Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, [Cu(C7H4NO4)Cl(C10H9N3)], the Cu atom has a distorted square-pyramidal geometry defined by one bidentate di-2-pyridylamine ligand, one bidentate 4-nitro­benzoate anion, and a Cl atom in the apical position. The Cu atom deviates from the mean plane of the basal atoms towards the Cl atom by 0.3274 (1) Å. The crystal structure is stabilized by N—H...Cl hydrogen bonds and π–π stacking inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807033776/tk2180sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807033776/tk2180Isup2.hkl
Contains datablock I

CCDC reference: 657591

Key indicators

  • Single-crystal X-ray study
  • T = 123 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.026
  • wR factor = 0.078
  • Data-to-parameter ratio = 15.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT148_ALERT_3_B su on the a - Axis is Too Large (x 1000) . 10 Ang.
Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.633 0.740 Tmin(prime) and Tmax expected: 0.734 0.741 RR(prime) = 0.863 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.85 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - O1 .. 6.37 su PLAT734_ALERT_1_C Contact Calc 3.595(5), Rep 3.594(2) ...... 2.50 su-Ra CL1 -C3 1.555 1.455 PLAT734_ALERT_1_C Contact Calc 3.492(5), Rep 3.492(2) ...... 2.50 su-Ra O3 -O4 1.555 2.565 PLAT734_ALERT_1_C Contact Calc 3.492(5), Rep 3.492(2) ...... 2.50 su-Ra O4 -O3 1.555 2.565 PLAT734_ALERT_1_C Contact Calc 3.585(5), Rep 3.585(2) ...... 2.50 su-Ra N1 -C13 1.555 2.655 PLAT734_ALERT_1_C Contact Calc 3.595(5), Rep 3.594(2) ...... 2.50 su-Ra C3 -CL1 1.555 1.655 PLAT734_ALERT_1_C Contact Calc 3.585(5), Rep 3.585(2) ...... 2.50 su-Ra C13 -N1 1.555 2.655
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.32
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

As part of our studies of new therapeutic drugs, we have reported the structures of ternary Cu(II) complexes with the heterocyclic ligand 2,2'-bipyridylamine (bpa) and various carboxylate ligands, such as p-hydroxybenzenecarboxylate (p-HB) (Wang & Okabe, 2005), cyclobutane-1,1-dicarboxylate (Yodoshi, Mototsuji & Okabe, 2007), benzenecarboxylate (BA) (Okabe et al., 2007), and glycinate (Yodoshi, Odoko & Okabe, 2007). In this study, we describe the structure of the title Cu(II) complex, (I), containing bpa and 4-nitrobenzoate (p-NBA) and chloride anions.

The overall structure of (I) is similar to those of the ternary Cu(II) complexes with bpa and p-HB (Wang & Okabe, 2005) and BA (Okabe et al., 2007). The central Cu atom in (I) (Fig. 1) has a square pyramidal CuN2O2Cl geometry (Table 1), resulting from its coordination by two N atoms from the bpa molecule, two O atoms from the p-NBA anion and one Cl atom. The four basal atoms (N1, N2, O1 and O2) are neary coplanar and the Cu atom deviates from their least-squares plane towards the apical Cl atom by 0.3274 (1) Å. The O1—Cu1—O2 and N1—Cu1—N2 bite angles of 64.25 (7) and 94.71 (8) Å, respectively, are in the ranges normally observed for these complexes (Wang & Okabe, 2005; Okabe et al., 2007; Yodoshi, Mototsuji & Okabe, 2007; Yodoshi, Odoko & Okabe, 2007; Youngme et al., 2004). The Cu—Cl distance of 2.468 (3)Å is intermediate between the known values from 2.336 (2) to 2.733 (2) Å (Mao et al., 2004; Brophy et al., 1999). Such long Cu—Cl bonds are explained by the well known Jahn-Teller effect.

As shown in Fig. 2, the crystal structure is stabilized by N3—H9···Cl1i hydrogen bonds [i: 2 - x, -y, 1 - z] as well as by three kinds of π-π stacking interactions with the distances between the centroids of the aromatic rings being 3.531 (4) Å for Cg1(N1/C1—C5) and Cg3(N2/C6—C10) at (1 - x, -y, -z), 3.754 (4) Å for Cg2(N1/C5/N3/C6/N2/Cu1) and Cg2 at (1 - x, -y, -z), and 3.549 (4) Å for Cg4(C12—C17) and Cg2 at (-x, -y, -1 - z).

Related literature top

For related literature, see: Brophy et al. (1999); Mao et al. (2004); Okabe et al. (2007); Wang & Okabe (2005); Yodoshi, Mototsuji & Okabe (2007); Yodoshi, Odoko & Okabe (2007); Youngme et al. (2004).

Experimental top

2,2'-Bipyridylamine (5.0 mg, 0.03 mol) dissolved in 90% (v/v) methanol–water solution (2 ml) was mixed with p-nitrobenzoic acid (4.9 mg, 0.03 mol), dissolved in the same solution (2 ml) for 5 min at room temperature. This was followed by the addition of CuCl2.2H2O (5.0 mg, 0.03 mol) dissolved in H2O (1 ml) and reacted for 15 min at room temperature. After several days, green prismatic crystals of (I) appeared from the mother liquor.

Refinement top

All H atoms were placed in idealized positions and treated as riding, with C—H = 0.93 Å and N—H = 0.86, and with Uiso(H) = 1.2Ueq(C,N).

Structure description top

As part of our studies of new therapeutic drugs, we have reported the structures of ternary Cu(II) complexes with the heterocyclic ligand 2,2'-bipyridylamine (bpa) and various carboxylate ligands, such as p-hydroxybenzenecarboxylate (p-HB) (Wang & Okabe, 2005), cyclobutane-1,1-dicarboxylate (Yodoshi, Mototsuji & Okabe, 2007), benzenecarboxylate (BA) (Okabe et al., 2007), and glycinate (Yodoshi, Odoko & Okabe, 2007). In this study, we describe the structure of the title Cu(II) complex, (I), containing bpa and 4-nitrobenzoate (p-NBA) and chloride anions.

The overall structure of (I) is similar to those of the ternary Cu(II) complexes with bpa and p-HB (Wang & Okabe, 2005) and BA (Okabe et al., 2007). The central Cu atom in (I) (Fig. 1) has a square pyramidal CuN2O2Cl geometry (Table 1), resulting from its coordination by two N atoms from the bpa molecule, two O atoms from the p-NBA anion and one Cl atom. The four basal atoms (N1, N2, O1 and O2) are neary coplanar and the Cu atom deviates from their least-squares plane towards the apical Cl atom by 0.3274 (1) Å. The O1—Cu1—O2 and N1—Cu1—N2 bite angles of 64.25 (7) and 94.71 (8) Å, respectively, are in the ranges normally observed for these complexes (Wang & Okabe, 2005; Okabe et al., 2007; Yodoshi, Mototsuji & Okabe, 2007; Yodoshi, Odoko & Okabe, 2007; Youngme et al., 2004). The Cu—Cl distance of 2.468 (3)Å is intermediate between the known values from 2.336 (2) to 2.733 (2) Å (Mao et al., 2004; Brophy et al., 1999). Such long Cu—Cl bonds are explained by the well known Jahn-Teller effect.

As shown in Fig. 2, the crystal structure is stabilized by N3—H9···Cl1i hydrogen bonds [i: 2 - x, -y, 1 - z] as well as by three kinds of π-π stacking interactions with the distances between the centroids of the aromatic rings being 3.531 (4) Å for Cg1(N1/C1—C5) and Cg3(N2/C6—C10) at (1 - x, -y, -z), 3.754 (4) Å for Cg2(N1/C5/N3/C6/N2/Cu1) and Cg2 at (1 - x, -y, -z), and 3.549 (4) Å for Cg4(C12—C17) and Cg2 at (-x, -y, -1 - z).

For related literature, see: Brophy et al. (1999); Mao et al. (2004); Okabe et al. (2007); Wang & Okabe (2005); Yodoshi, Mototsuji & Okabe (2007); Yodoshi, Odoko & Okabe (2007); Youngme et al. (2004).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2005) and CRYSTALS (Betteridge et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atomic numbering-scheme and displacement ellipsoid drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of crystal packing of (I) showing the N—H···Cli hydrogen bonds as green dashed lines [i: 2 - x, -y, 1 - z]. The ππ stacking interactions are shown as purple dashed lines and occur between Cg1(N1/C1—C5) and Cg3*(N2/C6—C10) [*: 1 - x, -y, -z], Cg2(N1/C5/N3C6/N2/Cu1) and Cg2*, and Cg4(C12—C17) and Cg2** [**: -x, -y, -1 - z].
Chlorido(di-2-pyridylamine-κ2N,N')(4-nitrobenzoato-κ2O,O')copper(II) top
Crystal data top
[Cu(C7H4NO4)Cl(C10H9N3)]Z = 2
Mr = 436.31F(000) = 442
Triclinic, P1Dx = 1.732 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 8.87 (1) ÅCell parameters from 7938 reflections
b = 9.085 (8) Åθ = 3.0–27.5°
c = 11.23 (1) ŵ = 1.50 mm1
α = 102.67 (3)°T = 123 K
β = 105.34 (3)°Block, green
γ = 96.72 (4)°0.20 × 0.20 × 0.20 mm
V = 836.6 (14) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3552 reflections with F2 > 2σ(F2)
Detector resolution: 10.0 pixels mm-1Rint = 0.014
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.633, Tmax = 0.740k = 1111
8197 measured reflectionsl = 1413
3794 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.02P)2 + 1.3275P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max < 0.001
S = 1.22Δρmax = 0.47 e Å3
3794 reflectionsΔρmin = 0.37 e Å3
245 parameters
Crystal data top
[Cu(C7H4NO4)Cl(C10H9N3)]γ = 96.72 (4)°
Mr = 436.31V = 836.6 (14) Å3
Triclinic, P1Z = 2
a = 8.87 (1) ÅMo Kα radiation
b = 9.085 (8) ŵ = 1.50 mm1
c = 11.23 (1) ÅT = 123 K
α = 102.67 (3)°0.20 × 0.20 × 0.20 mm
β = 105.34 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3794 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3552 reflections with F2 > 2σ(F2)
Tmin = 0.633, Tmax = 0.740Rint = 0.014
8197 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026245 parameters
wR(F2) = 0.078H-atom parameters constrained
S = 1.22Δρmax = 0.47 e Å3
3794 reflectionsΔρmin = 0.37 e Å3
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.73294 (3)0.07819 (3)0.27481 (3)0.01278 (8)
Cl10.70600 (6)0.23331 (6)0.47546 (5)0.0173 (1)
O10.6611 (2)0.2345 (2)0.1668 (2)0.0175 (3)
O20.5053 (2)0.0288 (2)0.1663 (2)0.0178 (3)
O30.0260 (2)0.4624 (2)0.1488 (2)0.0236 (4)
O40.1654 (2)0.2565 (2)0.1366 (2)0.0259 (4)
N10.9631 (2)0.1289 (2)0.3077 (2)0.0131 (3)
N20.7358 (2)0.1247 (2)0.3095 (2)0.0139 (3)
N31.0167 (2)0.1001 (2)0.3660 (2)0.0145 (4)
N40.0381 (2)0.3401 (2)0.1195 (2)0.0173 (4)
C11.0206 (3)0.2650 (3)0.2896 (2)0.0161 (4)
C21.1788 (3)0.3166 (3)0.3095 (2)0.0190 (4)
C31.2867 (3)0.2236 (3)0.3494 (2)0.0177 (4)
C41.2313 (3)0.0849 (3)0.3668 (2)0.0159 (4)
C51.0671 (3)0.0395 (2)0.3462 (2)0.0129 (4)
C60.8680 (3)0.1814 (2)0.3489 (2)0.0134 (4)
C70.8602 (3)0.3277 (3)0.3738 (2)0.0165 (4)
C80.7149 (3)0.4120 (3)0.3600 (2)0.0186 (4)
C90.5780 (3)0.3515 (3)0.3211 (2)0.0198 (5)
C100.5934 (3)0.2102 (3)0.2967 (2)0.0177 (4)
C110.5245 (3)0.1524 (3)0.1326 (2)0.0140 (4)
C120.3807 (3)0.2005 (3)0.0586 (2)0.0131 (4)
C130.2366 (3)0.0967 (3)0.0131 (2)0.0144 (4)
C140.0990 (3)0.1430 (3)0.0461 (2)0.0148 (4)
C150.1099 (3)0.2917 (3)0.0591 (2)0.0142 (4)
C160.2522 (3)0.3956 (3)0.0182 (2)0.0162 (4)
C170.3891 (3)0.3480 (3)0.0422 (2)0.0157 (4)
H10.94870.32620.26240.019*
H21.21360.41090.29680.023*
H31.39510.25560.36400.021*
H41.30160.02140.39210.019*
H50.95270.36640.39930.020*
H60.70770.50820.37630.022*
H70.47830.40610.31200.024*
H80.50170.17080.26990.021*
H91.09320.14530.39470.017*
H100.23290.00280.02230.017*
H110.00160.07580.07630.018*
H120.25610.49370.03060.019*
H130.48650.41520.07160.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0089 (1)0.0130 (1)0.0164 (1)0.00345 (9)0.0011 (1)0.0062 (1)
Cl10.0161 (3)0.0200 (3)0.0166 (3)0.0094 (2)0.0029 (2)0.0057 (2)
O10.0115 (7)0.0191 (8)0.0210 (8)0.0032 (6)0.0013 (6)0.0079 (7)
O20.0121 (7)0.0184 (8)0.0230 (8)0.0045 (6)0.0006 (6)0.0101 (7)
O30.0251 (9)0.0277 (9)0.0240 (9)0.0142 (7)0.0067 (7)0.0149 (8)
O40.0121 (8)0.0298 (9)0.033 (1)0.0061 (7)0.0015 (7)0.0083 (8)
N10.0107 (8)0.0150 (9)0.0128 (8)0.0037 (7)0.0015 (7)0.0040 (7)
N20.0134 (9)0.0136 (8)0.0139 (9)0.0031 (7)0.0021 (7)0.0041 (7)
N30.0118 (8)0.0158 (9)0.0163 (9)0.0069 (7)0.0015 (7)0.0062 (7)
N40.0161 (9)0.023 (1)0.0137 (9)0.0096 (8)0.0030 (7)0.0046 (8)
C10.014 (1)0.017 (1)0.018 (1)0.0049 (8)0.0027 (8)0.0075 (9)
C20.017 (1)0.021 (1)0.021 (1)0.0023 (9)0.0048 (9)0.0101 (9)
C30.011 (1)0.026 (1)0.017 (1)0.0030 (9)0.0032 (8)0.0064 (9)
C40.012 (1)0.021 (1)0.015 (1)0.0071 (8)0.0021 (8)0.0046 (9)
C50.013 (1)0.016 (1)0.0095 (9)0.0046 (8)0.0019 (8)0.0024 (8)
C60.016 (1)0.013 (1)0.0103 (9)0.0042 (8)0.0030 (8)0.0025 (8)
C70.020 (1)0.015 (1)0.015 (1)0.0074 (8)0.0043 (9)0.0046 (8)
C80.026 (1)0.013 (1)0.016 (1)0.0039 (9)0.0053 (9)0.0041 (9)
C90.018 (1)0.018 (1)0.021 (1)0.0015 (9)0.0037 (9)0.0050 (9)
C100.015 (1)0.019 (1)0.019 (1)0.0034 (8)0.0034 (9)0.0057 (9)
C110.012 (1)0.016 (1)0.013 (1)0.0049 (8)0.0030 (8)0.0030 (8)
C120.011 (1)0.017 (1)0.0112 (9)0.0051 (8)0.0030 (8)0.0047 (8)
C130.015 (1)0.014 (1)0.015 (1)0.0039 (8)0.0038 (8)0.0055 (8)
C140.011 (1)0.018 (1)0.014 (1)0.0022 (8)0.0023 (8)0.0040 (8)
C150.012 (1)0.020 (1)0.012 (1)0.0083 (8)0.0033 (8)0.0056 (8)
C160.018 (1)0.016 (1)0.018 (1)0.0065 (8)0.0057 (9)0.0084 (9)
C170.013 (1)0.017 (1)0.017 (1)0.0022 (8)0.0034 (8)0.0055 (9)
Geometric parameters (Å, º) top
Cu1—Cl12.468 (3)C3—H30.9300
Cu1—O12.110 (2)C4—C51.408 (3)
Cu1—O22.002 (3)C4—H40.9300
Cu1—N11.955 (2)C6—C71.415 (3)
Cu1—N21.967 (2)C7—C81.372 (3)
O1—C111.260 (3)C7—H50.9300
O2—C111.269 (3)C8—C91.395 (4)
O3—N41.226 (3)C8—H60.9300
O4—N41.228 (3)C9—C101.370 (4)
N1—C11.359 (3)C9—H70.9300
N1—C51.347 (3)C10—H80.9300
N2—C61.342 (3)C11—C121.495 (3)
N2—C101.358 (3)C12—C131.395 (3)
N3—C51.379 (3)C12—C171.388 (3)
N3—C61.378 (3)C13—C141.386 (3)
N3—H90.8600C13—H100.9301
N4—C151.474 (3)C14—C151.385 (3)
C1—C21.368 (3)C14—H110.9299
C1—H10.9299C15—C161.385 (3)
C2—C31.400 (4)C16—C171.392 (3)
C2—H20.9300C16—H120.9299
C3—C41.372 (4)C17—H130.9300
Cu1···N33.213 (2)C5···H13.1569
Cu1···C12.838 (2)C5···H33.2461
Cu1···C52.942 (2)C5···H42.0415
Cu1···C62.947 (2)C5···H91.8960
Cu1···C102.853 (2)C5···H9ii3.5623
Cu1···C112.371 (2)C5···H11i2.8517
Cu1···C13i3.370 (2)C6···N3ii3.450 (3)
Cu1···H12.8330C6···N4i3.454 (3)
Cu1···H82.8508C6···C4ii3.489 (3)
Cu1···H9ii3.5040C6···C5ii3.250 (3)
Cu1···H10i3.3583C6···C82.405 (3)
Cl1···O13.385 (2)C6···C92.744 (3)
Cl1···O23.435 (2)C6···C102.317 (3)
Cl1···N13.412 (2)C6···C14i3.577 (4)
Cl1···N23.454 (2)C6···C15i3.254 (3)
Cl1···N3ii3.163 (2)C6···H52.0484
Cl1···C3iii3.594 (2)C6···H63.2513
Cl1···H2iv3.5169C6···H83.1516
Cl1···H3iii2.7616C6···H91.8947
Cl1···H4ii3.0162C6···H9ii3.5643
Cl1···H5ii2.9570C7···O3i3.328 (3)
Cl1···H6v2.8114C7···N1ii3.471 (3)
Cl1···H7vi3.4427C7···N4i3.597 (4)
Cl1···H9ii2.3252C7···C1ii3.539 (3)
O1···O22.188 (2)C7···C4ii3.586 (3)
O1···N13.102 (2)C7···C5ii3.476 (3)
O1···C13.073 (3)C7···C92.387 (3)
O1···C8v3.360 (3)C7···C102.721 (3)
O1···C122.411 (2)C7···H1xii3.3823
O1···C13i3.592 (3)C7···H62.0098
O1···C172.876 (3)C7···H73.2304
O1···H12.4514C7···H92.4167
O1···H6v2.8321C8···O1xii3.360 (3)
O1···H10i3.0638C8···C2ii3.458 (3)
O1···H12vii3.2862C8···C3ii3.341 (3)
O1···H132.5930C8···C102.378 (4)
O2···N22.936 (3)C8···H1xii3.5177
O2···C3iii3.526 (3)C8···H3ii3.5456
O2···C102.942 (3)C8···H52.0094
O2···C11i3.325 (3)C8···H72.0336
O2···C122.375 (3)C8···H83.2136
O2···C12i3.358 (3)C8···H13xii3.2572
O2···C132.768 (3)C9···C3ii3.452 (3)
O2···C13i3.555 (3)C9···C17xii3.532 (3)
O2···H3iii3.1214C9···H2xiii3.5802
O2···H4iii3.4882C9···H3ii3.3874
O2···H82.3613C9···H53.2319
O2···H102.4701C9···H62.0311
O2···H10i3.5278C9···H81.9878
O3···O3viii3.155 (3)C9···H13xii2.9652
O3···O42.169 (3)C10···C4ii3.547 (3)
O3···O4viii3.492 (2)C10···H4ii3.3617
O3···N4viii3.017 (3)C10···H63.2220
O3···C1vii3.221 (3)C10···H72.0100
O3···C2vii3.171 (3)C11···O2i3.325 (3)
O3···C7i3.328 (3)C11···C11i3.486 (3)
O3···C143.539 (3)C11···C132.482 (3)
O3···C152.314 (3)C11···C172.505 (3)
O3···C15viii3.165 (3)C11···H3iii3.1151
O3···C162.726 (3)C11···H6v3.5229
O3···C16viii3.277 (3)C11···H102.6259
O3···H1vii2.6489C11···H10i3.3375
O3···H2vii2.5847C11···H132.6580
O3···H5i3.0205C12···O2i3.358 (3)
O3···H9i3.3943C12···C3iii3.547 (4)
O3···H122.4516C12···C142.402 (3)
O3···H12viii3.2237C12···C152.733 (3)
O4···O3viii3.492 (2)C12···C162.410 (3)
O4···N3i3.320 (3)C12···H3iii3.3206
O4···C4i3.450 (3)C12···H102.0291
O4···C5i3.519 (3)C12···H113.2474
O4···C142.712 (3)C12···H123.2553
O4···C152.321 (3)C12···H132.0196
O4···C163.555 (3)C13···Cu1i3.370 (2)
O4···C16viii3.532 (3)C13···O1i3.592 (3)
O4···H4i3.2153C13···O2i3.555 (3)
O4···H7ix3.5488C13···N1i3.585 (2)
O4···H8ix2.8854C13···C3iii3.588 (3)
O4···H9i3.1116C13···C152.381 (3)
O4···H10ix2.9493C13···C162.806 (3)
O4···H112.4230C13···C172.421 (3)
O4···H12viii2.9466C13···H112.0259
N1···N22.885 (3)C13···H11ix2.8158
N1···N32.377 (3)C13···H133.2570
N1···C22.401 (3)C14···N1i3.268 (3)
N1···C32.780 (3)C14···N3i3.385 (3)
N1···C42.400 (3)C14···C5i3.260 (3)
N1···C63.016 (3)C14···C6i3.577 (4)
N1···C7ii3.471 (3)C14···C14ix3.461 (4)
N1···C13i3.585 (2)C14···C162.438 (3)
N1···C14i3.268 (3)C14···C172.791 (3)
N1···H11.9771C14···H102.0211
N1···H23.2347C14···H10ix3.1686
N1···H43.2326C14···H11ix2.8401
N1···H5ii3.3535C14···H123.2734
N1···H93.1038C15···O3viii3.165 (3)
N1···H9ii3.4809C15···N2i3.568 (3)
N1···H10i3.5119C15···N3i3.322 (3)
N1···H11i2.9588C15···C6i3.254 (3)
N2···N32.372 (3)C15···C172.376 (3)
N2···C4ii3.502 (3)C15···H9i3.5874
N2···C53.015 (3)C15···H103.2263
N2···C72.404 (3)C15···H112.0252
N2···C82.786 (3)C15···H122.0295
N2···C92.401 (3)C15···H133.2209
N2···C15i3.568 (3)C16···O3viii3.277 (3)
N2···H4ii3.3917C16···O4viii3.532 (3)
N2···H53.2359C16···N4viii3.571 (3)
N2···H73.2328C16···H113.2709
N2···H81.9776C16···H132.0231
N2···H93.0993C16···H13vii2.9901
N2···H9ii3.4982C17···C9v3.532 (3)
N3···Cl1ii3.163 (2)C17···H2iii3.5736
N3···O4i3.320 (3)C17···H7v3.1858
N3···N3ii3.263 (3)C17···H103.2582
N3···N4i3.191 (3)C17···H122.0356
N3···C42.384 (3)C17···H12vii3.3505
N3···C5ii3.448 (3)C17···H13vii2.9793
N3···C6ii3.450 (3)H1···O3vii2.6489
N3···C72.383 (3)H1···C7v3.3823
N3···C103.596 (3)H1···C8v3.5177
N3···C14i3.385 (3)H2···Cl1iv3.5169
N3···C15i3.322 (3)H2···O3vii2.5847
N3···H42.5498H2···N4vii3.5583
N3···H52.5496H2···C9x3.5802
N3···H9ii3.5220H2···C17xi3.5736
N3···H11i3.2717H3···Cl1xi2.7616
N4···O3viii3.017 (3)H3···O2xi3.1214
N4···N3i3.191 (3)H3···C8ii3.5456
N4···N4viii3.356 (3)H3···C9ii3.3874
N4···C6i3.454 (3)H3···C11xi3.1151
N4···C7i3.597 (4)H3···C12xi3.3206
N4···C142.448 (3)H4···Cl1ii3.0162
N4···C162.464 (3)H4···O2xi3.4882
N4···C16viii3.571 (3)H4···O4i3.2153
N4···H2vii3.5583H4···N2ii3.3917
N4···H5i3.4709H4···C10ii3.3617
N4···H9i3.0861H5···Cl1ii2.9570
N4···H112.5975H5···O3i3.0205
N4···H122.6282H5···N1ii3.3535
N4···H12viii3.1857H5···N4i3.4709
C1···O3vii3.221 (3)H5···C1xii3.4865
C1···C32.375 (3)H5···C1ii3.3473
C1···C42.720 (3)H6···Cl1xii2.8114
C1···C52.323 (3)H6···O1xii2.8321
C1···C7ii3.539 (3)H6···C2ii3.3923
C1···H22.0107H6···C3ii3.5455
C1···H33.2191H6···C11xii3.5229
C1···H5v3.4865H7···Cl1vi3.4427
C1···H5ii3.3473H7···O4ix3.5488
C1···H11i3.4228H7···C2xiii3.4306
C2···O3vii3.171 (3)H7···C17xii3.1858
C2···C42.393 (4)H8···O4ix2.8854
C2···C52.752 (3)H9···Cu1ii3.5040
C2···C8ii3.458 (3)H9···Cl1ii2.3252
C2···H11.9855H9···O3i3.3943
C2···H32.0341H9···O4i3.1116
C2···H43.2373H9···N1ii3.4809
C2···H6ii3.3923H9···N2ii3.4982
C2···H7x3.4306H9···N3ii3.5220
C3···Cl1xi3.594 (2)H9···N4i3.0861
C3···O2xi3.526 (3)H9···C5ii3.5623
C3···C52.401 (3)H9···C6ii3.5643
C3···C8ii3.341 (3)H9···C15i3.5874
C3···C9ii3.452 (3)H10···Cu1i3.3583
C3···C12xi3.547 (4)H10···O1i3.0638
C3···C13xi3.588 (3)H10···O2i3.5278
C3···H13.2117H10···O4ix2.9493
C3···H22.0398H10···N1i3.5119
C3···H42.0081H10···C11i3.3375
C3···H6ii3.5455H10···C14ix3.1686
C4···O4i3.450 (3)H11···N1i2.9588
C4···N2ii3.502 (3)H11···N3i3.2717
C4···C6ii3.489 (3)H11···C1i3.4228
C4···C7ii3.586 (3)H11···C4i3.2677
C4···C10ii3.547 (3)H11···C5i2.8517
C4···H23.2371H11···C13ix2.8158
C4···H32.0085H11···C14ix2.8401
C4···H92.4215H12···O1vii3.2862
C4···H11i3.2677H12···O3viii3.2237
C5···O4i3.519 (3)H12···O4viii2.9466
C5···N3ii3.448 (3)H12···N4viii3.1857
C5···C62.525 (3)H13···C8v3.2572
C5···C6ii3.250 (3)H13···C9v2.9652
C5···C7ii3.476 (3)H13···C16vii2.9901
C5···C14i3.260 (3)H13···C17vii2.9793
Cl1—Cu1—O195.05 (5)C5—C4—H4120.2593
Cl1—Cu1—O299.92 (5)H4—C4—C3120.2604
Cl1—Cu1—N1100.33 (5)C7—C6—N2121.4 (2)
Cl1—Cu1—N2101.67 (6)C7—C6—N3117.2 (2)
O1—Cu1—O264.25 (7)C8—C7—C6119.3 (2)
O1—Cu1—N199.41 (8)C8—C7—H5120.3604
O1—Cu1—N2155.79 (6)H5—C7—C6120.3492
O2—Cu1—N1154.99 (8)C9—C8—C7119.2 (2)
O2—Cu1—N295.41 (7)C9—C8—H6120.4173
N1—Cu1—N294.71 (8)H6—C8—C7120.4118
C11—O1—Cu185.5 (1)C10—C9—C8118.7 (2)
C11—O2—Cu190.1 (1)C10—C9—H7120.6607
C1—N1—Cu1116.7 (2)H7—C9—C8120.6708
C1—N1—C5118.3 (2)H8—C10—N2118.3692
C5—N1—Cu1125.0 (2)H8—C10—C9118.3655
C6—N2—Cu1124.8 (2)C12—C11—O1121.8 (2)
C6—N2—C10118.2 (2)C12—C11—O2118.3 (2)
C10—N2—Cu1117.0 (2)C13—C12—C11118.4 (2)
C5—N3—C6132.6 (2)C13—C12—C17120.9 (2)
C5—N3—H9113.6855C17—C12—C11120.6 (2)
C6—N3—H9113.6935C14—C13—C12119.5 (2)
C15—N4—O3117.7 (2)C14—C13—H10120.2585
C15—N4—O4118.1 (2)H10—C13—C12120.2528
C2—C1—N1123.4 (2)C15—C14—C13118.5 (2)
C2—C1—H1118.2880C15—C14—H11120.7658
H1—C1—N1118.2784H11—C14—C13120.7685
C3—C2—C1118.2 (2)C16—C15—N4119.0 (2)
C3—C2—H2120.8938C16—C15—C14123.2 (2)
H2—C2—C1120.8914C17—C16—C15117.6 (2)
C4—C3—C2119.4 (2)C17—C16—H12121.1990
C4—C3—H3120.2966H12—C16—C15121.1987
H3—C3—C2120.2991H13—C17—C12119.8929
C5—C4—C3119.5 (2)H13—C17—C16119.8888
Cl1—Cu1—O1—C1195.2 (1)N1—C1—C2—C30.6 (4)
Cl1—Cu1—O2—C1187.5 (1)C1—C2—C3—C40.2 (3)
Cl1—Cu1—N1—C179.9 (2)C2—C3—C4—C51.0 (3)
Cl1—Cu1—N2—C698.4 (2)C3—C4—C5—N11.0 (3)
Cu1—O1—C11—O25.5 (2)C3—C4—C5—N3179.4 (2)
Cu1—O2—C11—O15.8 (2)N2—C6—C7—C81.4 (3)
Cu1—N1—C1—C2179.6 (2)C6—C7—C8—C90.3 (3)
Cu1—N1—C5—N30.0 (2)C7—C8—C9—C100.7 (4)
Cu1—N1—C5—C4179.6 (2)C8—C9—C10—N20.7 (4)
Cu1—N2—C6—N31.5 (3)O1—C11—C12—C13173.5 (2)
Cu1—N2—C10—C9178.1 (2)C11—C12—C13—C14174.4 (2)
C6—N3—C5—N13.5 (4)C11—C12—C17—C16175.0 (2)
C6—N3—C5—C4176.2 (2)C12—C13—C14—C150.6 (4)
C5—N3—C6—N22.7 (4)C13—C14—C15—N4178.6 (2)
O3—N4—C15—C14169.1 (2)N4—C15—C16—C17178.0 (2)
O4—N4—C15—C1411.4 (3)C15—C16—C17—C120.6 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+1; (iii) x1, y, z; (iv) x+2, y+1, z+1; (v) x, y+1, z; (vi) x+1, y, z+1; (vii) x+1, y+1, z; (viii) x, y+1, z; (ix) x, y, z; (x) x+1, y+1, z; (xi) x+1, y, z; (xii) x, y1, z; (xiii) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H9···Cl1ii0.862.333.163 (2)165
Symmetry code: (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C7H4NO4)Cl(C10H9N3)]
Mr436.31
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)8.87 (1), 9.085 (8), 11.23 (1)
α, β, γ (°)102.67 (3), 105.34 (3), 96.72 (4)
V3)836.6 (14)
Z2
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.633, 0.740
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
8197, 3794, 3552
Rint0.014
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.078, 1.22
No. of reflections3794
No. of parameters245
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.37

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2005) and CRYSTALS (Betteridge et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), CrystalStructure.

Selected bond lengths (Å) top
Cu1—Cl12.468 (3)Cu1—N11.955 (2)
Cu1—O12.110 (2)Cu1—N21.967 (2)
Cu1—O22.002 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H9···Cl1i0.862.333.163 (2)165
Symmetry code: (i) x+2, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds