Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the trinuclear title compound, [Cu3Cl4(C17H38N3O2)2]·2H2O or [Cu(AcC11tacn)Cl·H2O]2·CuCl2 [tacn is 1,4,7-triaza­cyclo­nonone], two Cu atoms are coordinated by a bifunctionalized 1-acetato-4-undecyl-1,4,7-triaza­cyclo­nonone (AcC11tacn) macrocycle and are five-coordinate, while the third Cu atom, located on a centre of inversion, bridges these two units between two keto O atoms, with two Cl atoms completing a four-coordinate square-planar geometry. The long C11 tails on the macrocycle create well ordered multilayer packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807034538/tk2179sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807034538/tk2179Isup2.hkl
Contains datablock I

CCDC reference: 657615

Key indicators

  • Single-crystal X-ray study
  • T = 123 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.084
  • wR factor = 0.142
  • Data-to-parameter ratio = 20.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT731_ALERT_1_B Bond Calc 0.90(9), Rep 0.90(2) ...... 4.50 su-Ra O3 -H31 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.90(9), Rep 0.90(2) ...... 4.50 su-Ra O3 -H31 1.555 1.555
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.80 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.50 Ratio PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8 PLAT731_ALERT_1_C Bond Calc 0.90(8), Rep 0.90(2) ...... 4.00 su-Ra O3 -H32 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.89(5), Rep 0.89(2) ...... 2.50 su-Ra N3 -H3 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.89(5), Rep 0.89(2) ...... 2.50 su-Ra N3 -H3 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 2.37(10), Rep 2.37(3) ...... 3.33 su-Ra H31 -CL1 1.555 1.555 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 H2 O
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of N1 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of N2 = ... R PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.17 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu2 (2) 1.97 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

The title complex, (I), crystallizes in the monoclinic space group (P21/c), with the asymmetric unit comprising one half of the molecule [Cu(AcC11tacn)Cl.H2O]2.CuCl2, Fig. 1; the Cu2 atom is located on a crystallographic inversion centre. The three N atoms from the macrocycle coordinate facially to Cu1, which is also bound to a terminal Cl with the fifth coordination site completed by the O atom derived from the N-acetyl group. Two of these units are further connected via the keto-O atoms to a four coordinate copper dichloride entity. The Cu1—Cl1 bond distance (2.2645 (14) Å) is slightly longer than the Cu2—Cl2 distance of 2.2512 (14) Å, but this may also reflect the interaction of Cl1 with the water molecule via a O3—H31···Cl1 (2.37 (3) Å) hydrogen bond. The Cu—N distances are inequivalent with the C11 substituted N atom having the longest bond (Cu1—N2 2.289 (4) Å) whilst the secondary amine has the shortest (Cu1—N3 1.985 (4) Å).

The cell contents, when viewed along the b axis, Fig. 2, show the straight chain C11 units form interdigitated layers which separate the hydrophilic {Cu(Actacn)Cl}.CuCl2 moieties, the latter associated via intermolecular N3—H3···Cl2i hydrogen bonds (Table 1).

Related literature top

There are several reports of carboxylate functionalized 1,4,7-triazacyclononane (tacn) (Mondal et al., 2003; Neves et al., 1988; Graham et al., 1997; Studer et al., 1989; Schulz et al., 1996). In contrast, the arrangement of long hydrophobic carbon tails has been underrepresented (Fallis et al., 1998; Battle & Martin, 2006). The title complex combines both groups and results in a trinuclear copper complex. For synthesis, see: Zhang et al. (1995).

Experimental top

The title complex was synthesized using a modification of the published procedure (Zhang et al., 1995). 1-Acetato-4-undecyl-1,4,7-triazacyclononane trihydrochloride (0.1 g, 0.22 mmol) was dissolved in MeOH (5 ml) and mixed with 1 equivalent of CuCl2.6H2O (0.038 g, 0.22 mmol) dissolved in MeOH (1 ml). Addition of 1.1 equivalent NaOAc (0.0076 g, 0.2 4 mmol) dissolved in MeOH resulted in a dark-green solution. Slow evaporation of the solution resulted in the deposition of blue-green crystals suitable for X-ray diffraction analysis. The solid was collected by filtration and air-dried (0.04 g, 18%). IR (KBr): 3199, 2920, 1578 (νC—O), 1491, 1466, 1445, 1403, 1313 (νC—O) cm-1. UV/vis (MeCN): λmax(ε) 265 (934), 461 (114) nm (L.mol-1.cm).

Refinement top

The amine-H3 atom and the water-H31 and H32 atoms and were located and refined with the latter having O—H distances restrained to approximately 0.90 Å. Otherwise, all H atoms were included in the riding model approximation with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2Ueq(C). The maximum and minimum electron density peaks were located 1.23 and 1.81 Å from the H3A and H6A atoms, respectively.

Structure description top

The title complex, (I), crystallizes in the monoclinic space group (P21/c), with the asymmetric unit comprising one half of the molecule [Cu(AcC11tacn)Cl.H2O]2.CuCl2, Fig. 1; the Cu2 atom is located on a crystallographic inversion centre. The three N atoms from the macrocycle coordinate facially to Cu1, which is also bound to a terminal Cl with the fifth coordination site completed by the O atom derived from the N-acetyl group. Two of these units are further connected via the keto-O atoms to a four coordinate copper dichloride entity. The Cu1—Cl1 bond distance (2.2645 (14) Å) is slightly longer than the Cu2—Cl2 distance of 2.2512 (14) Å, but this may also reflect the interaction of Cl1 with the water molecule via a O3—H31···Cl1 (2.37 (3) Å) hydrogen bond. The Cu—N distances are inequivalent with the C11 substituted N atom having the longest bond (Cu1—N2 2.289 (4) Å) whilst the secondary amine has the shortest (Cu1—N3 1.985 (4) Å).

The cell contents, when viewed along the b axis, Fig. 2, show the straight chain C11 units form interdigitated layers which separate the hydrophilic {Cu(Actacn)Cl}.CuCl2 moieties, the latter associated via intermolecular N3—H3···Cl2i hydrogen bonds (Table 1).

There are several reports of carboxylate functionalized 1,4,7-triazacyclononane (tacn) (Mondal et al., 2003; Neves et al., 1988; Graham et al., 1997; Studer et al., 1989; Schulz et al., 1996). In contrast, the arrangement of long hydrophobic carbon tails has been underrepresented (Fallis et al., 1998; Battle & Martin, 2006). The title complex combines both groups and results in a trinuclear copper complex. For synthesis, see: Zhang et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I) showing atomic labelling and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Cell contents as viewed down the b axis. H atoms have been omitted for clarity.
Tetrachlorido-1κCl,2κ2Cl,3κCl- bis[µ-4-undecyl-1,4,7-triazacyclonon-1-yl)acetato]-1κ4N,N',N'',O:2κO'; 2κO':3κ4N,N',N'',O-tricopper(II) dihydrate top
Crystal data top
[Cu3Cl4(C17H38N3O2)2]·2H2OF(000) = 1106
Mr = 1049.50Dx = 1.422 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25491 reflections
a = 22.1182 (11) Åθ = 2.8–27.5°
b = 7.8330 (4) ŵ = 1.56 mm1
c = 14.6177 (7) ÅT = 123 K
β = 104.570 (2)°Plate, blue-green
V = 2451.1 (2) Å30.20 × 0.10 × 0.05 mm
Z = 2
Data collection top
Bruker X8 APEX CCD
diffractometer
5625 independent reflections
Radiation source: fine-focus sealed tube4994 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
φ scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2828
Tmin = 0.746, Tmax = 0.926k = 1010
25491 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.32 w = 1/[σ2(Fo2) + 12.2399P]
where P = (Fo2 + 2Fc2)/3
5625 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.62 e Å3
3 restraintsΔρmin = 1.02 e Å3
Crystal data top
[Cu3Cl4(C17H38N3O2)2]·2H2OV = 2451.1 (2) Å3
Mr = 1049.50Z = 2
Monoclinic, P21/cMo Kα radiation
a = 22.1182 (11) ŵ = 1.56 mm1
b = 7.8330 (4) ÅT = 123 K
c = 14.6177 (7) Å0.20 × 0.10 × 0.05 mm
β = 104.570 (2)°
Data collection top
Bruker X8 APEX CCD
diffractometer
5625 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4994 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.926Rint = 0.071
25491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0843 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.32 w = 1/[σ2(Fo2) + 12.2399P]
where P = (Fo2 + 2Fc2)/3
5625 reflectionsΔρmax = 0.62 e Å3
271 parametersΔρmin = 1.02 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.61289 (3)0.74292 (8)0.20823 (4)0.01211 (15)
Cu20.50000.50000.00000.0165 (2)
Cl10.61753 (6)1.00100 (16)0.13697 (9)0.0193 (3)
Cl20.41046 (7)0.64527 (17)0.05565 (10)0.0252 (3)
O10.56465 (17)0.6326 (5)0.1290 (2)0.0154 (8)
O20.49883 (18)0.4205 (5)0.1271 (3)0.0189 (8)
O30.7218 (3)1.1587 (10)0.0423 (4)0.0563 (16)
N10.5975 (2)0.5189 (5)0.2818 (3)0.0145 (9)
N20.7136 (2)0.6474 (6)0.1574 (3)0.0147 (9)
N30.6437 (2)0.8278 (6)0.3163 (3)0.0167 (9)
C10.6565 (2)0.4132 (6)0.2570 (4)0.0150 (10)
H1A0.67880.42680.30730.018*
H1B0.64510.29130.25490.018*
C20.6998 (3)0.4626 (6)0.1629 (4)0.0176 (11)
H2A0.68040.43070.11130.021*
H2B0.73940.39820.15370.021*
C30.7453 (3)0.7104 (7)0.2280 (4)0.0191 (11)
H3A0.74630.61890.27440.023*
H3B0.78890.74160.19640.023*
C40.7115 (3)0.8647 (7)0.2790 (4)0.0212 (12)
H4A0.71690.96270.23490.025*
H4B0.72980.89610.33190.025*
C50.6297 (3)0.7046 (7)0.3966 (4)0.0182 (11)
H5A0.66850.64440.40000.022*
H5B0.61370.76680.45680.022*
C60.5813 (3)0.5755 (7)0.3828 (3)0.0166 (11)
H6A0.53920.62820.39920.020*
H6B0.58070.47590.42470.020*
C70.5455 (2)0.4318 (7)0.2560 (4)0.0167 (11)
H7A0.55410.30770.25050.020*
H7B0.50680.44940.30660.020*
C80.5361 (2)0.4972 (7)0.1645 (4)0.0164 (11)
C90.7438 (2)0.7052 (7)0.0614 (4)0.0195 (12)
H9A0.71540.67920.02050.023*
H9B0.74810.83090.06280.023*
C100.8079 (3)0.6299 (8)0.0148 (4)0.0269 (14)
H10A0.80350.50730.00140.032*
H10B0.83540.63970.05850.032*
C110.8375 (2)0.7237 (8)0.0771 (4)0.0214 (12)
H11A0.84430.84420.06180.026*
H11B0.80750.72300.11720.026*
C120.8988 (3)0.6509 (8)0.1337 (4)0.0258 (13)
H12A0.93110.67060.09870.031*
H12B0.89420.52600.13980.031*
C130.9208 (3)0.7283 (8)0.2317 (4)0.0274 (14)
H13A0.92580.85290.22510.033*
H13B0.88790.71070.26580.033*
C140.9817 (3)0.6562 (8)0.2914 (4)0.0265 (13)
H14A1.01550.68140.26000.032*
H14B0.97790.53060.29470.032*
C150.9999 (3)0.7275 (9)0.3913 (4)0.0276 (14)
H15A1.00330.85320.38770.033*
H15B0.96610.70180.42250.033*
C161.0606 (3)0.6581 (9)0.4518 (4)0.0278 (14)
H16A1.09460.68510.42110.033*
H16B1.05750.53230.45490.033*
C171.0781 (3)0.7283 (8)0.5517 (4)0.0289 (14)
H17A1.04420.70100.58250.035*
H17B1.08100.85420.54860.035*
C181.1396 (3)0.6591 (9)0.6132 (4)0.0301 (15)
H18A1.13690.53330.61720.036*
H18B1.17380.68660.58310.036*
C191.1551 (3)0.7339 (11)0.7131 (5)0.0417 (18)
H19A1.19470.68610.74990.063*
H19B1.12170.70510.74360.063*
H19C1.15880.85820.70960.063*
H30.622 (3)0.919 (6)0.343 (5)0.05 (2)*
H310.695 (5)1.105 (16)0.006 (6)0.16 (6)*
H320.714 (8)1.266 (8)0.059 (11)0.22 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0141 (3)0.0100 (3)0.0124 (3)0.0002 (2)0.0038 (2)0.0010 (2)
Cu20.0238 (5)0.0127 (4)0.0126 (4)0.0055 (4)0.0041 (4)0.0013 (3)
Cl10.0247 (7)0.0129 (6)0.0199 (6)0.0012 (5)0.0051 (5)0.0045 (5)
Cl20.0362 (8)0.0131 (6)0.0223 (7)0.0035 (6)0.0000 (6)0.0011 (5)
O10.021 (2)0.0137 (18)0.0123 (18)0.0014 (15)0.0064 (15)0.0017 (14)
O20.021 (2)0.023 (2)0.0146 (19)0.0062 (16)0.0069 (16)0.0001 (15)
O30.051 (4)0.075 (5)0.042 (3)0.008 (3)0.008 (3)0.007 (3)
N10.016 (2)0.012 (2)0.014 (2)0.0021 (17)0.0015 (17)0.0001 (17)
N20.013 (2)0.017 (2)0.015 (2)0.0003 (17)0.0032 (17)0.0002 (18)
N30.020 (2)0.017 (2)0.013 (2)0.0017 (19)0.0038 (18)0.0005 (18)
C10.021 (3)0.006 (2)0.017 (3)0.001 (2)0.003 (2)0.0011 (19)
C20.020 (3)0.011 (2)0.020 (3)0.005 (2)0.003 (2)0.005 (2)
C30.017 (3)0.022 (3)0.021 (3)0.001 (2)0.009 (2)0.001 (2)
C40.021 (3)0.018 (3)0.027 (3)0.005 (2)0.010 (2)0.001 (2)
C50.027 (3)0.014 (3)0.016 (3)0.001 (2)0.010 (2)0.001 (2)
C60.023 (3)0.016 (3)0.009 (2)0.002 (2)0.000 (2)0.001 (2)
C70.018 (3)0.015 (3)0.019 (3)0.002 (2)0.007 (2)0.008 (2)
C80.018 (3)0.018 (3)0.014 (3)0.001 (2)0.005 (2)0.001 (2)
C90.015 (3)0.025 (3)0.016 (3)0.000 (2)0.000 (2)0.001 (2)
C100.021 (3)0.034 (3)0.023 (3)0.007 (3)0.001 (2)0.008 (3)
C110.018 (3)0.028 (3)0.017 (3)0.000 (2)0.001 (2)0.002 (2)
C120.019 (3)0.030 (3)0.026 (3)0.000 (3)0.001 (2)0.002 (3)
C130.022 (3)0.034 (3)0.022 (3)0.004 (3)0.002 (2)0.006 (3)
C140.021 (3)0.030 (3)0.025 (3)0.002 (3)0.001 (2)0.004 (3)
C150.018 (3)0.035 (4)0.026 (3)0.002 (3)0.001 (2)0.001 (3)
C160.019 (3)0.035 (4)0.026 (3)0.001 (3)0.000 (2)0.002 (3)
C170.025 (3)0.034 (4)0.024 (3)0.005 (3)0.000 (2)0.009 (3)
C180.021 (3)0.034 (4)0.030 (3)0.001 (3)0.002 (3)0.007 (3)
C190.026 (3)0.063 (5)0.032 (4)0.004 (4)0.000 (3)0.002 (4)
Geometric parameters (Å, º) top
Cu1—O11.962 (4)C7—C81.495 (7)
Cu1—N31.986 (5)C7—H7A0.9900
Cu1—N12.041 (4)C7—H7B0.9900
Cu1—Cl12.2645 (14)C9—C101.529 (7)
Cu1—N22.289 (4)C9—H9A0.9900
Cu2—O21.954 (4)C9—H9B0.9900
Cu2—O2i1.954 (4)C10—C111.526 (7)
Cu2—Cl22.2512 (14)C10—H10A0.9900
Cu2—Cl2i2.2512 (15)C10—H10B0.9900
O1—C81.276 (6)C11—C121.512 (7)
O2—C81.251 (6)C11—H11A0.9900
O3—H310.90 (2)C11—H11B0.9900
O3—H320.90 (2)C12—C131.519 (8)
N1—C71.466 (7)C12—H12A0.9900
N1—C61.496 (6)C12—H12B0.9900
N1—C11.510 (6)C13—C141.518 (8)
N2—C91.466 (6)C13—H13A0.9900
N2—C31.470 (7)C13—H13B0.9900
N2—C21.477 (6)C14—C151.520 (8)
N3—C41.490 (7)C14—H14A0.9900
N3—C51.491 (7)C14—H14B0.9900
N3—H30.89 (2)C15—C161.511 (8)
C1—C21.516 (7)C15—H15A0.9900
C1—H1A0.9900C15—H15B0.9900
C1—H1B0.9900C16—C171.516 (8)
C2—H2A0.9900C16—H16A0.9900
C2—H2B0.9900C16—H16B0.9900
C3—C41.515 (8)C17—C181.529 (8)
C3—H3A0.9900C17—H17A0.9900
C3—H3B0.9900C17—H17B0.9900
C4—H4A0.9900C18—C191.529 (9)
C4—H4B0.9900C18—H18A0.9900
C5—C61.523 (7)C18—H18B0.9900
C5—H5A0.9900C19—H19A0.9800
C5—H5B0.9900C19—H19B0.9800
C6—H6A0.9900C19—H19C0.9800
C6—H6B0.9900
O1—Cu1—N3164.51 (17)N1—C7—H7A109.3
O1—Cu1—N183.65 (16)C8—C7—H7A109.3
N3—Cu1—N185.07 (18)N1—C7—H7B109.3
O1—Cu1—Cl195.16 (11)C8—C7—H7B109.3
N3—Cu1—Cl194.70 (14)H7A—C7—H7B108.0
N1—Cu1—Cl1172.72 (13)O2—C8—O1122.3 (5)
O1—Cu1—N2107.10 (15)O2—C8—C7118.8 (5)
N3—Cu1—N282.35 (17)O1—C8—C7118.9 (5)
N1—Cu1—N284.80 (16)N2—C9—C10117.1 (5)
Cl1—Cu1—N2102.39 (12)N2—C9—H9A108.0
O2—Cu2—O2i180C10—C9—H9A108.0
O2—Cu2—Cl291.00 (12)N2—C9—H9B108.0
O2i—Cu2—Cl289.00 (12)C10—C9—H9B108.0
O2—Cu2—Cl2i89.00 (12)H9A—C9—H9B107.3
O2i—Cu2—Cl2i91.00 (12)C11—C10—C9110.5 (5)
Cl2—Cu2—Cl2i180C11—C10—H10A109.5
C8—O1—Cu1114.3 (3)C9—C10—H10A109.5
C8—O2—Cu2114.2 (3)C11—C10—H10B109.5
H31—O3—H32120 (10)C9—C10—H10B109.5
C7—N1—C6112.5 (4)H10A—C10—H10B108.1
C7—N1—C1111.7 (4)C12—C11—C10115.3 (5)
C6—N1—C1112.2 (4)C12—C11—H11A108.5
C7—N1—Cu1107.6 (3)C10—C11—H11A108.5
C6—N1—Cu1103.4 (3)C12—C11—H11B108.5
C1—N1—Cu1109.0 (3)C10—C11—H11B108.5
C9—N2—C3112.7 (4)H11A—C11—H11B107.5
C9—N2—C2113.1 (4)C11—C12—C13113.4 (5)
C3—N2—C2114.7 (4)C11—C12—H12A108.9
C9—N2—Cu1112.4 (3)C13—C12—H12A108.9
C3—N2—Cu1105.0 (3)C11—C12—H12B108.9
C2—N2—Cu197.6 (3)C13—C12—H12B108.9
C4—N3—C5113.8 (4)H12A—C12—H12B107.7
C4—N3—Cu1106.8 (3)C14—C13—C12114.9 (5)
C5—N3—Cu1111.4 (3)C14—C13—H13A108.5
C4—N3—H3113 (5)C12—C13—H13A108.5
C5—N3—H3101 (5)C14—C13—H13B108.5
Cu1—N3—H3111 (5)C12—C13—H13B108.5
N1—C1—C2112.9 (4)H13A—C13—H13B107.5
N1—C1—H1A109.0C13—C14—C15113.4 (5)
C2—C1—H1A109.0C13—C14—H14A108.9
N1—C1—H1B109.0C15—C14—H14A108.9
C2—C1—H1B109.0C13—C14—H14B108.9
H1A—C1—H1B107.8C15—C14—H14B108.9
N2—C2—C1112.0 (4)H14A—C14—H14B107.7
N2—C2—H2A109.2C16—C15—C14114.3 (5)
C1—C2—H2A109.2C16—C15—H15A108.7
N2—C2—H2B109.2C14—C15—H15A108.7
C1—C2—H2B109.2C16—C15—H15B108.7
H2A—C2—H2B107.9C14—C15—H15B108.7
N2—C3—C4110.5 (4)H15A—C15—H15B107.6
N2—C3—H3A109.6C15—C16—C17114.0 (5)
C4—C3—H3A109.6C15—C16—H16A108.8
N2—C3—H3B109.6C17—C16—H16A108.8
C4—C3—H3B109.6C15—C16—H16B108.8
H3A—C3—H3B108.1C17—C16—H16B108.8
N3—C4—C3110.6 (4)H16A—C16—H16B107.6
N3—C4—H4A109.5C16—C17—C18114.2 (6)
C3—C4—H4A109.5C16—C17—H17A108.7
N3—C4—H4B109.5C18—C17—H17A108.7
C3—C4—H4B109.5C16—C17—H17B108.7
H4A—C4—H4B108.1C18—C17—H17B108.7
N3—C5—C6109.8 (4)H17A—C17—H17B107.6
N3—C5—H5A109.7C19—C18—C17112.2 (6)
C6—C5—H5A109.7C19—C18—H18A109.2
N3—C5—H5B109.7C17—C18—H18A109.2
C6—C5—H5B109.7C19—C18—H18B109.2
H5A—C5—H5B108.2C17—C18—H18B109.2
N1—C6—C5109.0 (4)H18A—C18—H18B107.9
N1—C6—H6A109.9C18—C19—H19A109.5
C5—C6—H6A109.9C18—C19—H19B109.5
N1—C6—H6B109.9H19A—C19—H19B109.5
C5—C6—H6B109.9C18—C19—H19C109.5
H6A—C6—H6B108.3H19A—C19—H19C109.5
N1—C7—C8111.4 (4)H19B—C19—H19C109.5
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···Cl10.90 (2)2.37 (3)3.267 (7)172 (12)
N3—H3···Cl2ii0.89 (2)2.31 (3)3.161 (5)160 (7)
Symmetry code: (ii) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu3Cl4(C17H38N3O2)2]·2H2O
Mr1049.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)22.1182 (11), 7.8330 (4), 14.6177 (7)
β (°) 104.570 (2)
V3)2451.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerBruker X8 APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.746, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
25491, 5625, 4994
Rint0.071
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.142, 1.32
No. of reflections5625
No. of parameters271
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + 12.2399P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.62, 1.02

Computer programs: APEX2 (Bruker, 2005), APEX2, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···Cl10.90 (2)2.37 (3)3.267 (7)172 (12)
N3—H3···Cl2i0.89 (2)2.31 (3)3.161 (5)160 (7)
Symmetry code: (i) x+1, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds