Download citation
Download citation
link to html
The title 4,4'-disubstituted diphen­yl-1,3-triazines, C14H15N3, (I), C12H9ClFN3, (II), and C13H12FN3, (III), each contain a triazene group (-N=N-NH-) having an extended conformation. The dihedral angles between the two benzene rings in (I), (II) and (III) are 4.3, 3.4 and 6.5°, respectively. The mol­ecules are almost entirely planar, with maximum deviations from the mean planes of 0.1087 (2), -0.1072 (7) and 0.1401 (3) Å, respectively. In each compound, the molecules are linked by N-H...N hydrogen bonds to form chains and pack similarly in the crystal structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105004373/ta1464sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105004373/ta1464Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105004373/ta1464IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105004373/ta1464IIIsup4.hkl
Contains datablock III

CCDC references: 273051; 273052; 273053

Comment top

Triazene compounds containing a diazoamine group have important industrial and medical applications. The substituted triazenes (RNN—NH–) find wide-ranging applications as initiators of radical polymerization (Rapta et al., 1996), as efficient chelating agents (Leman et al., 1992; Cotton et al., 1992) and as antitumor drugs (Wilman, 1988). These compounds, characterized by having a diazoamine group, commonly adopt the trans configuration in the ground state. They are also known to undergo reversible changes in double-bond configuration as a result of photoinduced and thermally induced transcistrans isomerization (Baro et al., 1983; Le Fevre & Liddicoet, 1951; Barra & Chen, 2000). Photochromic materials of this type are of interest for potential applications, among others, in molecular electronic devices (Martin et al., 1995). The results of the present X-ray analysis are in agreement with those of the structure analyses of similar substituted triazenes (Anulewicz, 1997; Zhang et al., 1999; Hörner et al., 2004, 2002). In this paper, we report the structures of the three title 4,4'-disubstituted diphenyl-1,3-triazines.

Compounds (I), (II) and (III) differ only in the substituents at atoms C4 and C10; the substituents are methyl groups in (I), Cl and F atoms in (II), and a methyl group and an F atom in (III). The angles between the phenyl rings are 4.28 (1)° for (I), 3.42 (4)° for (II) and 6.53 (2)° for (III). These angles are in close agreement with the value observed in another open-ring intermediate for the synthesis of triazane [6.2 (2)°; Zhang et al., 1999].

The molecular structures of (I), (II) and (III) are shown in Fig.1, and the geometric parameters are compared in Table 1. For (I), within the limits of accuracy, the bond lengths and angles of the two methylphenyl rings are in agreement with one another. The N3N2 bond is longer than the value expected for a double bond, the N2—N1 bond is shorter than expected for a single bond, and the C1—N1 and C7—N3 bonds are both short for single Car—N bonds. These values (Table 1) are in good agreement with those found in related compounds (Anulewicz, 1997; Walton et al., 1991; Zhang et al., 1999). The dihedral angle between the two phenyl rings and the C1—N1—N2—N3 and N1—N2—N3—C7 torsion angles are 177.21 (15) and 177.97 (14)°, respectively, showing the near coplanarity of the whole molecule. The crystal structure of (I) has been reported by Kondrashev (1964). The b axis of the monoclinic cell lies along the axis of the needles. The development of the four planes hkl (k = 0–3) and of the planes hk0 was obtained with a Weissenberg goniometer, and from these the space group P21/n was established. From the rotation X-ray photograph and the development of h0l, taken with NaCl as standard, the following lattice parameters were determined: a = 17.83 (2) Å, b = 4.83 (1) Å, c = 14.40 (2) Å and β = 88.40 (10)°]. The molecular structures of (II) and (III) are similar to that of (I), with small differences for some bond lengths due to the F and Cl atoms attached to the phenyl rings (Figs. 1b and 1c). The N3N2 bond lengths [1.2777 (17) Å in (I) and 1.280 (3) Å in (III)] are somewhat shorter than the value of 1.317 (8) Å in (II).

Molecules of (I), (II) and (III) pack similarly in the unit cell, as shown in Fig. 2, and all have intermolecular N—H···N hydrogen bonds (Table 2). These hydrogen bonds are somewhat longer than the analogous interaction in the spiral of the β modification of 1-phenyl-3-(4-bromophenyl)triazine, (IV) (3.206 Å; Omel'chenko & Kondrashev, 1973). This difference is due to the different packing characters, where in the case of the flat parallel molecules the smallest N—H···N distance should be 3.60 Å. The shortening is achieved as a result of strong bending of the molecules ?of (IV), which form dimers in which the molecules are bent towards one another?, and of the deviation of the N atoms from the plane of the molecule to the same side (same as what?); this configuration? provides additional evidence for the existence of strong interaction between the molecules in the dimer (Omel'chenko & Kondrashev, 1973).

Experimental top

The title compounds (I) (m.p. 388–389 K), (II) (m.p. 402–403 K) and (III) (m.p. 385–386 K) were prepared as described by Hörner et al. (2004), using 4-methylaniline, 4-fluoroaniline and 4-chloroaniline as starting materials. The products were recrystallized from tetrahydrofuran (THF), and well shaped crystals were obtained by slow evaporation of an n-hexane/THF (1:1, v/v) solution.

Refinement top

For (I), H atoms of methyl groups were refined using a riding model, with fixed C—H distances of 0.96 Å [Uiso(H) = 1.5Ueq(Cmethyl)]. All other H atoms were refined freely [C—H = 0.922 (17)–1.001 (19) Å and Uiso(H) = 0.063 (6)–0.096 (7) Å2]. For (II), all H atoms were refined using a riding model, with fixed C—H distances of 0.93 Å [Uiso(H) = 1.2Ueq(C,N)]. For (III), the H atoms of the methyl group and those attached to atoms C3 and N were refined with fixed displacement parameters [Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(C,N)] using a riding model [CH(methyl) = 0.96 Å and C3—H3 = 0.93 = Å]. All other H atoms were refined freely [C—H = 0.88 (3)–0.97 (3) Å and Uiso(H) = 0.063 (9)–0.116 (14) Å].

Computing details top

For all compounds, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP-3 (Farrugia, 1997)and PLUTON (Spek, 1997) for (I); ORTEP-3 (Farrugia, 1997) and PLUTON (Spek, 1997) for (II), (III). For all compounds, software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawings of the title compounds, showing the atomic numbering schemes and 50% probability displacement ellipsoids for (a) (I), (b) (II) and (c) (III).
[Figure 2] Fig. 2. A perspective view of the packing in (I). The relationship between the molecules in (II) and (III) is similar. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) 3/2 − x, y − 1/2, 3/2 − z.]
(I) 1,3-Bis(4-methylphenyl)triazene top
Crystal data top
C14H15N3F(000) = 480
Mr = 225.29Dx = 1.209 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10083 reflections
a = 14.4024 (19) Åθ = 1.8–28.6°
b = 4.8171 (4) ŵ = 0.07 mm1
c = 17.840 (2) ÅT = 296 K
β = 91.510 (11)°Plate, light brown
V = 1237.3 (3) Å30.44 × 0.29 × 0.09 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
2184 independent reflections
Radiation source: fine-focus sealed tube1091 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.000
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1717
Tmin = 0.976, Tmax = 0.994k = 05
2184 measured reflectionsl = 021
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0204P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.003
2184 reflectionsΔρmax = 0.10 e Å3
194 parametersΔρmin = 0.10 e Å3
5 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (11)
Crystal data top
C14H15N3V = 1237.3 (3) Å3
Mr = 225.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.4024 (19) ŵ = 0.07 mm1
b = 4.8171 (4) ÅT = 296 K
c = 17.840 (2) Å0.44 × 0.29 × 0.09 mm
β = 91.510 (11)°
Data collection top
Stoe IPDS-II
diffractometer
2184 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1091 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.994Rint = 0.000
2184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0335 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.10 e Å3
2184 reflectionsΔρmin = 0.10 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.76182 (10)0.3666 (4)0.65211 (9)0.0583 (4)
N20.82941 (9)0.5493 (3)0.64085 (8)0.0545 (4)
N30.84986 (9)0.6884 (3)0.69997 (8)0.0569 (4)
C10.72730 (11)0.2041 (4)0.59313 (9)0.0513 (5)
C20.65634 (13)0.0215 (4)0.60676 (12)0.0611 (5)
C30.61809 (14)0.1348 (4)0.54998 (12)0.0656 (5)
C40.64924 (12)0.1197 (4)0.47783 (10)0.0572 (5)
C50.72186 (14)0.0581 (4)0.46526 (12)0.0657 (6)
C60.76146 (14)0.2196 (4)0.52108 (11)0.0646 (6)
C70.92459 (11)0.8788 (4)0.68937 (10)0.0506 (4)
C80.95837 (13)1.0089 (4)0.75245 (11)0.0611 (5)
C91.03130 (14)1.1946 (4)0.74933 (12)0.0681 (6)
C101.07154 (12)1.2559 (4)0.68237 (12)0.0618 (5)
C111.03599 (14)1.1294 (5)0.61887 (12)0.0712 (6)
C120.96349 (14)0.9412 (5)0.62148 (11)0.0662 (6)
H10.7405 (12)0.344 (4)0.7039 (10)0.093 (7)*
H20.6377 (11)0.010 (4)0.6584 (10)0.076 (6)*
H30.5638 (13)0.254 (4)0.5607 (10)0.085 (6)*
H50.7451 (11)0.077 (4)0.4152 (9)0.074 (6)*
H60.8120 (11)0.332 (4)0.5125 (9)0.063 (6)*
H80.9318 (11)0.960 (4)0.7985 (9)0.068 (5)*
H91.0555 (12)1.277 (4)0.7973 (10)0.080 (6)*
H111.0625 (12)1.177 (4)0.5692 (11)0.096 (7)*
H120.9390 (12)0.855 (4)0.5744 (10)0.080 (6)*
C131.15161 (13)1.4597 (4)0.67949 (13)0.0881 (7)
H13A1.17621.46070.63000.132*
H13B1.19941.40510.71500.132*
H13C1.12991.64220.69170.132*
C140.60445 (13)0.2891 (4)0.41577 (11)0.0798 (6)
H14A0.60900.48270.42800.120*
H14B0.63560.25450.36980.120*
H14C0.54020.23790.40990.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0574 (9)0.0602 (11)0.0574 (10)0.0041 (8)0.0030 (8)0.0020 (8)
N20.0508 (8)0.0490 (10)0.0636 (10)0.0003 (8)0.0022 (7)0.0018 (8)
N30.0565 (9)0.0585 (10)0.0555 (9)0.0020 (8)0.0005 (7)0.0014 (8)
C10.0515 (10)0.0472 (12)0.0549 (11)0.0066 (9)0.0035 (8)0.0002 (8)
C20.0609 (12)0.0590 (14)0.0637 (13)0.0021 (11)0.0082 (11)0.0035 (11)
C30.0587 (12)0.0600 (14)0.0782 (14)0.0044 (11)0.0029 (12)0.0018 (12)
C40.0567 (11)0.0496 (12)0.0648 (12)0.0048 (10)0.0049 (9)0.0013 (10)
C50.0764 (14)0.0651 (14)0.0558 (12)0.0051 (12)0.0022 (11)0.0042 (12)
C60.0650 (13)0.0641 (14)0.0649 (13)0.0141 (11)0.0053 (11)0.0011 (11)
C70.0505 (10)0.0485 (11)0.0525 (10)0.0044 (9)0.0004 (9)0.0002 (10)
C80.0666 (12)0.0604 (14)0.0564 (12)0.0073 (11)0.0056 (11)0.0019 (11)
C90.0741 (13)0.0622 (14)0.0678 (14)0.0081 (11)0.0001 (12)0.0066 (12)
C100.0554 (11)0.0486 (12)0.0816 (14)0.0010 (9)0.0039 (11)0.0032 (11)
C110.0688 (13)0.0782 (16)0.0671 (14)0.0073 (12)0.0125 (12)0.0075 (13)
C120.0682 (13)0.0733 (15)0.0573 (13)0.0032 (12)0.0035 (11)0.0037 (12)
C130.0737 (13)0.0693 (16)0.1221 (19)0.0126 (12)0.0156 (13)0.0049 (14)
C140.0775 (14)0.0719 (15)0.0890 (14)0.0012 (11)0.0147 (11)0.0121 (12)
Geometric parameters (Å, º) top
N1—N21.332 (2)C7—C121.381 (2)
N1—C11.393 (2)C8—C91.382 (3)
N1—H10.987 (19)C8—H80.946 (17)
N2—N31.2777 (17)C9—C101.373 (3)
N3—C71.430 (2)C9—H90.999 (17)
C1—C21.375 (2)C10—C111.373 (3)
C1—C61.390 (2)C10—C131.516 (2)
C2—C31.366 (3)C11—C121.385 (3)
C2—H20.968 (17)C11—H111.001 (19)
C3—C41.376 (3)C12—H120.994 (17)
C3—H30.993 (19)C13—H13A0.9600
C4—C51.375 (3)C13—H13B0.9600
C4—C141.507 (2)C13—H13C0.9600
C5—C61.376 (3)C14—H14A0.9600
C5—H50.966 (16)C14—H14B0.9600
C6—H60.922 (17)C14—H14C0.9600
C7—C81.366 (2)
N2—N1—C1120.35 (17)C7—C8—H8117.2 (10)
N2—N1—H1117.5 (11)C9—C8—H8121.5 (10)
C1—N1—H1122.1 (11)C10—C9—C8120.8 (2)
N3—N2—N1112.07 (15)C10—C9—H9120.9 (11)
N2—N3—C7112.65 (14)C8—C9—H9118.2 (11)
C2—C1—C6118.73 (19)C11—C10—C9117.73 (19)
C2—C1—N1118.56 (17)C11—C10—C13121.8 (2)
C6—C1—N1122.71 (18)C9—C10—C13120.49 (19)
C3—C2—C1120.6 (2)C10—C11—C12121.9 (2)
C3—C2—H2123.9 (11)C10—C11—H11119.1 (11)
C1—C2—H2115.6 (10)C12—C11—H11119.1 (11)
C2—C3—C4122.0 (2)C7—C12—C11119.7 (2)
C2—C3—H3118.7 (11)C7—C12—H12120.5 (11)
C4—C3—H3119.2 (11)C11—C12—H12119.8 (10)
C5—C4—C3116.98 (19)C10—C13—H13A109.5
C5—C4—C14122.02 (18)C10—C13—H13B109.5
C3—C4—C14121.00 (18)H13A—C13—H13B109.5
C4—C5—C6122.5 (2)C10—C13—H13C109.5
C4—C5—H5119.5 (10)H13A—C13—H13C109.5
C6—C5—H5118.0 (10)H13B—C13—H13C109.5
C5—C6—C1119.3 (2)C4—C14—H14A109.5
C5—C6—H6121.6 (11)C4—C14—H14B109.5
C1—C6—H6119.0 (11)H14A—C14—H14B109.5
C8—C7—C12118.61 (19)C4—C14—H14C109.5
C8—C7—N3115.97 (17)H14A—C14—H14C109.5
C12—C7—N3125.41 (18)H14B—C14—H14C109.5
C7—C8—C9121.2 (2)
C1—N1—N2—N3177.21 (15)N1—C1—C6—C5178.09 (17)
N1—N2—N3—C7177.97 (14)N2—N3—C7—C8171.83 (16)
N2—N1—C1—C2178.84 (16)N2—N3—C7—C128.8 (2)
N2—N1—C1—C61.0 (3)C12—C7—C8—C91.4 (3)
C6—C1—C2—C32.2 (3)N3—C7—C8—C9179.17 (17)
N1—C1—C2—C3177.64 (18)C7—C8—C9—C100.6 (3)
C1—C2—C3—C40.9 (3)C8—C9—C10—C110.9 (3)
C2—C3—C4—C50.8 (3)C8—C9—C10—C13179.93 (18)
C2—C3—C4—C14178.52 (18)C9—C10—C11—C121.4 (3)
C3—C4—C5—C61.3 (3)C13—C10—C11—C12179.4 (2)
C14—C4—C5—C6178.0 (2)C8—C7—C12—C110.9 (3)
C4—C5—C6—C10.0 (3)N3—C7—C12—C11179.82 (18)
C2—C1—C6—C51.7 (3)C10—C11—C12—C70.6 (3)
(II) 1-(4-chlorophenyl)-3-(4-fluorophenyl)triazene top
Crystal data top
C12H9ClFN3F(000) = 512
Mr = 249.67Dx = 1.353 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4244 reflections
a = 14.500 (3) Åθ = 1.8–24.4°
b = 4.7385 (5) ŵ = 0.30 mm1
c = 17.848 (3) ÅT = 296 K
β = 92.298 (16)°Plate, brown
V = 1225.3 (4) Å30.50 × 0.29 × 0.06 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
2157 independent reflections
Radiation source: fine-focus sealed tube978 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.078
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: integration
(X-RED32; Stoe&Cie, 2002)
h = 1717
Tmin = 0.886, Tmax = 0.981k = 55
8654 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.253H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1152P)2]
where P = (Fo2 + 2Fc2)/3
2157 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.44 e Å3
Crystal data top
C12H9ClFN3V = 1225.3 (4) Å3
Mr = 249.67Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.500 (3) ŵ = 0.30 mm1
b = 4.7385 (5) ÅT = 296 K
c = 17.848 (3) Å0.50 × 0.29 × 0.06 mm
β = 92.298 (16)°
Data collection top
Stoe IPDS-II
diffractometer
2157 independent reflections
Absorption correction: integration
(X-RED32; Stoe&Cie, 2002)
978 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.981Rint = 0.078
8654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0871 restraint
wR(F2) = 0.253H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
2157 reflectionsΔρmin = 0.44 e Å3
154 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.59926 (18)0.3008 (6)0.40352 (15)0.1056 (11)
F11.1636 (3)1.4616 (11)0.6800 (3)0.1030 (18)
N10.7594 (4)0.3764 (14)0.6514 (3)0.0663 (17)
N20.8269 (4)0.5565 (12)0.6397 (4)0.0584 (16)
N30.8480 (4)0.7023 (13)0.7008 (3)0.0586 (15)
C10.7251 (5)0.2108 (14)0.5920 (4)0.0515 (17)
C20.6540 (5)0.0309 (16)0.6034 (4)0.066 (2)
C30.6152 (5)0.1239 (17)0.5473 (4)0.067 (2)
C40.6490 (5)0.1087 (15)0.4770 (4)0.0573 (18)
C50.7222 (5)0.0627 (16)0.4628 (4)0.066 (2)
C60.7609 (5)0.2270 (15)0.5195 (4)0.066 (2)
C70.9237 (4)0.8901 (14)0.6902 (4)0.0484 (16)
C80.9579 (5)1.0271 (16)0.7524 (4)0.063 (2)
C91.0311 (5)1.2078 (16)0.7500 (4)0.065 (2)
C101.0765 (5)1.2662 (14)0.6839 (4)0.0568 (18)
C111.0376 (6)1.1284 (17)0.6210 (4)0.071 (2)
C120.9648 (5)0.9467 (16)0.6230 (4)0.062 (2)
H10.73690.36150.69510.080*
H20.63160.01440.65130.080*
H30.56550.24120.55640.080*
H50.74570.06840.41510.079*
H60.80990.34690.51030.079*
H80.93050.99660.79790.076*
H91.05171.29580.79420.078*
H111.06301.16290.57490.085*
H120.94270.86030.57900.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1044 (19)0.1028 (19)0.1079 (19)0.0084 (15)0.0183 (14)0.0142 (15)
F10.090 (3)0.080 (3)0.138 (4)0.028 (3)0.005 (3)0.006 (3)
N10.063 (4)0.076 (4)0.060 (4)0.002 (4)0.004 (3)0.003 (3)
N20.047 (3)0.047 (3)0.080 (4)0.002 (3)0.011 (3)0.017 (3)
N30.053 (3)0.072 (4)0.051 (3)0.001 (3)0.005 (3)0.002 (3)
C10.058 (4)0.046 (4)0.049 (4)0.014 (4)0.011 (3)0.008 (3)
C20.066 (5)0.067 (5)0.066 (5)0.001 (4)0.005 (4)0.007 (4)
C30.058 (5)0.070 (5)0.073 (5)0.003 (4)0.003 (4)0.001 (4)
C40.058 (4)0.049 (4)0.064 (5)0.008 (4)0.004 (4)0.000 (4)
C50.079 (5)0.066 (5)0.052 (4)0.002 (5)0.001 (4)0.005 (4)
C60.069 (5)0.053 (4)0.076 (5)0.013 (4)0.004 (4)0.002 (4)
C70.049 (4)0.044 (4)0.052 (4)0.012 (3)0.001 (3)0.004 (3)
C80.064 (5)0.063 (5)0.064 (5)0.007 (4)0.008 (4)0.000 (4)
C90.075 (5)0.058 (5)0.061 (4)0.006 (4)0.011 (4)0.003 (4)
C100.057 (4)0.042 (4)0.072 (5)0.001 (3)0.002 (4)0.007 (4)
C110.076 (5)0.075 (6)0.065 (5)0.006 (5)0.022 (4)0.009 (4)
C120.067 (5)0.074 (5)0.045 (4)0.010 (4)0.003 (3)0.010 (4)
Geometric parameters (Å, º) top
F1—C101.569 (8)C5—C61.379 (10)
N1—N21.321 (7)C5—H50.9300
N1—C11.394 (8)C6—H60.9300
N1—H10.8600C7—C81.361 (9)
N2—N31.317 (8)C7—C121.388 (9)
N3—C71.431 (9)C8—C91.366 (10)
Cl1—C41.731 (7)C8—H80.9300
C1—C21.359 (10)C9—C101.403 (10)
C1—C61.415 (10)C9—H90.9300
C2—C31.345 (10)C10—C111.397 (10)
C2—H20.9300C11—C121.364 (10)
C3—C41.367 (10)C11—H110.9300
C3—H30.9300C12—H120.9300
C4—C51.369 (10)
N2—N1—C1119.2 (6)C5—C6—H6120.4
N2—N1—H1120.4C1—C6—H6120.4
C1—N1—H1120.4C8—C7—C12117.2 (7)
N3—N2—N1110.9 (6)C8—C7—N3116.5 (6)
N2—N3—C7111.8 (5)C12—C7—N3126.4 (6)
C2—C1—N1119.3 (7)C7—C8—C9122.2 (7)
C2—C1—C6118.6 (7)C7—C8—H8118.9
N1—C1—C6122.1 (7)C9—C8—H8118.9
C3—C2—C1121.9 (8)C8—C9—C10122.8 (7)
C3—C2—H2119.1C8—C9—H9118.6
C1—C2—H2119.1C10—C9—H9118.6
C2—C3—C4119.9 (8)C11—C10—C9113.3 (7)
C2—C3—H3120.0C11—C10—F1122.7 (6)
C4—C3—H3120.0C9—C10—F1124.0 (6)
C3—C4—C5120.7 (7)C12—C11—C10124.3 (7)
C3—C4—Cl1121.0 (6)C12—C11—H11117.9
C5—C4—Cl1118.3 (6)C10—C11—H11117.9
C4—C5—C6119.6 (7)C11—C12—C7120.2 (7)
C4—C5—H5120.2C11—C12—H12119.9
C6—C5—H5120.2C7—C12—H12119.9
C5—C6—C1119.2 (7)
C1—N1—N2—N3177.5 (5)N1—C1—C6—C5178.3 (6)
N1—N2—N3—C7177.5 (5)N2—N3—C7—C8172.7 (6)
N2—N1—C1—C2178.3 (6)N2—N3—C7—C127.7 (9)
N2—N1—C1—C60.7 (9)C12—C7—C8—C91.6 (10)
N1—C1—C2—C3176.8 (7)N3—C7—C8—C9178.7 (6)
C6—C1—C2—C32.2 (11)C7—C8—C9—C100.0 (12)
C1—C2—C3—C41.9 (12)C8—C9—C10—C111.8 (11)
C2—C3—C4—C50.1 (11)C8—C9—C10—F1177.0 (6)
C2—C3—C4—Cl1178.9 (6)C9—C10—C11—C122.2 (11)
C3—C4—C5—C61.6 (11)F1—C10—C11—C12176.7 (6)
Cl1—C4—C5—C6177.4 (5)C10—C11—C12—C70.7 (12)
C4—C5—C6—C11.2 (11)C8—C7—C12—C111.3 (10)
C2—C1—C6—C50.7 (10)N3—C7—C12—C11179.1 (7)
(III) 1-(4-fluorophenyl)-3-(4-methylphenyl)triazene top
Crystal data top
C13H12FN3F(000) = 480
Mr = 229.26Dx = 1.316 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3288 reflections
a = 13.683 (3) Åθ = 1.8–27.7°
b = 4.7712 (6) ŵ = 0.09 mm1
c = 17.742 (4) ÅT = 296 K
β = 92.512 (18)°Plate, brown
V = 1157.2 (4) Å30.50 × 0.28 × 0.06 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
757 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.081
Plane graphite monochromatorθmax = 25.0°, θmin = 1.8°
ω scansh = 1616
6441 measured reflectionsk = 55
2019 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 0.85 w = 1/[σ2(Fo2) + (0.0316P)2]
where P = (Fo2 + 2Fc2)/3
2019 reflections(Δ/σ)max = 0.009
183 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C13H12FN3V = 1157.2 (4) Å3
Mr = 229.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.683 (3) ŵ = 0.09 mm1
b = 4.7712 (6) ÅT = 296 K
c = 17.742 (4) Å0.50 × 0.28 × 0.06 mm
β = 92.512 (18)°
Data collection top
Stoe IPDS-II
diffractometer
757 reflections with I > 2σ(I)
6441 measured reflectionsRint = 0.081
2019 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 0.85Δρmax = 0.15 e Å3
2019 reflectionsΔρmin = 0.16 e Å3
183 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.59689 (18)0.2842 (5)0.41441 (11)0.1179 (9)
N10.7588 (2)0.3437 (6)0.65048 (13)0.0690 (8)
N20.8287 (2)0.5281 (6)0.64092 (15)0.0612 (7)
N30.8525 (2)0.6608 (6)0.70168 (13)0.0646 (8)
C10.7201 (3)0.1830 (7)0.59027 (15)0.0605 (9)
C20.6487 (3)0.0110 (8)0.6024 (2)0.0704 (11)
C30.6081 (3)0.1655 (8)0.5441 (2)0.0800 (11)
C40.6405 (3)0.1262 (8)0.47375 (18)0.0713 (10)
C50.7111 (3)0.0606 (9)0.4589 (2)0.0764 (11)
C60.7531 (3)0.2209 (8)0.51692 (18)0.0740 (11)
C70.9297 (2)0.8534 (7)0.69146 (15)0.0610 (9)
C80.9712 (3)0.9756 (8)0.7551 (2)0.0731 (11)
C91.0464 (3)1.1635 (9)0.7525 (2)0.0799 (11)
C101.0837 (2)1.2405 (7)0.6842 (2)0.0705 (10)
C111.0410 (3)1.1238 (9)0.6199 (2)0.0773 (11)
C120.9664 (3)0.9370 (9)0.62253 (19)0.0728 (11)
C131.1642 (2)1.4475 (7)0.68079 (18)0.0750 (11)
H10.73650.32140.69460.083*
H20.635 (3)0.038 (8)0.651 (2)0.116 (14)*
H30.55910.29540.55260.096*
H50.728 (3)0.097 (8)0.4075 (19)0.115 (13)*
H60.805 (2)0.352 (6)0.5094 (15)0.063 (9)*
H80.956 (2)0.915 (8)0.8017 (19)0.104 (13)*
H91.080 (2)1.238 (6)0.7958 (15)0.067 (10)*
H111.061 (2)1.189 (6)0.5717 (16)0.086 (11)*
H120.936 (2)0.852 (6)0.5843 (15)0.069 (11)*
H13A1.16141.57440.72260.112*
H13B1.15741.55090.63440.112*
H13C1.22591.35130.68310.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1283 (19)0.128 (2)0.0957 (14)0.0044 (16)0.0166 (13)0.0346 (14)
N10.078 (2)0.079 (2)0.0508 (16)0.0005 (18)0.0108 (15)0.0000 (15)
N20.0632 (19)0.0591 (19)0.0613 (17)0.0049 (16)0.0033 (14)0.0049 (14)
N30.074 (2)0.072 (2)0.0472 (14)0.0041 (17)0.0018 (13)0.0000 (15)
C10.078 (2)0.059 (2)0.0438 (18)0.016 (2)0.0024 (17)0.0039 (17)
C20.084 (3)0.063 (3)0.064 (3)0.001 (2)0.009 (2)0.005 (2)
C30.086 (3)0.077 (3)0.077 (2)0.007 (2)0.003 (2)0.004 (2)
C40.090 (3)0.069 (3)0.054 (2)0.008 (2)0.007 (2)0.0101 (19)
C50.098 (3)0.079 (3)0.052 (2)0.007 (3)0.001 (2)0.008 (2)
C60.087 (3)0.073 (3)0.063 (2)0.005 (2)0.012 (2)0.003 (2)
C70.075 (2)0.061 (2)0.0473 (18)0.011 (2)0.0035 (17)0.0001 (17)
C80.089 (3)0.078 (3)0.053 (2)0.008 (2)0.005 (2)0.004 (2)
C90.092 (3)0.087 (3)0.061 (2)0.009 (3)0.002 (2)0.012 (2)
C100.068 (2)0.061 (3)0.083 (2)0.002 (2)0.004 (2)0.0044 (19)
C110.081 (3)0.087 (3)0.065 (2)0.003 (3)0.014 (2)0.008 (2)
C120.083 (3)0.085 (3)0.050 (2)0.002 (2)0.004 (2)0.002 (2)
C130.067 (2)0.060 (2)0.098 (3)0.0110 (19)0.014 (2)0.0039 (18)
Geometric parameters (Å, º) top
F1—C41.406 (4)C6—H60.96 (3)
N1—N21.316 (3)C7—C81.372 (4)
N1—C11.400 (4)C7—C121.400 (4)
N1—H10.8600C8—C91.367 (5)
N2—N31.280 (3)C8—H80.91 (3)
N3—C71.417 (4)C9—C101.385 (5)
C1—C21.370 (4)C9—H90.95 (3)
C1—C61.408 (4)C10—C111.376 (5)
C2—C31.369 (4)C10—C131.483 (4)
C2—H20.90 (4)C11—C121.357 (5)
C3—C41.355 (4)C11—H110.96 (3)
C3—H30.9300C12—H120.88 (3)
C4—C51.350 (5)C13—H13A0.9600
C5—C61.387 (5)C13—H13B0.9600
C5—H50.97 (3)C13—H13C0.9600
N2—N1—C1121.4 (3)C8—C7—N3117.0 (3)
N2—N1—H1119.3C12—C7—N3126.5 (3)
C1—N1—H1119.3C9—C8—C7122.4 (4)
N3—N2—N1112.4 (3)C9—C8—H8116 (2)
N2—N3—C7112.1 (2)C7—C8—H8121 (2)
C2—C1—N1119.9 (3)C8—C9—C10120.7 (4)
C2—C1—C6119.5 (3)C8—C9—H9124.1 (18)
N1—C1—C6120.6 (3)C10—C9—H9115.0 (18)
C3—C2—C1120.9 (4)C11—C10—C9117.3 (4)
C3—C2—H2124 (2)C11—C10—C13121.7 (4)
C1—C2—H2115 (2)C9—C10—C13121.0 (4)
C4—C3—C2118.9 (4)C12—C11—C10122.0 (4)
C4—C3—H3120.5C12—C11—H11119.2 (18)
C2—C3—H3120.5C10—C11—H11118.6 (18)
C5—C4—C3122.5 (4)C11—C12—C7121.0 (4)
C5—C4—F1119.4 (3)C11—C12—H12127.5 (19)
C3—C4—F1118.1 (4)C7—C12—H12111.4 (19)
C4—C5—C6119.7 (4)C10—C13—H13A109.5
C4—C5—H5121 (2)C10—C13—H13B109.5
C6—C5—H5119 (2)H13A—C13—H13B109.5
C5—C6—C1118.5 (4)C10—C13—H13C109.5
C5—C6—H6122.8 (17)H13A—C13—H13C109.5
C1—C6—H6118.7 (17)H13B—C13—H13C109.5
C8—C7—C12116.5 (4)
C1—N1—N2—N3177.9 (3)N1—C1—C6—C5178.7 (3)
N1—N2—N3—C7178.3 (3)N2—N3—C7—C8170.3 (3)
N2—N1—C1—C2178.8 (3)N2—N3—C7—C1211.4 (4)
N2—N1—C1—C62.0 (4)C12—C7—C8—C91.9 (5)
N1—C1—C2—C3178.4 (3)N3—C7—C8—C9179.7 (3)
C6—C1—C2—C30.9 (5)C7—C8—C9—C100.6 (6)
C1—C2—C3—C40.7 (5)C8—C9—C10—C110.9 (5)
C2—C3—C4—C50.2 (5)C8—C9—C10—C13179.0 (3)
C2—C3—C4—F1179.1 (3)C9—C10—C11—C121.0 (5)
C3—C4—C5—C60.1 (6)C13—C10—C11—C12179.1 (3)
F1—C4—C5—C6178.8 (3)C10—C11—C12—C70.3 (6)
C4—C5—C6—C10.0 (5)C8—C7—C12—C111.7 (5)
C2—C1—C6—C50.5 (5)N3—C7—C12—C11179.9 (3)

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC14H15N3C12H9ClFN3C13H12FN3
Mr225.29249.67229.26
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)296296296
a, b, c (Å)14.4024 (19), 4.8171 (4), 17.840 (2)14.500 (3), 4.7385 (5), 17.848 (3)13.683 (3), 4.7712 (6), 17.742 (4)
β (°) 91.510 (11) 92.298 (16) 92.512 (18)
V3)1237.3 (3)1225.3 (4)1157.2 (4)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.070.300.09
Crystal size (mm)0.44 × 0.29 × 0.090.50 × 0.29 × 0.060.50 × 0.28 × 0.06
Data collection
DiffractometerStoe IPDS-II
diffractometer
Stoe IPDS-II
diffractometer
Stoe IPDS-II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Integration
(X-RED32; Stoe&Cie, 2002)
Tmin, Tmax0.976, 0.9940.886, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
2184, 2184, 1091 8654, 2157, 978 6441, 2019, 757
Rint0.0000.0780.081
(sin θ/λ)max1)0.5950.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.066, 0.99 0.087, 0.253, 1.08 0.052, 0.110, 0.85
No. of reflections218421572019
No. of parameters194154183
No. of restraints510
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.10, 0.100.33, 0.440.15, 0.16

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997)and PLUTON (Spek, 1997), ORTEP-3 (Farrugia, 1997) and PLUTON (Spek, 1997), WinGX (Farrugia, 1999).

Comparative selected geometric parameters (Å, °). top
(F)a(I)(II)(III)
N1—N21.334 (4)1.332 (2)1.321 (7)1.316 (3)
C1—C21.378 (4)1.375 (2)1.359 (10)1.370 (4)
C1—C61.399 (5)1.390 (2)1.415 (10)1.408 (4)
C7—C81.386 (5)1.366 (2)1.361 (9)1.372 (4)
C7—C121.385 (5)1.381 (2)1.388 (9)1.400 (4)
C4—C14-1.507 (2)--
C10—C13-1.516 (2)-1.483 (4)
Cl1—C4--1.731 (7)-
N2—N1—C1119.0 (3)120.35 (17)119.2 (6)121.4 (3)
N3—N2—N1112.9 (2)112.07 (15)110.9 (6)112.4 (3)
N2—N3—C7111.9 (3)112.65 (14)111.8 (5)112.1 (2)
C2—C1—N1118.6 (3)118.56 (17)119.3 (7)119.9 (3)
N1—C1—C6121.1 (3)122.71 (18)122.1 (7)120.6 (3)
C8—C7—N3115.9 (3)115.97 (17)116.5 (6)117.0 (3)
C12—C7—N3125.0 (3)125.41 (18)126.4 (6)126.5 (3)
N1—C1—C2—C3179.9 (3)177.64 (18)176.8 (7)178.4 (3)
N3—C7—C8—C9179.1 (3)179.17 (17)178.7 (6)179.7 (3)
N1—N2—N3—C7178.8 (3)177.97 (14)177.5 (5)178.3 (3)
C1—N1—N2—N3179.0 (3)177.21 (15)177.5 (5)177.9 (3)
Note: (a) 1,3-bis(p-fluorophenyl)triazine (Anulewicz, 1997).
Hydrogen-bonding geometry (Å, °). top
D—H···AD—HH···AD···AD—H···A
(I)N1—H1···N3i0.99 (2)2.31 (2)3.242 (2)158.1 (15)
(II)N1—H1···N3i0.862.393.223 (8)163
(III)N1—H1···N3i0.862.383.211 (3)164
Symmetry code: (i) 3/2 − x, y − 1/2, 3/2 − z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds