B—K3—O42B24.96 (7)S4Bix—K3—O43Avii85.56 (6)
S4B—K3—O42Aiii70.87 (6)O41Bix—K3—O42Bix48.53 (9)
S4B—K3—O43Aiii85.56 (6)O41Bix—K3—O42Avii75.26 (9)
S4B—K3—O2Wviii94.10 (6)O41Bix—K3—O43Avii71.01 (8)
S4B—K3—S4Bix111.64 (4)O42Avii—K3—O42Bix72.09 (8)
S4B—K3—O41Bix121.69 (7)O42Bix—K3—O43Avii103.14 (9)
S4B—K3—O42Bix96.07 (7)O42Avii—K3—O43Avii47.64 (8)
S4B—K3—O42Avii145.18 (7)K2—O2W—K380.85 (11)
S4B—K3—O43Avii160.55 (7)K2—O2W—K3i85.61 (12)
O2W—K3—O41B101.53 (8)K3—O2W—K3i166.45 (17)
O2W—K3—O42B54.96 (9)K1x—O41A—K1xi85.21 (9)
O2W—K3—O42Aiii67.86 (8)K1viii—O41B—K3111.44 (10)
O2W—K3—O43Aiii115.20 (9)K1xii—O42A—K2xii100.58 (10)
O2W—K3—O2Wviii166.45 (13)K1xii—O42A—K3xii113.15 (10)
S4Bix—K3—O2W78.47 (5)K2xii—O42A—K3xii85.52 (10)
O2W—K3—O41Bix101.53 (8)K1x—O43A—K3xii95.55 (9)
O2W—K3—O42Bix54.96 (9)K2x—O43A—K3xii84.90 (9)
O2W—K3—O42Avii67.86 (8)K1x—O43A—K2x97.79 (9)
O2W—K3—O43Avii115.20 (9)K1—O43B—K1xiii87.96 (9)
Symmetry codes: (i) x1, y, z; (ii) x1, y, z+1; (iii) x, y, z+1; (iv) x1/2, y+1/2, z; (v) x1/2, y+1/2, z+1; (vi) x1, y, z+1; (vii) x, y, z+1; (viii) x+1, y, z; (ix) x, y, z; (x) x+1, y, z1; (xi) x+1/2, y+1/2, z1; (xii) x, y, z1; (xiii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O4Wiii0.972.182.778 (9)119
O2W—H2W···O42B0.961.912.840 (5)162
O3W—H3W···O42B0.961.952.884 (5)162
O4W—H41W···O3W0.901.822.715 (9)180
O4W—H41W···O3W0.901.822.715 (9)180
C5A—H5A···O43A0.952.502.916 (5)106
C5B—H5B···O41B0.942.472.873 (5)106
Symmetry code: (iii) x, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds