Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The Zn atom in the title complex, [ZnCl2(C12H13N3)]·CHCl3, adopts a distorted square-pyramidal geometry, being coordinated by three N atoms of the tridentate dipicolylamine ligand and two Cl atoms. Inter­molecular N—H...Cl hydrogen-bonding inter­actions link the mol­ecules into centrosymmetric dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807051422/tk2200sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807051422/tk2200Isup2.hkl
Contains datablock I

CCDC reference: 667218

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.046
  • wR factor = 0.132
  • Data-to-parameter ratio = 23.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 1.02 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C16 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of N8 = ... S PLAT794_ALERT_5_G Check Predicted Bond Valency for Zn (2) 1.89
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Transition metal complexes with di(2-picolyl)amine (dpa) or substituted-dpa ligands continue to be of interest in many fields in chemistry (Kirin et al., 2005; Storr et al., 2005; Tamamura et al., 2006 & Lee et al., 2007). Among them, Zn(II) complexes exhibit fluorescence and can be applied as fluorescent chemosensors (Ojida et al., 2004). The Zn(II) center in the title [Zn(dpa)Cl2] complex, characterized as a monochloroform solvate, (I), is five-coordinated by the three N atoms of the dpa ligand and two Cl atoms (Fig. 1 & Table 1). The coordination pattern of the three N atoms of the dpa ligand is meridional and forms a planar ZnN3 arrangement and the overall coordination geometry is based on a square pyramid. The calculated trigonality index, τ, for Zn(dpa)Cl2 in (I), of 0.21, is consistent with this conclusion (τ = 0 for a square pyramid and τ = 1 for a trigonal bipyramid (Addison et al., 1984)). Hydrogen bonding interactions of the type N—H···Cl link molecules into centrosymmetric dimeric aggregates (Table 2). Upon excitation at 400 nm, complex (I) exhibits an intense blue emission at 426 nm in DMF solution.

Related literature top

For general background see: Kirin et al. (2005); Storr et al. (2005); Tamamura et al. (2006); Lee et al. (2007) & Ojida et al. (2004). For related literature, see: Addison et al. (1984).

Experimental top

All reagents and solvents were purchased from Aldrich and used without further purification. A mixture of ZnCl2 (0.66 g, 5 mmol) and di(2-picolyl)amine (0.99 g, 5 mmol) in ethanol (20 ml) was stirred at room temperature under an nitrogen atmosphere. The precipitates were filtered off and recrystallized from chloroform to yield (I). 1H NMR for dpa in (I) (d6-DMSO, p.p.m.): δ: 8.76 (d, 2H), 8.00 (m, 2H), 7.55 (t, 4H), 4.90 (t, 1H), 4.13 (s, 4H).

Refinement top

The N8—H atom was refined without constraint. The C-bound H atoms were included in the riding model approximation with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C).

Structure description top

Transition metal complexes with di(2-picolyl)amine (dpa) or substituted-dpa ligands continue to be of interest in many fields in chemistry (Kirin et al., 2005; Storr et al., 2005; Tamamura et al., 2006 & Lee et al., 2007). Among them, Zn(II) complexes exhibit fluorescence and can be applied as fluorescent chemosensors (Ojida et al., 2004). The Zn(II) center in the title [Zn(dpa)Cl2] complex, characterized as a monochloroform solvate, (I), is five-coordinated by the three N atoms of the dpa ligand and two Cl atoms (Fig. 1 & Table 1). The coordination pattern of the three N atoms of the dpa ligand is meridional and forms a planar ZnN3 arrangement and the overall coordination geometry is based on a square pyramid. The calculated trigonality index, τ, for Zn(dpa)Cl2 in (I), of 0.21, is consistent with this conclusion (τ = 0 for a square pyramid and τ = 1 for a trigonal bipyramid (Addison et al., 1984)). Hydrogen bonding interactions of the type N—H···Cl link molecules into centrosymmetric dimeric aggregates (Table 2). Upon excitation at 400 nm, complex (I) exhibits an intense blue emission at 426 nm in DMF solution.

For general background see: Kirin et al. (2005); Storr et al. (2005); Tamamura et al. (2006); Lee et al. (2007) & Ojida et al. (2004). For related literature, see: Addison et al. (1984).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme and 30% probability ellipsoids.
(I) top
Crystal data top
[ZnCl2(C12H13N3)]·CHCl3F(000) = 912
Mr = 454.89Dx = 1.611 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5802 reflections
a = 6.9650 (6) Åθ = 2.5–23.5°
b = 12.8654 (12) ŵ = 2.02 mm1
c = 20.9341 (18) ÅT = 295 K
β = 90.335 (5)°Block, colourless
V = 1875.8 (3) Å30.20 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3104 reflections with I > 2σ(I)
φ and ω scansRint = 0.055
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
θmax = 28.4°, θmin = 1.9°
Tmin = 0.661, Tmax = 0.697h = 99
36984 measured reflectionsk = 1717
4676 independent reflectionsl = 2727
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0612P)2 + 1.569P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.132(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.85 e Å3
4676 reflectionsΔρmin = 0.76 e Å3
203 parameters
Crystal data top
[ZnCl2(C12H13N3)]·CHCl3V = 1875.8 (3) Å3
Mr = 454.89Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9650 (6) ŵ = 2.02 mm1
b = 12.8654 (12) ÅT = 295 K
c = 20.9341 (18) Å0.20 × 0.18 × 0.17 mm
β = 90.335 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4676 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3104 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.697Rint = 0.055
36984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.85 e Å3
4676 reflectionsΔρmin = 0.76 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.58918 (5)0.97733 (3)0.110162 (18)0.04221 (14)
Cl10.69504 (13)0.90035 (8)0.20260 (4)0.0528 (2)
Cl20.80351 (14)1.08035 (8)0.05874 (4)0.0566 (3)
N10.4222 (4)1.1003 (3)0.15276 (15)0.0514 (7)
C20.4828 (7)1.1957 (4)0.1677 (2)0.0665 (11)
H20.60831.21440.15810.08*
C30.3661 (8)1.2674 (4)0.1968 (2)0.0819 (15)
H30.41181.33320.2070.098*
C40.1807 (8)1.2396 (5)0.2105 (2)0.0817 (15)
H40.09861.28690.22990.098*
C50.1169 (6)1.1420 (4)0.1956 (2)0.0722 (13)
H50.00841.12220.20470.087*
C60.2417 (5)1.0731 (3)0.16676 (16)0.0521 (9)
C70.1865 (5)0.9624 (3)0.1518 (2)0.0577 (10)
H7A0.20790.91920.18920.069*
H7B0.05120.95920.14080.069*
N80.3013 (4)0.9232 (3)0.09836 (15)0.0462 (7)
H80.252 (5)0.947 (3)0.0644 (19)0.045 (11)*
C90.3055 (6)0.8096 (3)0.0925 (2)0.0553 (10)
H9A0.1850.78510.07450.066*
H9B0.32180.77850.13440.066*
C100.4691 (6)0.7776 (3)0.04990 (17)0.0517 (9)
C110.4684 (8)0.6857 (3)0.0160 (2)0.0721 (13)
H110.36350.64110.01760.087*
C120.6275 (9)0.6612 (4)0.0206 (2)0.0844 (15)
H120.63210.5990.04310.101*
C130.7771 (8)0.7294 (4)0.0231 (2)0.0775 (14)
H130.8840.71480.0480.093*
C140.7680 (6)0.8190 (4)0.01125 (19)0.0597 (10)
H140.87080.8650.00940.072*
N150.6173 (4)0.8437 (2)0.04767 (14)0.0482 (7)
C160.9172 (9)0.5298 (4)0.1609 (2)0.0859 (16)
H160.89470.49750.20260.103*
Cl31.1706 (3)0.53673 (14)0.14969 (12)0.1342 (7)
Cl40.8241 (3)0.65527 (13)0.16368 (8)0.1098 (5)
Cl50.8131 (5)0.4523 (2)0.10431 (13)0.1840 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0364 (2)0.0507 (2)0.0396 (2)0.00151 (17)0.00611 (15)0.00004 (18)
Cl10.0524 (5)0.0634 (6)0.0426 (5)0.0039 (4)0.0040 (4)0.0078 (4)
Cl20.0553 (5)0.0690 (6)0.0458 (5)0.0137 (5)0.0094 (4)0.0064 (4)
N10.0486 (17)0.057 (2)0.0483 (17)0.0100 (14)0.0022 (13)0.0002 (15)
C20.071 (3)0.063 (3)0.066 (3)0.008 (2)0.001 (2)0.010 (2)
C30.104 (4)0.068 (3)0.074 (3)0.025 (3)0.009 (3)0.023 (3)
C40.086 (4)0.098 (4)0.062 (3)0.043 (3)0.002 (2)0.022 (3)
C50.055 (2)0.106 (4)0.056 (3)0.025 (3)0.0048 (19)0.009 (3)
C60.045 (2)0.074 (3)0.0372 (18)0.0155 (18)0.0046 (15)0.0008 (18)
C70.0410 (19)0.074 (3)0.058 (2)0.0064 (18)0.0086 (17)0.008 (2)
N80.0393 (15)0.058 (2)0.0408 (16)0.0017 (14)0.0009 (13)0.0050 (15)
C90.053 (2)0.055 (2)0.059 (2)0.0118 (18)0.0001 (18)0.0050 (18)
C100.059 (2)0.053 (2)0.043 (2)0.0036 (18)0.0042 (16)0.0019 (17)
C110.097 (4)0.055 (3)0.064 (3)0.005 (2)0.008 (3)0.009 (2)
C120.117 (5)0.069 (3)0.067 (3)0.011 (3)0.001 (3)0.023 (3)
C130.089 (3)0.082 (3)0.061 (3)0.016 (3)0.013 (2)0.014 (3)
C140.059 (2)0.070 (3)0.050 (2)0.010 (2)0.0101 (18)0.003 (2)
N150.0487 (17)0.0533 (18)0.0426 (16)0.0011 (14)0.0044 (13)0.0029 (14)
C160.128 (5)0.071 (3)0.059 (3)0.006 (3)0.009 (3)0.001 (2)
Cl30.1399 (17)0.0955 (12)0.168 (2)0.0094 (11)0.0342 (14)0.0047 (12)
Cl40.1519 (15)0.0851 (10)0.0925 (10)0.0336 (10)0.0029 (10)0.0020 (8)
Cl50.245 (3)0.141 (2)0.165 (2)0.0070 (19)0.077 (2)0.0631 (17)
Geometric parameters (Å, º) top
Zn—N12.159 (3)C7—H7B0.97
Zn—N82.136 (3)N8—H80.85 (4)
Zn—N152.170 (3)C9—C101.508 (5)
Zn—Cl12.2919 (10)C9—H9A0.97
Zn—Cl22.2722 (9)C9—H9B0.97
N1—C21.335 (5)C10—N151.338 (5)
N1—C61.339 (5)C10—C111.380 (6)
C2—C31.374 (6)C11—C121.386 (7)
C2—H20.93C11—H110.93
C3—C41.372 (8)C12—C131.364 (7)
C3—H30.93C12—H120.93
C4—C51.367 (7)C13—C141.360 (6)
C4—H40.93C13—H130.93
C5—C61.382 (6)C14—N151.340 (5)
C5—H50.93C14—H140.93
C6—C71.507 (6)C16—Cl51.706 (6)
N8—C91.467 (5)C16—Cl41.741 (5)
C7—N81.468 (5)C16—Cl31.784 (7)
C7—H7A0.97C16—H160.98
N1—Zn—N877.23 (12)C9—N8—Zn108.4 (2)
N1—Zn—N15151.65 (12)C7—N8—Zn108.3 (2)
N1—Zn—Cl198.01 (9)C9—N8—H8108 (3)
N1—Zn—Cl297.20 (9)C7—N8—H8107 (3)
N8—Zn—N1576.11 (12)Zn—N8—H8111 (3)
N8—Zn—Cl1104.71 (9)N8—C9—C10109.7 (3)
N8—Zn—Cl2138.97 (9)N8—C9—H9A109.7
N15—Zn—Cl197.87 (9)C10—C9—H9A109.7
N15—Zn—Cl296.59 (8)N8—C9—H9B109.7
Cl1—Zn—Cl2116.30 (4)C10—C9—H9B109.7
C2—N1—C6119.0 (4)H9A—C9—H9B108.2
C2—N1—Zn126.9 (3)N15—C10—C11121.8 (4)
C6—N1—Zn114.1 (3)N15—C10—C9115.7 (3)
N1—C2—C3122.3 (5)C11—C10—C9122.5 (4)
N1—C2—H2118.9C10—C11—C12118.6 (5)
C3—C2—H2118.9C10—C11—H11120.7
C4—C3—C2118.6 (5)C12—C11—H11120.7
C4—C3—H3120.7C13—C12—C11119.3 (5)
C2—C3—H3120.7C13—C12—H12120.3
C5—C4—C3119.8 (4)C11—C12—H12120.3
C5—C4—H4120.1C14—C13—C12119.1 (5)
C3—C4—H4120.1C14—C13—H13120.5
C4—C5—C6119.0 (5)C12—C13—H13120.5
C4—C5—H5120.5N15—C14—C13122.8 (4)
C6—C5—H5120.5N15—C14—H14118.6
N1—C6—C5121.4 (4)C13—C14—H14118.6
N1—C6—C7116.1 (3)C10—N15—C14118.4 (3)
C5—C6—C7122.4 (4)C10—N15—Zn114.2 (2)
N8—C7—C6110.1 (3)C14—N15—Zn127.2 (3)
N8—C7—H7A109.6Cl5—C16—Cl4114.1 (4)
C6—C7—H7A109.6Cl5—C16—Cl3110.8 (3)
N8—C7—H7B109.6Cl4—C16—Cl3109.1 (3)
C6—C7—H7B109.6Cl5—C16—H16107.5
H7A—C7—H7B108.2Cl4—C16—H16107.5
C9—N8—C7114.7 (3)Cl3—C16—H16107.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···Cl2i0.85 (4)2.63 (4)3.365 (3)146 (3)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[ZnCl2(C12H13N3)]·CHCl3
Mr454.89
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)6.9650 (6), 12.8654 (12), 20.9341 (18)
β (°) 90.335 (5)
V3)1875.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.02
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.661, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
36984, 4676, 3104
Rint0.055
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.132, 1.03
No. of reflections4676
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.85, 0.76

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn—N12.159 (3)Zn—Cl12.2919 (10)
Zn—N82.136 (3)Zn—Cl22.2722 (9)
Zn—N152.170 (3)
N1—Zn—N877.23 (12)N8—Zn—Cl1104.71 (9)
N1—Zn—N15151.65 (12)N8—Zn—Cl2138.97 (9)
N1—Zn—Cl198.01 (9)N15—Zn—Cl197.87 (9)
N1—Zn—Cl297.20 (9)N15—Zn—Cl296.59 (8)
N8—Zn—N1576.11 (12)Cl1—Zn—Cl2116.30 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···Cl2i0.85 (4)2.63 (4)3.365 (3)146 (3)
Symmetry code: (i) x+1, y+2, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds