Download citation
Download citation
link to html
The mononuclear Schiff base compound C16H19NOSSn or [(CH3)3Sn(SC6H4-4-N=C(H)C6H4-OH-2)] features a slightly distorted C3S tetra­hedral geometry for Sn. The mean planes of the two benzene rings make a dihedral angle of 41.8 (2)°, indicating nonplanarity of the molecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807043371/tk2193sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807043371/tk2193Isup2.hkl
Contains datablock I

CCDC reference: 663579

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.054
  • wR factor = 0.165
  • Data-to-parameter ratio = 16.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for S1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Sn1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Schiff-bases are well known chelating ligands in coordination chemistry (Garnovski et al., 1993). During the last decade, Schiff-base complexes have been applied in catalytic reactions and biological systems (Anderson et al., 1997). Organotin complexes containing Schiff-bases have attracted much attention owing to their potential biological activities (Nath et al., 1997). In this contribution, the title compound (I) was synthesized and its crystal structure determined (Fig. 1 and Table 1). The central tin atom exists in a distorted tetrahedron defined by a C3S donor set. The geometric parameters are in good agreement with those found in (1-phenyl-1H-tetrazole-5-thiolato)trimethyltin (Cea-Olivares et al., 1994). The mean planes of the two benzene rings in (I) make a dihedral angle of 41.8 (2)°.

Related literature top

For related literature, see: Anderson et al. (1997); Cea-Olivares et al. (1994); Garnovski et al. (1993); Nath et al. (1997).

Experimental top

The Schiff-base ligand was synthesized by the reaction of salicylaldehyde and 4-aminothiophenol in ethanol solution. The syntheses of (I) was carried out under an N2 atmosphere. The Schiff-base (0.229 g, 1 mmol) and (CH3)3SnCl (0.199 g, 1 mmol) were added to a solution of dry benzene (30 ml) in a Schlenk flash and stirred under refux conditions (353 K) for 12 h. The solution was filtered and after a week yellow crystals suitable for X-ray diffraction study were obtained. Yield, 0.423 g, 85%. m.p. 412–414 K.

Analysis found: C 48.85, H 4.91, N 3.54, O 4.02, S 8.10%; C19H19NOSSn requires: C 49.01, H 4.88, N 3.57, O 4.08, S 8.18%.

Refinement top

The H-atoms were included in the riding-model approximation with C—H = 0.93 - 0.96 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C-aromatic) and Uiso(H) = 1.5Ueq(C-methyl and O).

Structure description top

Schiff-bases are well known chelating ligands in coordination chemistry (Garnovski et al., 1993). During the last decade, Schiff-base complexes have been applied in catalytic reactions and biological systems (Anderson et al., 1997). Organotin complexes containing Schiff-bases have attracted much attention owing to their potential biological activities (Nath et al., 1997). In this contribution, the title compound (I) was synthesized and its crystal structure determined (Fig. 1 and Table 1). The central tin atom exists in a distorted tetrahedron defined by a C3S donor set. The geometric parameters are in good agreement with those found in (1-phenyl-1H-tetrazole-5-thiolato)trimethyltin (Cea-Olivares et al., 1994). The mean planes of the two benzene rings in (I) make a dihedral angle of 41.8 (2)°.

For related literature, see: Anderson et al. (1997); Cea-Olivares et al. (1994); Garnovski et al. (1993); Nath et al. (1997).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted for clarity.
2-{[4-(Trimethylstannylthio)phenylimino]methyl}phenol top
Crystal data top
C16H19NOSSnF(000) = 784
Mr = 392.07Dx = 1.497 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2868 reflections
a = 11.1385 (16) Åθ = 3.0–23.6°
b = 6.4148 (12) ŵ = 1.58 mm1
c = 24.490 (2) ÅT = 298 K
β = 96.254 (2)°Block, yellow
V = 1739.5 (4) Å30.15 × 0.12 × 0.10 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
3104 independent reflections
Radiation source: sealed tube2284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
φ and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1213
Tmin = 0.797, Tmax = 0.858k = 77
8291 measured reflectionsl = 2229
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.088P)2 + 2.8254P]
where P = (Fo2 + 2Fc2)/3
3104 reflections(Δ/σ)max = 0.004
184 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.96 e Å3
Crystal data top
C16H19NOSSnV = 1739.5 (4) Å3
Mr = 392.07Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1385 (16) ŵ = 1.58 mm1
b = 6.4148 (12) ÅT = 298 K
c = 24.490 (2) Å0.15 × 0.12 × 0.10 mm
β = 96.254 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3104 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2284 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.858Rint = 0.051
8291 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.01Δρmax = 0.38 e Å3
3104 reflectionsΔρmin = 0.96 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.19708 (4)0.26552 (7)0.617154 (19)0.0594 (2)
N10.1773 (4)0.6301 (8)0.3530 (2)0.0482 (12)
O10.0779 (4)0.9533 (7)0.30112 (19)0.0684 (14)
H10.10960.88590.32730.103*
S10.36707 (17)0.2139 (3)0.56463 (8)0.0702 (6)
C10.3083 (5)0.3377 (9)0.5024 (2)0.0501 (13)
C20.3372 (6)0.5430 (10)0.4916 (2)0.0565 (14)
H20.38590.61940.51770.068*
C30.2936 (5)0.6341 (11)0.4421 (2)0.0555 (14)
H30.31360.77170.43540.067*
C40.2206 (5)0.5249 (9)0.4022 (2)0.0459 (12)
C50.1911 (6)0.3221 (9)0.4132 (2)0.0518 (13)
H50.14160.24700.38720.062*
C60.2341 (6)0.2275 (10)0.4626 (2)0.0561 (14)
H60.21340.09010.46930.067*
C70.1657 (5)0.5321 (10)0.3073 (2)0.0479 (12)
H70.18930.39320.30660.057*
C80.1166 (5)0.6320 (9)0.2562 (2)0.0476 (12)
C90.0727 (5)0.8369 (10)0.2554 (3)0.0530 (13)
C100.0284 (6)0.9290 (11)0.2056 (2)0.0595 (14)
H100.00181.06660.20490.071*
C110.0238 (6)0.8166 (11)0.1574 (3)0.0631 (15)
H110.00860.87760.12460.076*
C120.0668 (6)0.6144 (10)0.1571 (3)0.0607 (14)
H120.06440.54030.12430.073*
C130.1135 (5)0.5237 (11)0.2063 (2)0.0553 (14)
H130.14320.38830.20620.066*
C140.0469 (6)0.1300 (14)0.5697 (3)0.0709 (19)
H14A0.00540.03900.59240.085*
H14B0.07430.05170.54000.085*
H14C0.00700.23800.55510.085*
C150.1731 (9)0.5949 (15)0.6232 (4)0.109 (3)
H15A0.14900.65120.58730.131*
H15B0.24770.65800.63810.131*
H15C0.11170.62360.64680.131*
C160.2493 (7)0.1208 (15)0.6947 (3)0.077 (2)
H16A0.19900.00160.69880.093*
H16B0.24040.21840.72370.093*
H16C0.33210.07720.69650.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0621 (3)0.0607 (4)0.0553 (3)0.0029 (2)0.0070 (2)0.0069 (2)
N10.047 (3)0.054 (3)0.044 (3)0.003 (2)0.008 (2)0.000 (3)
O10.087 (3)0.061 (3)0.057 (3)0.020 (3)0.005 (3)0.004 (2)
S10.0544 (10)0.0942 (15)0.0622 (11)0.0173 (9)0.0081 (8)0.0232 (10)
C10.043 (3)0.057 (3)0.051 (3)0.004 (2)0.012 (2)0.001 (3)
C20.058 (3)0.062 (3)0.048 (3)0.008 (3)0.003 (3)0.004 (3)
C30.060 (3)0.053 (3)0.053 (3)0.005 (3)0.007 (2)0.001 (3)
C40.047 (2)0.050 (3)0.043 (3)0.001 (2)0.013 (2)0.002 (2)
C50.056 (3)0.056 (3)0.046 (3)0.007 (2)0.013 (2)0.007 (2)
C60.063 (3)0.055 (3)0.053 (3)0.002 (3)0.015 (3)0.000 (3)
C70.045 (2)0.053 (3)0.047 (3)0.000 (2)0.010 (2)0.000 (2)
C80.038 (2)0.058 (3)0.048 (3)0.002 (2)0.010 (2)0.001 (2)
C90.041 (3)0.063 (3)0.056 (3)0.006 (2)0.009 (2)0.003 (3)
C100.053 (3)0.065 (3)0.060 (3)0.000 (3)0.006 (3)0.010 (3)
C110.049 (3)0.081 (4)0.059 (3)0.007 (3)0.005 (3)0.010 (3)
C120.052 (3)0.078 (3)0.053 (3)0.009 (3)0.008 (2)0.009 (3)
C130.052 (3)0.063 (3)0.052 (3)0.006 (3)0.010 (2)0.003 (3)
C140.061 (4)0.088 (5)0.064 (4)0.009 (4)0.010 (3)0.019 (4)
C150.114 (7)0.071 (6)0.141 (8)0.011 (5)0.005 (6)0.018 (6)
C160.085 (5)0.093 (6)0.055 (4)0.012 (4)0.012 (4)0.001 (4)
Geometric parameters (Å, º) top
Sn1—S12.425 (2)C7—H70.9300
Sn1—C142.117 (7)C8—C131.402 (7)
Sn1—C152.137 (9)C8—C91.402 (7)
Sn1—C162.138 (7)C9—C101.397 (7)
N1—C71.277 (8)C10—C111.380 (7)
N1—C41.420 (7)C10—H100.9300
O1—C91.342 (7)C11—C121.382 (7)
O1—H10.8200C11—H110.9300
S1—C11.779 (6)C12—C131.388 (7)
C1—C21.388 (7)C12—H120.9300
C1—C61.398 (7)C13—H130.9300
C2—C31.385 (7)C14—H14A0.9600
C2—H20.9300C14—H14B0.9600
C3—C41.391 (6)C14—H14C0.9600
C3—H30.9300C15—H15A0.9600
C4—C51.376 (7)C15—H15B0.9600
C5—C61.392 (7)C15—H15C0.9600
C5—H50.9300C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
C7—C81.459 (8)C16—H16C0.9600
S1—Sn1—C14105.6 (2)O1—C9—C10118.2 (6)
S1—Sn1—C15106.4 (3)O1—C9—C8121.8 (5)
S1—Sn1—C16105.0 (2)C10—C9—C8119.9 (6)
C14—Sn1—C15110.3 (3)C11—C10—C9120.2 (6)
C14—Sn1—C16115.6 (3)C11—C10—H10119.9
C15—Sn1—C16113.1 (4)C9—C10—H10119.9
C7—N1—C4120.2 (5)C10—C11—C12121.0 (6)
C9—O1—H1109.5C10—C11—H11119.5
Sn1—S1—C199.1 (2)C12—C11—H11119.5
C2—C1—C6118.7 (6)C11—C12—C13119.1 (6)
C2—C1—S1121.0 (5)C11—C12—H12120.5
C6—C1—S1120.4 (5)C13—C12—H12120.5
C3—C2—C1120.0 (6)C12—C13—C8121.4 (6)
C3—C2—H2120.0C12—C13—H13119.3
C1—C2—H2120.0C8—C13—H13119.3
C2—C3—C4121.7 (6)Sn1—C14—H14A109.5
C2—C3—H3119.1Sn1—C14—H14B109.5
C4—C3—H3119.1H14A—C14—H14B109.5
C5—C4—C3118.2 (6)Sn1—C14—H14C109.5
C5—C4—N1123.3 (5)H14A—C14—H14C109.5
C3—C4—N1118.5 (5)H14B—C14—H14C109.5
C4—C5—C6121.0 (6)Sn1—C15—H15A109.5
C4—C5—H5119.5Sn1—C15—H15B109.5
C6—C5—H5119.5H15A—C15—H15B109.5
C5—C6—C1120.4 (6)Sn1—C15—H15C109.5
C5—C6—H6119.8H15A—C15—H15C109.5
C1—C6—H6119.8H15B—C15—H15C109.5
N1—C7—C8121.9 (6)Sn1—C16—H16A109.5
N1—C7—H7119.1Sn1—C16—H16B109.5
C8—C7—H7119.1H16A—C16—H16B109.5
C13—C8—C9118.5 (6)Sn1—C16—H16C109.5
C13—C8—C7120.1 (5)H16A—C16—H16C109.5
C9—C8—C7121.4 (5)H16B—C16—H16C109.5

Experimental details

Crystal data
Chemical formulaC16H19NOSSn
Mr392.07
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.1385 (16), 6.4148 (12), 24.490 (2)
β (°) 96.254 (2)
V3)1739.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.797, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
8291, 3104, 2284
Rint0.051
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.165, 1.01
No. of reflections3104
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.96

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
Sn1—S12.425 (2)Sn1—C162.138 (7)
Sn1—C142.117 (7)N1—C71.277 (8)
Sn1—C152.137 (9)
S1—Sn1—C14105.6 (2)C14—Sn1—C16115.6 (3)
S1—Sn1—C15106.4 (3)C15—Sn1—C16113.1 (4)
S1—Sn1—C16105.0 (2)Sn1—S1—C199.1 (2)
C14—Sn1—C15110.3 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds