Download citation
Download citation
link to html
In the title compound, [Pd(C6H5)Cl(C3H4N2){P(C6H5)3}], the phenyl and Cl ligands lie mutually trans. The compound is the first structurally characterized complex with four mono­dentate Cl, P, N and (non-carbenoid) C ligands in a square-planar four-coordinate palladium(II) environment. The pyrazole ligand is coplanar with the latter array. The pyrazole NH group forms a bifurcated hydrogen bond to Cl, with an intra- and intermolecular component.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010401491X/ta1458sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010401491X/ta1458Isup2.hkl
Contains datablock I

CCDC reference: 248138

Comment top

Ongoing interest in the catalytic behaviour of palladium(II) systems has resulted in an abundance of structurally characterized square-planar four-coordinate palladium(II) arrays with the four different donor atoms Cl, P, N, C, which form a significant component of the Cambridge Structural Database (CSD, Version?; Allen, 2000), with well over a hundred entries at present. Our current interest in the area has drawn our attention to the dearth of any simple `baseline' systems involving these atoms as simple monodentate donors; in the overwhelming majority of such systems, the pairs of N, C or N, P donors are incorporated, in consequence of various rationales, into chelates. Indeed, we have found only one such system in our CSD search and it is also `unusual' in that the C donor is a carbene (Haltni et al., 1990), a system also prominent in our present interests. Accordingly, the structure of the title complex, (I), a single-crystal obtained as an unexpected decomposition product during studies of poly(pyrazol-1-yl)methane complexes of palladium, is reported here, as it contains a new array of monodentate ligand types which serves as a reference point for the study of the above type. \sch

The results of the room-temperature single-crystal X-ray study of (I) are consistent with the stoichiometry and connectivity implied in the above formulation, the four monodentate ligands comprising a (`square'-)planar four-coordinate array about the divalent Pd atom [χ2 Pd/Cl/P/N1/C101 670; atom deviations 0.008 (1), −0.010 (2), 0.001 (2), 0.018 (4), and −0.120 (5) Å, respectively]. One neutral molecular formula unit, devoid of crystallographic symmetry, with the Cl and phenyl donors mutually trans, comprises the asymmetric unit of the structure of (I) (Fig.1). The angle sum about the Pd atom is 360.0°, the greatest deviation from orthogonality being 87.3 (2)°. Other significant geometries are presented in Table 1.

Perhaps the most interesting comparison which can be made is with the carbenoid system alluded to above. In that system, Pd—P (in PMe2Ph) is 2.255 (2) Å [cf. 2.245 (1) Å in (I)], Pd—N [in aziridine, HN(CH2)3, a cyclic array with C—N—C 88.7 (5)°] 2.109 (5) Å [cf. 2.116 (4) Å in (I)], Pd—Cl 2.363 (2) Å [cf. 2.417 (2) Å in (I)] and Pd—C {in C[N(CH2)3]NHC6H4OMe-p; N—C—N 118.6 (5)°} 1.990 (6) Å [cf. 1.995 (4) Å in (I)] [angle sum 360.0°; greatest deviation from orthogonality 91.1 (2)°]. The only notable difference is in the Pd—Cl distances, presumably to be ascribed to significant and unsurprizing differences in the trans-effects of the two types of trigonal-C donors. In both cases, the planes of the latter lie quasi-normal to the coordination plane. In (I), the interplanar dihedral angle is 89.0 (2)°, the Pd deviations δPd being 0.277 (8)°.

The pyrazole ring [χ2 0.4, δPd 0.025 (9) Å] is quasi-coplanar with the coordination plane [interplanar dihedral 3.9 (2)°], perhaps in consequence of the `protonic' H atom at N2 forming in-plane hydrogen-bonds to the adjacent Cl ligand (Table 2), there being also a similar intermolecular contact.

The Pd—N1—N2/C5 angles are quite unsymmetrical [120.1 (3) and 134.2 (3)°, respectively]. The torsion angles (Table 1) show that the triphenylphosphine is rather distorted from exact threefold symmetry, while atom C11 is quasi-coplanar with the coordination plane, perhaps accounting for the enlargement of Pd—P—C11 and C21—P—C31.

Refinement top

The H atoms were located in difference Fourier maps and placed in idealized positions, with C—H distances of 0.95 and N—H distances of 0.92 Å, and with Uiso(H) = 1.25Ueq(C,N).

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: Xtal (Hall et al., 1995); program(s) used to solve structure: Xtal; program(s) used to refine structure: CRYLSQ in Xtal; molecular graphics: Xtal; software used to prepare material for publication: BONDLA and CIFIO in Xtal.

Figures top
[Figure 1] Fig. 1. A projection of a single molecule of (I), showing the atom-numbering scheme and with 20% probability displacement ellipsoids. H atoms have arbitrary radii of 0.1 Å.
Chloro(phenyl)(1H-pyrazole-κN2)(triphenylphosphine)palladium(II) top
Crystal data top
[Pd(C6H5)Cl(C3H4N2)(C18H15P)]Z = 2
Mr = 549.37F(000) = 556
Triclinic, P1Dx = 1.498 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 9.817 (2) ÅCell parameters from 12 reflections
b = 10.797 (5) Åθ = 14.5–15.6°
c = 13.523 (7) ŵ = 0.96 mm1
α = 72.85 (4)°T = 300 K
β = 88.21 (3)°Fragment, colourless
γ = 63.55 (3)°0.70 × 0.52 × 0.25 mm
V = 1217.8 (10) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
3887 reflections with I > 2σ(I)
Radiation source: sealed tubeθmax = 25.0°, θmin = 1.6°
Graphite monochromatorh = 1111
2θ/ω scansk = 1211
Absorption correction: gaussian
ABSORB in Xtal; Hall et al., 1995)
l = 160
Tmin = 0.63, Tmax = 0.7360 standard reflections every 60 min
4265 measured reflections intensity decay: none
4265 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.076H-atom parameters constrained
S = 1.28
3887 reflections(Δ/σ)max = 0.003
289 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.77 e Å3
0 constraints
Crystal data top
[Pd(C6H5)Cl(C3H4N2)(C18H15P)]γ = 63.55 (3)°
Mr = 549.37V = 1217.8 (10) Å3
Triclinic, P1Z = 2
a = 9.817 (2) ÅMo Kα radiation
b = 10.797 (5) ŵ = 0.96 mm1
c = 13.523 (7) ÅT = 300 K
α = 72.85 (4)°0.70 × 0.52 × 0.25 mm
β = 88.21 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
4265 independent reflections
Absorption correction: gaussian
ABSORB in Xtal; Hall et al., 1995)
3887 reflections with I > 2σ(I)
Tmin = 0.63, Tmax = 0.7360 standard reflections every 60 min
4265 measured reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.28Δρmax = 0.80 e Å3
3887 reflectionsΔρmin = 0.77 e Å3
289 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.27030 (4)0.24519 (3)0.36744 (2)0.0357 (3)
Cl0.17217 (15)0.46691 (13)0.41377 (11)0.0625 (14)
P0.38021 (12)0.33433 (12)0.23614 (8)0.0391 (10)
C110.4652 (5)0.2342 (5)0.1444 (3)0.043 (4)
C120.4097 (5)0.2891 (5)0.0395 (3)0.051 (5)
C130.4811 (7)0.2065 (7)0.0264 (4)0.065 (7)
C140.6047 (7)0.0742 (7)0.0112 (5)0.071 (7)
C150.6614 (6)0.0187 (6)0.1149 (5)0.068 (6)
C160.5930 (5)0.0987 (5)0.1820 (4)0.055 (5)
C210.5371 (5)0.3641 (4)0.2754 (3)0.043 (4)
C220.5565 (6)0.3697 (5)0.3744 (4)0.052 (5)
C230.6751 (7)0.3931 (6)0.4033 (5)0.069 (6)
C240.7742 (6)0.4111 (6)0.3342 (5)0.073 (7)
C250.7582 (6)0.4026 (6)0.2363 (5)0.069 (6)
C260.6401 (5)0.3808 (6)0.2061 (4)0.058 (5)
C310.2358 (5)0.5095 (5)0.1528 (3)0.041 (4)
C320.0900 (6)0.5267 (6)0.1368 (5)0.074 (6)
C330.0218 (6)0.6540 (7)0.0690 (6)0.091 (8)
C340.0111 (7)0.7652 (6)0.0181 (5)0.074 (6)
C350.1520 (7)0.7507 (6)0.0355 (5)0.082 (7)
C360.2652 (6)0.6237 (6)0.1024 (4)0.064 (6)
N10.1687 (4)0.1572 (4)0.4906 (3)0.044 (4)
N20.0836 (5)0.2382 (4)0.5494 (3)0.053 (4)
C30.0317 (6)0.1604 (6)0.6235 (4)0.064 (6)
C40.0848 (6)0.0269 (6)0.6131 (4)0.065 (6)
C50.1693 (6)0.0296 (5)0.5292 (4)0.054 (5)
C1010.3327 (5)0.0649 (4)0.3279 (3)0.041 (4)
C1020.4645 (6)0.0627 (5)0.3762 (4)0.055 (5)
C1030.4952 (7)0.1914 (5)0.3581 (4)0.068 (6)
C1040.3941 (8)0.1959 (6)0.2930 (4)0.072 (7)
C1050.2629 (7)0.0698 (6)0.2433 (4)0.066 (7)
C1060.2338 (6)0.0593 (5)0.2606 (3)0.051 (5)
H120.323900.382340.012260.08200*
H130.442710.243410.098180.09000*
H140.652180.019180.034310.09400*
H150.747980.074330.140810.08600*
H160.632870.060970.253570.07100*
H220.487940.357520.422980.07000*
H230.687500.396560.471910.08500*
H240.853790.429450.353770.08200*
H250.829030.411980.188540.08100*
H260.628760.376870.137570.08100*
H320.065740.450400.172740.08300*
H330.122180.664370.058270.09600*
H340.065090.851960.030000.08100*
H350.174170.829170.001410.07700*
H360.364450.615340.113160.07300*
H20.063630.332910.540490.06600*
H30.031160.194130.674050.06700*
H40.067940.051800.654600.07800*
H50.221220.050420.503560.06800*
H1020.534040.061340.422720.06100*
H1030.587030.277000.390190.08000*
H1040.413980.284980.282060.08200*
H1050.192680.072150.198170.09300*
H1060.144430.145900.225130.06200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.03984 (17)0.03385 (16)0.03780 (17)0.01913 (13)0.01114 (12)0.01411 (12)
Cl0.0750 (8)0.0500 (7)0.0758 (8)0.0326 (6)0.0342 (7)0.0337 (6)
P0.0404 (6)0.0408 (6)0.0396 (6)0.0214 (5)0.0072 (5)0.0130 (5)
C110.045 (2)0.047 (2)0.047 (2)0.027 (2)0.013 (2)0.018 (2)
C120.055 (3)0.065 (3)0.047 (3)0.035 (2)0.010 (2)0.022 (2)
C130.074 (4)0.089 (4)0.053 (3)0.048 (3)0.018 (3)0.034 (3)
C140.082 (4)0.090 (4)0.072 (4)0.052 (4)0.036 (3)0.051 (3)
C150.062 (3)0.061 (3)0.084 (4)0.026 (3)0.027 (3)0.032 (3)
C160.053 (3)0.052 (3)0.057 (3)0.022 (2)0.015 (2)0.020 (2)
C210.042 (2)0.037 (2)0.047 (2)0.0196 (19)0.0022 (18)0.0082 (18)
C220.059 (3)0.053 (3)0.051 (3)0.027 (2)0.003 (2)0.021 (2)
C230.075 (4)0.067 (3)0.070 (4)0.035 (3)0.012 (3)0.022 (3)
C240.062 (3)0.064 (3)0.091 (4)0.034 (3)0.021 (3)0.011 (3)
C250.051 (3)0.079 (4)0.079 (4)0.041 (3)0.001 (3)0.009 (3)
C260.049 (3)0.069 (3)0.056 (3)0.033 (3)0.004 (2)0.012 (2)
C310.038 (2)0.043 (2)0.043 (2)0.0183 (19)0.0046 (18)0.0142 (19)
C320.048 (3)0.059 (3)0.103 (5)0.028 (3)0.009 (3)0.003 (3)
C330.044 (3)0.081 (4)0.129 (6)0.022 (3)0.017 (3)0.015 (4)
C340.061 (3)0.059 (3)0.073 (4)0.009 (3)0.011 (3)0.006 (3)
C350.071 (4)0.053 (3)0.092 (4)0.027 (3)0.008 (3)0.015 (3)
C360.052 (3)0.057 (3)0.074 (3)0.030 (2)0.004 (3)0.001 (3)
N10.046 (2)0.043 (2)0.047 (2)0.0223 (17)0.0114 (16)0.0154 (17)
N20.062 (2)0.045 (2)0.051 (2)0.0230 (19)0.0208 (19)0.0153 (18)
C30.069 (3)0.064 (3)0.052 (3)0.030 (3)0.025 (3)0.010 (2)
C40.073 (3)0.060 (3)0.061 (3)0.037 (3)0.019 (3)0.008 (3)
C50.061 (3)0.047 (3)0.057 (3)0.030 (2)0.014 (2)0.014 (2)
C1010.047 (2)0.038 (2)0.039 (2)0.021 (2)0.0119 (18)0.0117 (18)
C1020.058 (3)0.050 (3)0.047 (3)0.018 (2)0.004 (2)0.014 (2)
C1030.088 (4)0.038 (3)0.058 (3)0.013 (3)0.016 (3)0.016 (2)
C1040.122 (5)0.045 (3)0.054 (3)0.039 (3)0.021 (3)0.021 (2)
C1050.103 (4)0.075 (4)0.046 (3)0.058 (3)0.015 (3)0.027 (3)
C1060.063 (3)0.050 (3)0.044 (2)0.029 (2)0.006 (2)0.015 (2)
Geometric parameters (Å, º) top
Pd—Cl2.4174 (15)C31—C361.370 (8)
Pd—P2.2451 (12)C32—C331.382 (7)
Pd—N12.116 (4)C32—H320.950
Pd—C1011.995 (5)C33—C341.365 (10)
P—C111.824 (5)C33—H330.952
P—C211.830 (6)C34—C351.342 (10)
P—C311.819 (3)C34—H340.952
C11—C121.388 (6)C35—C361.381 (6)
C11—C161.393 (5)C35—H350.951
C12—C131.397 (8)C36—H360.950
C12—H120.951N1—N21.347 (6)
C13—C141.355 (7)N1—C51.319 (7)
C13—H130.951N2—C31.349 (7)
C14—C151.375 (8)N2—H20.922
C14—H140.949C3—C41.347 (9)
C15—C161.389 (9)C3—H30.950
C15—H150.951C4—C51.385 (8)
C16—H160.951C4—H40.950
C21—C221.381 (7)C5—H50.949
C21—C261.392 (7)C101—C1021.390 (5)
C22—C231.386 (10)C101—C1061.383 (8)
C22—H220.949C102—C1031.379 (9)
C23—C241.365 (9)C102—H1020.951
C23—H230.953C103—C1041.373 (10)
C24—C251.372 (10)C103—H1030.949
C24—H240.950C104—C1051.385 (7)
C25—C261.378 (10)C104—H1040.948
C25—H250.952C105—C1061.383 (9)
C26—H260.951C105—H1050.948
C31—C321.374 (8)C106—H1060.951
Cl—Pd—P91.18 (5)C32—C31—C36118.1 (4)
Cl—Pd—N189.96 (12)C31—C32—C33120.7 (6)
Cl—Pd—C101175.06 (14)C31—C32—H32119.7
P—Pd—N1178.86 (12)C33—C32—H32119.6
P—Pd—C10191.54 (13)C32—C33—C34120.2 (6)
N1—Pd—C10187.34 (17)C32—C33—H33119.9
Pd—P—C11119.66 (18)C34—C33—H33120.0
Pd—P—C21115.34 (14)C33—C34—C35119.5 (5)
Pd—P—C31108.89 (15)C33—C34—H34120.3
C11—P—C21101.7 (2)C35—C34—H34120.2
C11—P—C31103.1 (2)C34—C35—C36120.9 (6)
C21—P—C31106.9 (2)C34—C35—H35119.5
P—C11—C12122.7 (3)C36—C35—H35119.6
P—C11—C16117.9 (4)C31—C36—C35120.6 (6)
C12—C11—C16119.4 (5)C31—C36—H36119.8
C11—C12—C13119.6 (4)C35—C36—H36119.6
C11—C12—H12120.4Pd—N1—N2120.1 (3)
C13—C12—H12120.0Pd—N1—C5134.2 (3)
C12—C13—C14120.6 (5)N2—N1—C5105.7 (4)
C12—C13—H13119.7N1—N2—C3110.1 (4)
C14—C13—H13119.7N1—N2—H2125.0
C13—C14—C15120.5 (6)C3—N2—H2124.9
C13—C14—H14119.8N2—C3—C4108.1 (5)
C15—C14—H14119.7N2—C3—H3125.8
C14—C15—C16120.1 (4)C4—C3—H3126.1
C14—C15—H15120.2C3—C4—C5105.0 (5)
C16—C15—H15119.7C3—C4—H4127.3
C11—C16—C15119.8 (4)C5—C4—H4127.8
C11—C16—H16120.0N1—C5—C4111.1 (5)
C15—C16—H16120.2N1—C5—H5124.7
P—C21—C22120.8 (4)C4—C5—H5124.1
P—C21—C26120.6 (4)Pd—C101—C102121.8 (4)
C22—C21—C26118.6 (5)Pd—C101—C106119.6 (3)
C21—C22—C23120.5 (5)C102—C101—C106118.0 (5)
C21—C22—H22119.7C101—C102—C103121.0 (5)
C23—C22—H22119.8C101—C102—H102119.4
C22—C23—C24120.4 (6)C103—C102—H102119.6
C22—C23—H23119.8C102—C103—C104120.3 (4)
C24—C23—H23119.8C102—C103—H103119.9
C23—C24—C25119.7 (7)C104—C103—H103119.8
C23—C24—H24120.1C103—C104—C105119.7 (6)
C25—C24—H24120.2C103—C104—H104120.2
C24—C25—C26120.6 (6)C105—C104—H104120.1
C24—C25—H25120.0C104—C105—C106119.7 (6)
C26—C25—H25119.4C104—C105—H105120.1
C21—C26—C25120.3 (5)C106—C105—H105120.2
C21—C26—H26119.8C101—C106—C105121.2 (4)
C25—C26—H26120.0C101—C106—H106119.5
P—C31—C32118.2 (4)C105—C106—H106119.2
P—C31—C36123.7 (4)
Cl—Pd—P—C11171.9 (2)Pd—P—C11—C1665.7 (5)
Cl—Pd—P—C2166.3 (2)Pd—P—C21—C2217.0 (4)
Cl—Pd—P—C3153.9 (2)Pd—P—C31—C3236.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl0.922.443.060 (5)124
N2—H2···Cli0.922.583.229 (4)128
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pd(C6H5)Cl(C3H4N2)(C18H15P)]
Mr549.37
Crystal system, space groupTriclinic, P1
Temperature (K)300
a, b, c (Å)9.817 (2), 10.797 (5), 13.523 (7)
α, β, γ (°)72.85 (4), 88.21 (3), 63.55 (3)
V3)1217.8 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.70 × 0.52 × 0.25
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionGaussian
ABSORB in Xtal; Hall et al., 1995)
Tmin, Tmax0.63, 0.73
No. of measured, independent and
observed [I > 2σ(I)] reflections
4265, 4265, 3887
Rint?
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.076, 1.28
No. of reflections3887
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.77

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, Xtal (Hall et al., 1995), CRYLSQ in Xtal, BONDLA and CIFIO in Xtal.

Selected geometric parameters (Å, º) top
Pd—Cl2.4174 (15)Pd—N12.116 (4)
Pd—P2.2451 (12)Pd—C1011.995 (5)
Cl—Pd—P91.18 (5)P—Pd—C10191.54 (13)
Cl—Pd—N189.96 (12)N1—Pd—C10187.34 (17)
Cl—Pd—C101175.06 (14)Pd—N1—N2120.1 (3)
P—Pd—N1178.86 (12)Pd—N1—C5134.2 (3)
Cl—Pd—P—C11171.9 (2)Pd—P—C11—C1665.7 (5)
Cl—Pd—P—C2166.3 (2)Pd—P—C21—C2217.0 (4)
Cl—Pd—P—C3153.9 (2)Pd—P—C31—C3236.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl0.922.443.060 (5)124
N2—H2···Cli0.922.583.229 (4)128
Symmetry code: (i) x, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds