Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of the proton-transfer compounds of 8-quinolinol (oxine) with the aromatic sulfonic acids 2-amino­benzene­sulfonic acid (orthanilic acid) and 8-hydroxy-7-iodo­quinoline-5-sulfonic acid (ferron) have been determined. In both 8-hydroxy­quinolinium 2-amino­benzene­sulfonate, C9H8NO+·C6H6NO3S-, (I), and 8-hydroxyquino­linium 8-hydroxy-7-iodo­quinoline-5-sulfonate ses­qui­hydrate, C9H8NO+·C9H5INO4S-·1.5H2O, (II), extensive hydrogen-bonding interactions, together with significant cation-cation [in (I)] and cation-anion [in (II)] [pi]-[pi] stacking associations, give rise to layered polymer structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104015057/ta1460sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104015057/ta1460Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104015057/ta1460IIsup3.hkl
Contains datablock II

CCDC references: 248174; 248175

Comment top

8-Quinolinol (8-hydroxyquinoline, 8-HQ) is a particularly useful reagent (oxine) for metal complex formation, achieved through bidentate N,O interaction, giving bis- and tris-chelate compounds, e.g. [Pd(8—HQ)2] (Prout & Wheeler, 1966). Oxine will react with most metal types, but the values of the dissociation constants for the phenol O and the heterocyclic N-donor groups (pKa1,2 = 4.9, 10.8) provide the textbook example of a reagent that has wide interactive selectivity, particularly through pH control, giving numerous analytical chemical applications (Skoog et al., 1988). The molecule also readily forms adducts, both with metal complex species, e.g. [K+ (8-HQ). (8-HQ)] and [K+ (8-HQ). 2(8-HQ)] (Hughes & Truter, 1979), and with neutral compounds, e.g. chloranil (1:1) (Prout & Wheeler, 1967) and 1,3,5-trinitrobenzene (1:1) (Castellano & Prout, 1971). In the presence of relatively strong organic acids, protonation of the hetero-N atom of oxine occurs and the 8-HQ+ cation formed provides structure extension through hydrogen-bonding interactions. Known structures of this type are those with salicylic acid (SA, a discrete 2:2 dimer; Singh et al., 2000; Smith et al., 2003a), 2-nitrobenzoic acid (1:1 monohydrate), 3,5-dinitrobenzoic acid (1:1 trihydrate) and 3,5-dinitrosalicylic acid (1:1; Smith et al., 2001), with 5-sulfosalicylic acid (1:1 monohydrate; Smith et al., 2004a), and with Kemp's triacid (cis-cis- 1,3,5-trimethylhexane-1,3,5-tricarboxylic acid, a 1:1 anhydrate; Smith et al., 2000). Adduct salts with salicylic acid [(8-HQ)+(SA). (8-HQ); Jebamony & Muthiah, 1998] and 1,2,3-trihydroxybenzene [(8-HQ)+(THB). (8-HQ); Singh et al., 1994] are also known. It is also of interest that, with a number of these compounds, the formation reactions can proceed in the solid state (Rastogi et al., 1977; Singh et al., 1994, 1999, 2000).

8-Hydroxy-7-iodoquinoline-5-sulfonic acid (ferron) is chemically analogous to oxine, with potential for complex formation but with steric constraints because of the presence of the bulky 7-iodo substituent. Therefore, ferron gives a colour reaction with iron(III) but not with iron(II) (Vogel, 1964). The crystal structure determination of ferron (Merritt & Duffin, 1970; Balasubramanian & Muthiah, 1996) has confirmed the presence of a sulfonate–quinolinium group zwitterion. We have reported the structure of the bis(guanidinium) monohydrate salt of ferron, in which deprotonation of both the sulfonic acid and phenol groups has occurred (Smith et al., 2003b), while in the structure of the (1:1) salt with 4,4'-bipyridine (Hemamalini et al., 2004), only the sulfonate group is deprotonated. We have also determined the 1:1:1 ferron/urea/water adduct structure (Smith et al., 2004b).

The crystal structures reported here are those of the products of the reaction of of 8-hydroxyquinoline with 2-aminobenzenesulfonic acid (orthanilic acid), 8-hydroxyquinolinium 2-aminobenzenesulfonate [(C9H8NO)+ (C6H6NO3S)], (I), and with ferron, 8-hydroxyquinolinium 8-hydroxy-7-iodoquinoline-5-sulfonate 1.5 hydrate [(C9H8NO)+ (C9H6NIO4S).1.5 H2O], (II). As expected, in both compounds, proton transfer from the sulfonic acid group to the quinoline N atom of the oxine molecule occurs. Fig. 1 shows the atom-numbering scheme used for the 8-hydroxyquinolinium cation (8-HQ+) and the 2-amino benzenesulfonate anion (2-ABS) in (I). A similar scheme is employed for the 8-HQ+ cation in (II) (Fig. 2). Tables 1 and 2 list the geometries for the hydrogen-bonding interactions in (I) and (II) and the symmetry codes used below.

The anhydrous (1:1) compound [(8-HQ)+ (2-ABS)], (I) exhibits a direct N+H···Osulfonate interaction [N11—H11···O11 = 2.745 (4) Å; Fig. 3]. The 8-hydroxy substituent group of the 8-HQ+ cation is strongly associated intermolecularly with a 2-ABS sulfonate O atom [O81···O13ii = 2.623 (3) Å]. As is usual for 8-HQ+ cations, there is an intramolecular association between the quinolinium proton and the phenol O atom [2.675 (4) Å], while in the 2-ABS anion, the conformation of the sulfonate group is stabilized by Namine—H···O and Cring—H···O interactions [2.937 (5) and 2.875 (4) Å respectively].

The inversion-related 8-HQ+ cation rings form stacks that extend approximately down the c direction, with approximate superimposition of the C5–C101 six-membered ring systems. These have perpendicular separations of 3.40 (1) (intra) and 3.39 (1) Å (inter), with a ring-centroid separation of 3.78 (1) Å, which is strongly indicative of ππ interaction. These `sandwich' dimers are similar to those found in the discrete dimeric 2:2 compound of oxine with salicylic acid (Smith et al., 2003a), in which the intra- and interdimer separations are 3.34 and 3.40 Å, respectively (ring centroid separation = 3.58 Å). In this salicylate compound, the oxine rings are edge-linked by bis-salicylato-O,O' cleats. In (I), the molecular pairs are peripherally linked to the sulfonate anions, forming sheets across the ac plane with only weak intersheet interactions [N2—H2B···O11i = 3.402 Å].

In the hydrated 1:1 compound [(8-HQ)+ (ferron)]·1.5H2O, (II), the protonated hetero N atom of the 8-HQ+ cation forms an intramolecular hydrogen bond with the phenol O atom, similar to that in (I) [N11···O81 = 2.694 (6) Å; Fig. 4]. However, the propagating interaction is with a water molecule [N11—H11 ···O1Wiv = 2.733 (5) Å] rather than with a sulfonate O atom as found in (I). Although the direct N+H···Osulfonate interaction is also found in the monohydrated compound of oxine with 5-sulfosalicylic acid (5-SSA; Smith et al., 2004a), it is more usual that, in the hydrated 5-SSA compounds with the quinoline-type Lewis bases, this primary interaction is with a water molecule. The ferron anion molecules have an intramolecular aromatic C6—H6···O51sulfonate contact [2.823 (6) Å], while a short intermolecular OW2···I7ii contact [3.17 (1) Å] is also present.

The molecules of (II) form stacks of alternating 8-HQ+ cations and ferron anions, having approximate superimposition of the six-membered ring systems N11–C91 and N1–C10, with perpendicular separations of 3.51 (1) (intra) and 3.40 (1) Å (inter), also indicative of significant ππ interaction. These stacks form down the c axis and are linked by the previously described hydrogen bonds as well as by a number of other associations involving the water molecules. This stacking phenomenon is consistent with the perfect crystal cleavage perpendicular to the short (6.977 Å) c axis. The presence of a hemihydrate molecule (O2W) is consistent with some lability in this molecule, although it is quite strongly associated in the crystal and only minor crystal decomposition (1.1%) was observed during data collection.

Experimental top

The title compounds were synthesized by heating, under reflux, 1 mmol quantities of 8-quinolinol (oxine) and either 2-aminobenzenesulfonic acid (orthanilic acid) [for (I)] or 8-hydroxy-7-iodonaphthalene-5-sulfonic acid (ferron) [for (II)] in 50% ethanol/water (50 ml) for 10 min. After concentration to ca 30 ml, partial room-temperature evaporation of the hot-filtered solutions gave large pale-brown crystal blocks of (I) (m.p. 454.6– 454.7 K) and large yellow prisms of (II) (m.p. 475.7–478.7 K).

Refinement top

H atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included in the respective refinements at calculated positions (C—H = 0.95 Å) as riding atoms, with Uiso(H) fixed at 1.2Ueq(C). The large difference electron density maximum and minimum for (II) (1.552–1.302 e Å−3) are adjacent to the I atom.

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON for Windows (Spek, 1999); software used to prepare material for publication: PLATON for Windows.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the 8-HQ+ cation and 2-ABS anion in (I). Non-H atoms are shown as 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular configuration and atom-numbering scheme for (II), showing the 8-HQ+ cation and ferron anion superimposition. Non-H atoms are shown as 30% probability displacement ellipsoids.
[Figure 3] Fig. 3. A perspective view of the packing of (I) in the unit cell, viewed down c, showing homomolecular stacks of oxine cations and hydrogen- bonding associations as broken lines.
[Figure 4] Fig. 4. A perspective view of the packing of (II) in the unit cell, viewed down c, showing the 8-HQ+ cation–ferron anion stacks linked through hydrogen-bonding interactions also involving the water molecules.
(I) 8-hydroxyquinolinium 2-aminobenzenesulfonate top
Crystal data top
C9H8NO+·C6H6NO3SF(000) = 664
Mr = 318.34Dx = 1.484 Mg m3
Monoclinic, P21/aMelting point = 454.6–454.7 K
Hall symbol: -P 2yabMo Kα radiation, λ = 0.71069 Å
a = 16.030 (4) ÅCell parameters from 25 reflections
b = 11.726 (3) Åθ = 12.7–17.1°
c = 7.7024 (15) ŵ = 0.25 mm1
β = 100.298 (17)°T = 298 K
V = 1424.5 (6) Å3Fragment, pale brown
Z = 40.40 × 0.20 × 0.10 mm
Data collection top
Rigaku AFC-7R
diffractometer
2047 reflections with I > 2σ(I)
Radiation source: Rigaku rotating-anodeRint = 0.053
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
ω–2θ scansh = 820
Absorption correction: ψ scan
TEXSAN for Windows (Molecular Structure Corporation, 1999)
k = 156
Tmin = 0.942, Tmax = 0.976l = 109
3780 measured reflections3 standard reflections every 150 reflections
3265 independent reflections intensity decay: 0.03%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.1P)2 + 3.934P]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
3265 reflectionsΔρmax = 0.34 e Å3
212 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Crystal data top
C9H8NO+·C6H6NO3SV = 1424.5 (6) Å3
Mr = 318.34Z = 4
Monoclinic, P21/aMo Kα radiation
a = 16.030 (4) ŵ = 0.25 mm1
b = 11.726 (3) ÅT = 298 K
c = 7.7024 (15) Å0.40 × 0.20 × 0.10 mm
β = 100.298 (17)°
Data collection top
Rigaku AFC-7R
diffractometer
2047 reflections with I > 2σ(I)
Absorption correction: ψ scan
TEXSAN for Windows (Molecular Structure Corporation, 1999)
Rint = 0.053
Tmin = 0.942, Tmax = 0.9763 standard reflections every 150 reflections
3780 measured reflections intensity decay: 0.03%
3265 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.34 e Å3
3265 reflectionsΔρmin = 0.32 e Å3
212 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12539 (5)0.41652 (6)0.36349 (11)0.0375 (3)
O110.13124 (17)0.3616 (2)0.5349 (3)0.0553 (9)
O120.03930 (15)0.4380 (2)0.2776 (4)0.0606 (9)
O130.17789 (15)0.51871 (18)0.3759 (3)0.0506 (8)
N20.1156 (2)0.4258 (3)0.0414 (5)0.0566 (11)
C10.17121 (18)0.3208 (2)0.2292 (4)0.0334 (8)
C20.16245 (19)0.3390 (2)0.0457 (4)0.0374 (9)
C30.2067 (2)0.2643 (3)0.0475 (4)0.0466 (10)
C40.2555 (2)0.1767 (3)0.0343 (5)0.0471 (11)
C50.2629 (2)0.1593 (3)0.2140 (5)0.0440 (10)
C60.22087 (19)0.2320 (2)0.3100 (4)0.0372 (9)
O810.16548 (15)0.08411 (19)0.6226 (3)0.0463 (8)
N110.02389 (16)0.2021 (2)0.6354 (3)0.0388 (8)
C210.0437 (2)0.2659 (3)0.6387 (5)0.0466 (11)
C310.1140 (2)0.2206 (3)0.6966 (5)0.0494 (11)
C410.1128 (2)0.1095 (3)0.7494 (5)0.0474 (11)
C510.0343 (2)0.0746 (3)0.8047 (4)0.0448 (10)
C610.0382 (2)0.1338 (3)0.8006 (4)0.0467 (10)
C710.1080 (2)0.0833 (3)0.7428 (4)0.0413 (9)
C810.10444 (19)0.0278 (3)0.6859 (4)0.0353 (8)
C910.02915 (18)0.0900 (2)0.6885 (4)0.0335 (8)
C1010.04046 (19)0.0406 (3)0.7491 (4)0.0383 (9)
H2A0.081 (2)0.455 (3)0.013 (5)0.046 (11)*
H2B0.110 (2)0.427 (3)0.154 (5)0.048 (10)*
H30.2026000.2755000.1724000.0540*
H40.2849000.1268000.0343000.0550*
H50.2969000.0986000.2710000.0520*
H60.2256000.2207000.4344000.0440*
H110.066 (2)0.233 (3)0.602 (5)0.047 (10)*
H210.0444000.3438000.5982000.0540*
H310.1631000.2673000.6993000.0590*
H410.1620000.0782000.7877000.0560*
H510.0811000.1099000.8458000.0530*
H610.0415000.2124000.8374000.0550*
H710.1590000.1264000.7437000.0490*
H810.211 (2)0.048 (3)0.622 (5)0.051 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0368 (4)0.0286 (4)0.0498 (5)0.0013 (3)0.0150 (3)0.0002 (3)
O110.0783 (18)0.0439 (13)0.0507 (14)0.0022 (12)0.0304 (13)0.0031 (11)
O120.0363 (13)0.0635 (16)0.0823 (19)0.0078 (11)0.0117 (12)0.0072 (14)
O130.0503 (13)0.0304 (11)0.0757 (16)0.0062 (10)0.0239 (12)0.0093 (11)
N20.066 (2)0.0539 (19)0.0479 (19)0.0111 (16)0.0050 (16)0.0114 (15)
C10.0336 (14)0.0262 (13)0.0414 (15)0.0040 (11)0.0091 (12)0.0006 (12)
C20.0372 (15)0.0330 (15)0.0409 (16)0.0042 (12)0.0042 (12)0.0044 (12)
C30.0531 (19)0.0474 (19)0.0401 (16)0.0063 (15)0.0107 (14)0.0024 (14)
C40.0481 (18)0.0401 (17)0.056 (2)0.0024 (14)0.0173 (15)0.0096 (15)
C50.0441 (17)0.0295 (15)0.059 (2)0.0043 (13)0.0107 (15)0.0017 (14)
C60.0414 (16)0.0290 (14)0.0421 (16)0.0013 (12)0.0099 (13)0.0072 (12)
O810.0422 (13)0.0358 (12)0.0652 (15)0.0070 (10)0.0214 (11)0.0052 (11)
N110.0411 (14)0.0315 (12)0.0456 (14)0.0022 (11)0.0125 (11)0.0019 (11)
C210.0511 (19)0.0375 (17)0.0512 (19)0.0117 (14)0.0094 (15)0.0006 (15)
C310.0420 (17)0.0497 (19)0.058 (2)0.0128 (15)0.0128 (15)0.0034 (16)
C410.0407 (17)0.053 (2)0.0502 (19)0.0007 (15)0.0131 (14)0.0054 (15)
C510.0470 (18)0.0402 (17)0.0477 (18)0.0107 (14)0.0100 (14)0.0009 (14)
C610.059 (2)0.0309 (15)0.0489 (19)0.0009 (14)0.0062 (16)0.0012 (14)
C710.0450 (17)0.0321 (15)0.0462 (17)0.0076 (13)0.0064 (14)0.0016 (13)
C810.0378 (15)0.0345 (15)0.0346 (14)0.0018 (12)0.0088 (12)0.0025 (12)
C910.0404 (15)0.0288 (13)0.0311 (13)0.0003 (12)0.0056 (11)0.0031 (11)
C1010.0413 (16)0.0371 (15)0.0363 (15)0.0019 (13)0.0068 (12)0.0061 (12)
Geometric parameters (Å, º) top
S1—O111.457 (2)C4—H40.9658
S1—O121.442 (3)C5—H50.9544
S1—O131.458 (2)C6—H60.9568
S1—C11.772 (3)C21—C311.391 (5)
O81—C811.342 (4)C31—C411.364 (5)
O81—H810.84 (3)C41—C1011.414 (5)
N2—C21.367 (4)C51—C1011.415 (5)
N2—H2B0.86 (4)C51—C611.359 (5)
N2—H2A0.83 (3)C61—C711.407 (5)
N11—C911.375 (3)C71—C811.372 (5)
N11—C211.320 (4)C81—C911.413 (4)
N11—H110.85 (3)C91—C1011.409 (4)
C1—C61.389 (4)C21—H210.9637
C1—C21.411 (4)C31—H310.9621
C2—C31.403 (4)C41—H410.9628
C3—C41.374 (5)C51—H510.9588
C4—C51.383 (5)C61—H610.9629
C5—C61.380 (5)C71—H710.9601
C3—H30.9615
O11—S1—O12113.22 (17)C1—C6—H6119.28
O11—S1—O13111.17 (14)C5—C6—H6119.47
O11—S1—C1106.42 (14)N11—C21—C31120.3 (3)
O12—S1—O13112.36 (14)C21—C31—C41119.5 (3)
O12—S1—C1107.78 (15)C31—C41—C101120.9 (3)
O13—S1—C1105.32 (14)C61—C51—C101119.6 (3)
C81—O81—H81116 (2)C51—C61—C71121.6 (3)
C2—N2—H2B117 (2)C61—C71—C81120.7 (3)
H2A—N2—H2B123 (3)O81—C81—C71126.3 (3)
C2—N2—H2A115 (3)O81—C81—C91115.5 (3)
C21—N11—C91122.9 (3)C71—C81—C91118.2 (3)
C91—N11—H11119 (2)C81—C91—C101121.4 (3)
C21—N11—H11118 (2)N11—C91—C81119.8 (3)
C2—C1—C6120.6 (3)N11—C91—C101118.8 (3)
S1—C1—C6118.5 (2)C41—C101—C51123.9 (3)
S1—C1—C2120.7 (2)C41—C101—C91117.7 (3)
C1—C2—C3116.7 (3)C51—C101—C91118.4 (3)
N2—C2—C1123.5 (3)N11—C21—H21119.62
N2—C2—C3119.8 (3)C31—C21—H21120.12
C2—C3—C4122.1 (3)C21—C31—H31120.18
C3—C4—C5120.6 (3)C41—C31—H31120.35
C4—C5—C6118.8 (3)C31—C41—H41119.13
C1—C6—C5121.2 (3)C101—C41—H41119.98
C2—C3—H3118.45C61—C51—H51120.67
C4—C3—H3119.50C101—C51—H51119.71
C3—C4—H4119.71C51—C61—H61118.97
C5—C4—H4119.68C71—C61—H61119.41
C6—C5—H5120.49C61—C71—H71120.04
C4—C5—H5120.67C81—C71—H71119.26
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O120.83 (3)2.26 (4)2.937 (5)139 (3)
N2—H2B···O11i0.86 (4)2.60 (4)3.402 (4)157 (3)
N11—H11···O810.85 (3)2.35 (4)2.675 (4)103 (3)
N11—H11···O110.85 (3)1.95 (4)2.745 (4)155 (3)
O81—H81···O13ii0.84 (3)1.81 (3)2.623 (3)161 (3)
C6—H6···O110.962.462.875 (4)106
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y1/2, z+1.
(II) top
Crystal data top
C9H5INO4S+·C9H8NO·1.5H2OF(000) = 1040
Mr = 523.30Dx = 1.791 Mg m3
Monoclinic, P21/aMelting point = 475.7–478.7 K
Hall symbol: -P 2yabMo Kα radiation, λ = 0.71069 Å
a = 15.857 (4) ÅCell parameters from 25 reflections
b = 17.667 (7) Åθ = 12.6–16.6°
c = 6.977 (4) ŵ = 1.80 mm1
β = 95.78 (4)°T = 298 K
V = 1944.5 (14) Å3Block, yellow
Z = 40.50 × 0.50 × 0.35 mm
Data collection top
Rigaku AFC-7R
diffractometer
3424 reflections with I > 2 σ(I)
Radiation source: Rigaku rotating anodeRint = 0.068
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
ω–2q scansh = 920
Absorption correction: ψ scan
TEXSAN for Windows (Molecular Structure Corporation, 1999)
k = 022
Tmin = 0.434, Tmax = 0.533l = 99
5029 measured reflections3 standard reflections every 150 reflections
4473 independent reflections intensity decay: 1.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.1P)2 + 7.5983P]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max = 0.002
4473 reflectionsΔρmax = 1.55 e Å3
291 parametersΔρmin = 1.30 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (6)
Crystal data top
C9H5INO4S+·C9H8NO·1.5H2OV = 1944.5 (14) Å3
Mr = 523.30Z = 4
Monoclinic, P21/aMo Kα radiation
a = 15.857 (4) ŵ = 1.80 mm1
b = 17.667 (7) ÅT = 298 K
c = 6.977 (4) Å0.50 × 0.50 × 0.35 mm
β = 95.78 (4)°
Data collection top
Rigaku AFC-7R
diffractometer
3424 reflections with I > 2 σ(I)
Absorption correction: ψ scan
TEXSAN for Windows (Molecular Structure Corporation, 1999)
Rint = 0.068
Tmin = 0.434, Tmax = 0.5333 standard reflections every 150 reflections
5029 measured reflections intensity decay: 1.1%
4473 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 1.55 e Å3
4473 reflectionsΔρmin = 1.30 e Å3
291 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I70.41943 (2)0.454944 (19)0.23168 (7)0.0621 (2)
S50.77115 (6)0.38886 (6)0.39535 (17)0.0410 (3)
O80.41795 (19)0.2767 (2)0.2473 (5)0.0467 (11)
O510.7631 (2)0.4696 (2)0.3869 (7)0.0583 (13)
O520.8200 (2)0.3576 (2)0.2478 (6)0.0529 (11)
O530.8014 (2)0.3616 (3)0.5871 (6)0.0638 (14)
N10.5416 (2)0.1733 (2)0.3148 (6)0.0411 (11)
C20.6016 (3)0.1226 (3)0.3517 (7)0.0456 (16)
C30.6873 (3)0.1402 (3)0.3914 (7)0.0445 (14)
C40.7123 (3)0.2143 (3)0.3909 (7)0.0409 (12)
C50.6670 (2)0.3515 (2)0.3505 (6)0.0340 (11)
C60.6020 (3)0.4015 (2)0.3136 (6)0.0379 (12)
C70.5173 (3)0.3772 (2)0.2797 (6)0.0373 (11)
C80.4985 (3)0.3008 (2)0.2801 (6)0.0353 (11)
C90.6510 (2)0.2720 (2)0.3536 (6)0.0323 (11)
C100.5655 (3)0.2474 (2)0.3167 (5)0.0317 (10)
O810.4576 (2)0.1167 (2)0.2463 (6)0.0579 (11)
N110.6265 (3)0.1155 (2)0.1505 (5)0.0434 (11)
C210.7085 (3)0.1109 (3)0.1051 (7)0.0507 (17)
C310.7580 (3)0.1763 (3)0.0813 (7)0.0552 (17)
C410.7192 (4)0.2453 (3)0.1057 (7)0.0528 (16)
C510.5885 (4)0.3206 (3)0.1843 (7)0.0514 (16)
C610.5032 (4)0.3217 (3)0.2345 (9)0.0629 (19)
C710.4570 (4)0.2531 (4)0.2562 (8)0.0545 (17)
C810.4960 (3)0.1851 (3)0.2284 (7)0.0449 (14)
C910.5841 (3)0.1834 (3)0.1778 (6)0.0401 (11)
C1010.6318 (3)0.2514 (3)0.1559 (6)0.0456 (14)
O1W0.9311 (3)0.4709 (2)0.1144 (7)0.0699 (16)
O2W0.7478 (6)0.4515 (5)0.8912 (14)0.071 (3)0.500
H20.5858000.0709000.3497000.0540*
H30.7279000.1011000.4181000.0540*
H40.7706000.2269000.4151000.0490*
H60.6144000.4542000.3098000.0460*
H80.414 (4)0.228 (5)0.238 (10)0.060 (10)*
H110.588 (4)0.074 (4)0.139 (10)0.074 (15)*
H210.7347000.0628000.0866000.0610*
H310.8173000.1731000.0475000.0660*
H410.7526000.2899000.0882000.0640*
H510.6190000.3669000.1677000.0630*
H610.4746000.3684000.2569000.0760*
H710.3975000.2549000.2913000.0650*
H810.407 (4)0.121 (3)0.303 (9)0.056 (16)*
H1A0.901 (4)0.437 (3)0.194 (9)0.052 (10)*
H1B0.879 (4)0.465 (3)0.031 (9)0.056 (10)*
H2A0.700 (4)0.461 (4)0.856 (9)0.087 (12)*0.500
H2B0.765 (4)0.423 (3)0.795 (9)0.076 (13)*0.500
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I70.0394 (2)0.0402 (2)0.1035 (4)0.0074 (1)0.0090 (2)0.0023 (2)
S50.0309 (5)0.0401 (6)0.0512 (6)0.0060 (4)0.0000 (4)0.0006 (5)
O80.0326 (16)0.0386 (19)0.067 (2)0.0046 (13)0.0048 (14)0.0030 (16)
O510.0450 (19)0.0380 (18)0.091 (3)0.0096 (14)0.0025 (18)0.0092 (18)
O520.0382 (17)0.051 (2)0.072 (2)0.0034 (14)0.0172 (16)0.0061 (17)
O530.047 (2)0.082 (3)0.058 (2)0.0160 (19)0.0160 (17)0.015 (2)
N10.0405 (19)0.0344 (19)0.048 (2)0.0030 (15)0.0029 (15)0.0024 (15)
C20.050 (3)0.033 (2)0.054 (3)0.0016 (18)0.006 (2)0.0012 (19)
C30.046 (2)0.038 (2)0.050 (3)0.0110 (18)0.0068 (19)0.0042 (19)
C40.034 (2)0.040 (2)0.049 (2)0.0023 (17)0.0054 (17)0.0001 (19)
C50.0266 (17)0.034 (2)0.041 (2)0.0014 (14)0.0016 (15)0.0006 (16)
C60.038 (2)0.031 (2)0.044 (2)0.0028 (16)0.0007 (17)0.0025 (17)
C70.0322 (19)0.035 (2)0.044 (2)0.0034 (15)0.0003 (16)0.0035 (17)
C80.0301 (18)0.039 (2)0.036 (2)0.0036 (15)0.0005 (15)0.0003 (16)
C90.0319 (18)0.0350 (19)0.0298 (18)0.0009 (15)0.0020 (14)0.0006 (15)
C100.0341 (18)0.0324 (19)0.0284 (17)0.0042 (15)0.0018 (14)0.0028 (15)
O810.0410 (18)0.056 (2)0.073 (2)0.0013 (16)0.0123 (16)0.0077 (18)
N110.049 (2)0.041 (2)0.0390 (19)0.0044 (17)0.0011 (16)0.0013 (16)
C210.048 (3)0.053 (3)0.049 (3)0.000 (2)0.006 (2)0.008 (2)
C310.051 (3)0.065 (3)0.047 (3)0.010 (2)0.008 (2)0.003 (2)
C410.061 (3)0.054 (3)0.042 (2)0.017 (2)0.001 (2)0.002 (2)
C510.078 (4)0.038 (2)0.040 (2)0.004 (2)0.015 (2)0.0048 (19)
C610.082 (4)0.052 (3)0.056 (3)0.017 (3)0.014 (3)0.003 (2)
C710.051 (3)0.066 (3)0.047 (3)0.009 (2)0.008 (2)0.000 (2)
C810.048 (2)0.049 (3)0.038 (2)0.002 (2)0.0057 (18)0.0014 (19)
C910.045 (2)0.045 (2)0.0306 (19)0.0039 (18)0.0054 (16)0.0003 (17)
C1010.061 (3)0.045 (2)0.031 (2)0.008 (2)0.0060 (19)0.0040 (18)
O1W0.076 (3)0.046 (2)0.092 (3)0.0027 (19)0.030 (2)0.009 (2)
O2W0.073 (6)0.069 (6)0.069 (5)0.031 (4)0.008 (4)0.012 (4)
Geometric parameters (Å, º) top
I7—C72.074 (4)C6—C71.407 (7)
S5—O511.433 (4)C7—C81.382 (5)
S5—O521.458 (4)C8—C101.425 (6)
S5—O531.457 (4)C9—C101.422 (6)
S5—C51.777 (4)C2—H20.9469
O8—C81.344 (6)C3—H30.9498
O8—H80.86 (9)C4—H40.9493
O81—C811.353 (6)C6—H60.9525
O81—H810.86 (6)C21—C311.397 (7)
O1W—H1A0.97 (6)C31—C411.368 (8)
O1W—H1B0.97 (6)C41—C1011.399 (8)
O2W—H2A0.79 (6)C51—C611.363 (9)
O2W—H2B0.90 (6)C51—C1011.406 (8)
N1—C101.363 (5)C61—C711.416 (9)
N1—C21.313 (6)C71—C811.356 (9)
N11—C911.379 (6)C81—C911.406 (7)
N11—C211.309 (7)C91—C1011.420 (7)
N11—H110.96 (7)C21—H210.9490
C2—C31.394 (7)C31—H310.9478
C3—C41.368 (7)C41—H410.9504
C4—C91.414 (6)C51—H510.9514
C5—C91.428 (5)C61—H610.9469
C5—C61.362 (6)C71—H710.9511
O51—S5—O52113.5 (2)C3—C2—H2117.98
O51—S5—O53112.7 (3)C2—C3—H3120.30
O51—S5—C5106.57 (19)C4—C3—H3120.37
O52—S5—O53112.0 (2)C3—C4—H4120.08
O52—S5—C5106.6 (2)C9—C4—H4120.17
O53—S5—C5104.7 (2)C7—C6—H6119.32
C8—O8—H8113 (4)C5—C6—H6119.00
C81—O81—H81111 (4)N11—C21—C31120.6 (5)
H1A—O1W—H1B81 (5)C21—C31—C41118.8 (5)
H2A—O2W—H2B104 (6)C31—C41—C101121.4 (5)
C2—N1—C10117.3 (4)C61—C51—C101120.4 (5)
C21—N11—C91123.1 (4)C51—C61—C71120.3 (5)
C21—N11—H11124 (4)C61—C71—C81121.3 (6)
C91—N11—H11112 (4)O81—C81—C71125.7 (5)
N1—C2—C3124.0 (5)C71—C81—C91118.8 (5)
C2—C3—C4119.3 (5)O81—C81—C91115.5 (4)
C3—C4—C9119.7 (4)C81—C91—C101120.9 (5)
C6—C5—C9120.6 (3)N11—C91—C101118.3 (4)
S5—C5—C6117.7 (3)N11—C91—C81120.8 (5)
S5—C5—C9121.7 (3)C41—C101—C91117.7 (5)
C5—C6—C7121.7 (3)C41—C101—C51124.0 (5)
C6—C7—C8120.0 (4)C51—C101—C91118.2 (5)
I7—C7—C8119.3 (3)C31—C21—H21119.43
I7—C7—C6120.7 (3)N11—C21—H21119.93
O8—C8—C10120.0 (3)C21—C31—H31120.77
O8—C8—C7120.7 (4)C41—C31—H31120.43
C7—C8—C10119.3 (4)C31—C41—H41119.00
C4—C9—C5126.3 (3)C101—C41—H41119.57
C5—C9—C10117.7 (3)C101—C51—H51119.69
C4—C9—C10116.0 (4)C61—C51—H51119.88
C8—C10—C9120.7 (3)C51—C61—H61120.09
N1—C10—C8115.6 (4)C71—C61—H61119.60
N1—C10—C9123.7 (4)C81—C71—H71119.52
N1—C2—H2118.01C61—C71—H71119.20
O51—S5—C5—C61.5 (4)C6—C7—C8—C100.5 (6)
O51—S5—C5—C9178.2 (4)O8—C8—C10—N10.2 (6)
O52—S5—C5—C6120.1 (4)O8—C8—C10—C9179.4 (4)
O52—S5—C5—C960.3 (4)C7—C8—C10—C90.3 (6)
O53—S5—C5—C6121.2 (4)C7—C8—C10—N1179.9 (4)
O53—S5—C5—C958.5 (4)C5—C9—C10—N1179.8 (4)
C10—N1—C2—C30.3 (7)C4—C9—C10—C8179.1 (4)
C2—N1—C10—C90.8 (6)C5—C9—C10—C80.7 (6)
C2—N1—C10—C8178.7 (4)C4—C9—C10—N10.4 (6)
C21—N11—C91—C1010.1 (6)N11—C21—C31—C410.2 (7)
C91—N11—C21—C310.1 (7)C21—C31—C41—C1010.8 (7)
C21—N11—C91—C81179.3 (4)C31—C41—C101—C51179.5 (5)
N1—C2—C3—C40.7 (8)C31—C41—C101—C911.0 (7)
C2—C3—C4—C91.1 (7)C101—C51—C61—C710.8 (8)
C3—C4—C9—C5179.2 (4)C61—C51—C101—C41179.5 (5)
C3—C4—C9—C100.6 (6)C61—C51—C101—C911.0 (7)
S5—C5—C9—C10179.8 (3)C51—C61—C71—C810.2 (9)
S5—C5—C9—C40.0 (6)C61—C71—C81—C910.2 (8)
S5—C5—C6—C7178.9 (3)C61—C71—C81—O81179.7 (5)
C6—C5—C9—C4179.6 (4)O81—C81—C91—N110.4 (6)
C9—C5—C6—C70.8 (6)O81—C81—C91—C101179.6 (4)
C6—C5—C9—C100.1 (7)C71—C81—C91—N11179.2 (4)
C5—C6—C7—I7178.2 (3)C71—C81—C91—C1010.0 (7)
C5—C6—C7—C81.1 (6)N11—C91—C101—C410.7 (6)
I7—C7—C8—C10178.8 (3)C81—C91—C101—C41179.9 (4)
C6—C7—C8—O8179.8 (4)N11—C91—C101—C51179.8 (5)
I7—C7—C8—O80.9 (6)C81—C91—C101—C510.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O520.97 (6)1.96 (6)2.882 (6)156 (5)
O1W—H1B···O2Wi0.97 (6)2.22 (6)3.175 (11)169 (5)
O2W—H2A···I7ii0.79 (6)2.44 (7)3.169 (10)155 (7)
O2W—H2B···O530.90 (6)1.94 (6)2.848 (11)180 (6)
O8—H8···N10.86 (9)2.26 (7)2.687 (5)111 (5)
O8—H8···O52iii0.86 (9)2.13 (8)2.836 (5)139 (6)
N11—H11···O810.96 (7)2.26 (7)2.694 (6)107 (5)
N11—H11···O1Wiv0.96 (7)1.86 (7)2.733 (5)150 (6)
O81—H81···O53v0.86 (6)1.80 (6)2.656 (5)175 (5)
C6—H6···O510.952.382.823 (6)108
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z; (iv) x+3/2, y1/2, z; (v) x1/2, y+1/2, z1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC9H8NO+·C6H6NO3SC9H5INO4S+·C9H8NO·1.5H2O
Mr318.34523.30
Crystal system, space groupMonoclinic, P21/aMonoclinic, P21/a
Temperature (K)298298
a, b, c (Å)16.030 (4), 11.726 (3), 7.7024 (15)15.857 (4), 17.667 (7), 6.977 (4)
β (°) 100.298 (17) 95.78 (4)
V3)1424.5 (6)1944.5 (14)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.251.80
Crystal size (mm)0.40 × 0.20 × 0.100.50 × 0.50 × 0.35
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Rigaku AFC-7R
diffractometer
Absorption correctionψ scan
TEXSAN for Windows (Molecular Structure Corporation, 1999)
ψ scan
TEXSAN for Windows (Molecular Structure Corporation, 1999)
Tmin, Tmax0.942, 0.9760.434, 0.533
No. of measured, independent and
observed reflections
3780, 3265, 2047 [I > 2σ(I)]5029, 4473, 3424 [I > 2 σ(I)]
Rint0.0530.068
(sin θ/λ)max1)0.6490.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.163, 0.90 0.049, 0.158, 0.89
No. of reflections32654473
No. of parameters212291
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.321.55, 1.30

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999), MSC/AFC Diffractometer Control Software, TEXSAN for Windows (Molecular Structure Corporation, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON for Windows (Spek, 1999), PLATON for Windows.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O120.83 (3)2.26 (4)2.937 (5)139 (3)
N2—H2B···O11i0.86 (4)2.60 (4)3.402 (4)157 (3)
N11—H11···O810.85 (3)2.35 (4)2.675 (4)103 (3)
N11—H11···O110.85 (3)1.95 (4)2.745 (4)155 (3)
O81—H81···O13ii0.84 (3)1.81 (3)2.623 (3)161 (3)
C6—H6···O110.962.462.875 (4)106
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O520.97 (6)1.96 (6)2.882 (6)156 (5)
O1W—H1B···O2Wi0.97 (6)2.22 (6)3.175 (11)169 (5)
O2W—H2A···I7ii0.79 (6)2.44 (7)3.169 (10)155 (7)
O2W—H2B···O530.90 (6)1.94 (6)2.848 (11)180 (6)
O8—H8···N10.86 (9)2.26 (7)2.687 (5)111 (5)
O8—H8···O52iii0.86 (9)2.13 (8)2.836 (5)139 (6)
N11—H11···O810.96 (7)2.26 (7)2.694 (6)107 (5)
N11—H11···O1Wiv0.96 (7)1.86 (7)2.733 (5)150 (6)
O81—H81···O53v0.86 (6)1.80 (6)2.656 (5)175 (5)
C6—H6···O510.952.382.823 (6)108
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z; (iv) x+3/2, y1/2, z; (v) x1/2, y+1/2, z1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds