Download citation
Download citation
link to html
The title compound, C10H14N4O3S, is the first example of the fused tricyclic octahydro-1-thia-2,3a,8a-triazacyclopenta[a]indene ring system. The S-containing heterocycle adopts a typical envelope conformation, fused at the 2,3-positions to a 2,3a,4,5,6,7-hexa­hydro­indazol-3-one unit.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806024238/tk2049sup1.cif
Contains datablocks global, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806024238/tk2049IIIsup2.hkl
Contains datablock III

CCDC reference: 618332

Key indicators

  • Single-crystal X-ray study
  • T = 123 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.039
  • wR factor = 0.091
  • Data-to-parameter ratio = 17.5

checkCIF/PLATON results

No syntax errors found




Alert level B PLAT432_ALERT_2_B Short Inter X...Y Contact O2 .. C2 .. 2.80 Ang.
Alert level C PLAT432_ALERT_2_C Short Inter X...Y Contact O2 .. C3 .. 2.99 Ang.
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

3-Dimethylamino-1,1-dioxo-4,5,6,7-tetrahydro-1H-λ6-thia-2,3a,8a-triaza- cyclopenta[a]inden-8-one, a derivative of a new ring system top
Crystal data top
C10H14N4O3SF(000) = 568
Mr = 270.31Dx = 1.513 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17785 reflections
a = 8.6327 (1) Åθ = 3.4–28.3°
b = 16.3610 (3) ŵ = 0.28 mm1
c = 8.4883 (1) ÅT = 123 K
β = 98.117 (1)°Needle, colourless
V = 1186.87 (3) Å30.20 × 0.08 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2182 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Horizonally mounted graphite crystal monochromatorθmax = 28.3°, θmin = 3.4°
Detector resolution: 9 pixels mm-1h = 1111
CCD rotation images, thick slices scansk = 2121
17785 measured reflectionsl = 1111
2893 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.299P]
where P = (Fo2 + 2Fc2)/3
2893 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.45 e Å3
Special details top

Experimental. 13C NMR (CDCl3): δC 18.4, 22.1, 22.6, 23.9, 36.8, 38.7, 99.15, 143.2, 149.9, 153.9.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

8.4858 (0.0011) x + 2.6970 (0.0099) y - 0.4967 (0.0049) z = 6.8687 (0.0012)

* -0.0142 (0.0008) O1 * -0.0043 (0.0012) C1 * 0.0130 (0.0009) N1 * 0.0066 (0.0009) N2 * -0.0398 (0.0010) C3 * 0.0387 (0.0010) C8

Rms deviation of fitted atoms = 0.0242

5.3641 (0.0049) x + 11.6926 (0.0077) y + 1.9543 (0.0087) z = 4.7949 (0.0032)

Angle to previous plane (with approximate e.s.d.) = 41.01 (0.06)

* -0.0225 (0.0008) N1 * 0.0124 (0.0005) N2 * -0.0144 (0.0005) N3 * 0.0245 (0.0009) C2 - 0.1736 (0.0019) S1

Rms deviation of fitted atoms = 0.0192

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.83437 (17)0.06328 (10)0.09115 (19)0.0153 (3)
C20.67236 (17)0.11563 (9)0.07123 (18)0.0138 (3)
C30.79928 (17)0.01240 (10)0.16063 (18)0.0137 (3)
C40.77699 (19)0.00735 (10)0.33784 (18)0.0177 (4)
H4A0.87070.01690.37440.021*
H4B0.68560.02750.37580.021*
C50.7503 (2)0.09447 (11)0.4045 (2)0.0217 (4)
H5A0.64460.11320.38860.026*
H5B0.75520.09380.52030.026*
C60.8720 (2)0.15420 (11)0.3236 (2)0.0231 (4)
H6A0.97780.13500.33820.028*
H6B0.85550.20850.37490.028*
C70.8626 (2)0.16250 (10)0.1454 (2)0.0199 (4)
H7A0.77610.20000.12950.024*
H7B0.96140.18610.09070.024*
C80.83523 (17)0.08061 (10)0.07496 (19)0.0145 (3)
C90.77149 (19)0.18449 (10)0.2940 (2)0.0197 (4)
H9A0.79150.24330.28290.030*
H9B0.73880.17120.40640.030*
H9C0.86720.15430.25470.030*
C100.50598 (19)0.21218 (11)0.2225 (2)0.0219 (4)
H10A0.41870.18160.18880.033*
H10B0.48020.22710.33500.033*
H10C0.52460.26190.15820.033*
N10.78998 (14)0.05540 (8)0.05781 (15)0.0135 (3)
N20.80867 (14)0.02337 (8)0.10042 (15)0.0146 (3)
N30.59802 (15)0.12574 (8)0.05243 (16)0.0167 (3)
N40.64691 (15)0.16139 (8)0.20104 (16)0.0163 (3)
O10.85385 (13)0.10650 (7)0.20908 (14)0.0217 (3)
O20.54893 (13)0.00195 (7)0.20916 (13)0.0205 (3)
O30.72307 (14)0.10377 (7)0.33182 (13)0.0221 (3)
S10.65777 (4)0.06161 (2)0.19063 (5)0.01463 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0122 (8)0.0155 (8)0.0185 (8)0.0014 (6)0.0033 (6)0.0014 (7)
C20.0154 (8)0.0115 (8)0.0143 (8)0.0026 (6)0.0014 (6)0.0028 (6)
C30.0127 (8)0.0139 (8)0.0153 (8)0.0021 (6)0.0043 (6)0.0024 (6)
C40.0215 (9)0.0184 (9)0.0139 (8)0.0003 (7)0.0048 (6)0.0002 (7)
C50.0280 (10)0.0223 (9)0.0150 (9)0.0027 (7)0.0041 (7)0.0041 (7)
C60.0285 (10)0.0174 (9)0.0247 (10)0.0012 (7)0.0080 (7)0.0063 (7)
C70.0233 (9)0.0140 (9)0.0227 (9)0.0023 (7)0.0039 (7)0.0002 (7)
C80.0125 (8)0.0148 (8)0.0164 (8)0.0001 (6)0.0032 (6)0.0000 (7)
C90.0247 (9)0.0158 (9)0.0197 (9)0.0001 (7)0.0074 (7)0.0045 (7)
C100.0217 (9)0.0189 (9)0.0249 (10)0.0051 (7)0.0025 (7)0.0060 (7)
N10.0166 (7)0.0148 (7)0.0093 (6)0.0010 (5)0.0024 (5)0.0024 (5)
N20.0166 (7)0.0178 (7)0.0098 (7)0.0010 (5)0.0028 (5)0.0027 (6)
N30.0207 (7)0.0144 (7)0.0153 (7)0.0030 (5)0.0036 (5)0.0007 (6)
N40.0177 (7)0.0144 (7)0.0170 (7)0.0011 (5)0.0036 (5)0.0032 (6)
O10.0249 (7)0.0222 (7)0.0188 (6)0.0060 (5)0.0057 (5)0.0086 (5)
O20.0190 (6)0.0201 (6)0.0238 (7)0.0018 (5)0.0083 (5)0.0007 (5)
O30.0288 (7)0.0240 (7)0.0134 (6)0.0015 (5)0.0025 (5)0.0049 (5)
S10.0173 (2)0.0151 (2)0.0120 (2)0.00018 (15)0.00427 (14)0.00137 (16)
Geometric parameters (Å, º) top
N1—N21.4295 (17)C5—H5B0.9900
N2—S11.7194 (13)C6—C71.533 (2)
N3—S11.6038 (14)C6—H6A0.9900
C1—O11.2177 (18)C6—H6B0.9900
C1—N21.439 (2)C7—C81.499 (2)
C1—C81.439 (2)C7—H7A0.9900
C2—N11.4079 (19)C7—H7B0.9900
C2—N31.316 (2)C9—N41.470 (2)
C2—N41.325 (2)C9—H9A0.9800
C3—N11.421 (2)C9—H9B0.9800
C3—C81.344 (2)C9—H9C0.9800
C3—C41.492 (2)C10—N41.463 (2)
C4—C51.539 (2)C10—H10A0.9800
C4—H4A0.9900C10—H10B0.9800
C4—H4B0.9900C10—H10C0.9800
C5—C61.525 (2)O2—S11.4250 (11)
C5—H5A0.9900O3—S11.4279 (12)
S1—N3—C2111.01 (11)C7—C6—H6B109.3
N1—N2—S1107.03 (9)H6A—C6—H6B107.9
N1—N2—C1107.92 (12)C8—C7—C6110.34 (14)
N1—C2—N3116.80 (14)C8—C7—H7A109.6
N1—C3—C8110.16 (14)C6—C7—H7A109.6
N2—S1—N395.62 (6)C8—C7—H7B109.6
N2—N1—C2108.48 (12)C6—C7—H7B109.6
N2—N1—C3106.40 (12)H7A—C7—H7B108.1
O1—C1—N2122.12 (14)C3—C8—C7124.31 (14)
O1—C1—C8132.20 (15)C1—C8—C7126.11 (14)
N2—C1—C8105.65 (13)N4—C9—H9A109.5
C1—C8—C3109.49 (14)N4—C9—H9B109.5
N3—C2—N4123.38 (14)H9A—C9—H9B109.5
N4—C2—N1119.73 (13)N4—C9—H9C109.5
C8—C3—C4125.35 (14)H9A—C9—H9C109.5
N1—C3—C4124.46 (14)H9B—C9—H9C109.5
C3—C4—C5108.10 (14)N4—C10—H10A109.5
C3—C4—H4A110.1N4—C10—H10B109.5
C5—C4—H4A110.1H10A—C10—H10B109.5
C3—C4—H4B110.1N4—C10—H10C109.5
C5—C4—H4B110.1H10A—C10—H10C109.5
H4A—C4—H4B108.4H10B—C10—H10C109.5
C6—C5—C4111.73 (13)C2—N1—C3126.83 (12)
C6—C5—H5A109.3C1—N2—S1121.02 (10)
C4—C5—H5A109.3C2—N4—C10117.51 (13)
C6—C5—H5B109.3C2—N4—C9122.94 (13)
C4—C5—H5B109.3C10—N4—C9116.45 (13)
H5A—C5—H5B107.9O2—S1—O3116.63 (7)
C5—C6—C7111.81 (14)O2—S1—N3114.15 (7)
C5—C6—H6A109.3O3—S1—N3110.24 (7)
C7—C6—H6A109.3O2—S1—N2109.66 (7)
C5—C6—H6B109.3O3—S1—N2108.38 (7)
C8—C3—C4—C517.6 (2)C2—N1—N2—C1141.13 (12)
N1—C3—C4—C5164.36 (14)C3—N1—N2—C11.92 (14)
C3—C4—C5—C648.36 (18)C2—N1—N2—S19.42 (13)
C4—C5—C6—C762.95 (18)C3—N1—N2—S1129.80 (10)
C5—C6—C7—C840.73 (19)O1—C1—N2—N1179.85 (13)
N1—C3—C8—C16.52 (17)C8—C1—N2—N11.78 (15)
C4—C3—C8—C1175.24 (14)O1—C1—N2—S156.23 (18)
N1—C3—C8—C7176.64 (14)C8—C1—N2—S1125.39 (12)
C4—C3—C8—C71.6 (2)N4—C2—N3—S1179.05 (12)
O1—C1—C8—C3176.76 (16)N1—C2—N3—S12.45 (17)
N2—C1—C8—C35.10 (16)N3—C2—N4—C1014.6 (2)
O1—C1—C8—C70.0 (3)N1—C2—N4—C10168.94 (13)
N2—C1—C8—C7178.13 (14)N3—C2—N4—C9144.82 (16)
C6—C7—C8—C39.8 (2)N1—C2—N4—C931.7 (2)
C6—C7—C8—C1173.86 (14)C2—N3—S1—O2107.28 (12)
N3—C2—N1—C3123.49 (16)C2—N3—S1—O3119.18 (12)
N4—C2—N1—C359.8 (2)C2—N3—S1—N27.21 (12)
N3—C2—N1—N24.98 (18)N1—N2—S1—O2108.38 (10)
N4—C2—N1—N2171.74 (13)C1—N2—S1—O215.65 (13)
C8—C3—N1—C2134.54 (15)N1—N2—S1—O3123.28 (10)
C4—C3—N1—C247.2 (2)C1—N2—S1—O3112.68 (12)
C8—C3—N1—N25.25 (16)N1—N2—S1—N39.76 (10)
C4—C3—N1—N2176.49 (13)C1—N2—S1—N3133.80 (12)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds