Download citation
Download citation
link to html
The isolation and structural determination of rac-eudesm-7(11)-en-4-ol, C15H26O, from the steam distillate of the flowers of Dipterocarpus cornutus Dyer (Dipterocarpaceae) is described. The structure was determined from spectroscopic data and a single-crystal X-ray study. Two similar independent mol­ecules comprise the asymmetric unit of the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104012922/ta1451sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104012922/ta1451Isup2.hkl
Contains datablock I

CCDC reference: 213590

Comment top

In continuation of our studies on the chemical constituents of the flora of Sumatra (Wahyuni et al., 2003) we have investigated the flowers of Dipterocarpus cornutus Dyer (Dipterocarpacaea). This species, known in West Sumatra as kruing, is a resinous tree attaining a height of 20m and its wood is used in joinery. No chemical work has been done previously on this species.

Steam distillation of the flowers yielded a crystalline compound, m.p. 421–422 K, which was devoid of optical rotation. The spectroscopic properties of this racemic compound, which are recorded in the experimental section, suggested that it was eudesm-7(11)-en-4-ol. An enantiomer, (I), of this compound was isolated as an oil from Acritoppus prunifolius (Bohlmann et al., 1982). Although the authors recorded its 1H NMR spectrum, they omitted to record an optical rotation. These authors were apparently unaware that this eudesmenol had previously been synthesized (Chetty et al., 1968) in three steps from β-eudesmol, (II). More recently (Toyota et al., 1999), this laevorotatory compound has been isolated from the liverwort Chiloscyphus polyanthos and its synthesis from (II) was repeated, the absolute stereochemistry being confirmed by X-ray methods on a heavy-atom derivative. However, few spectral data have been recorded.

The dextrorotatory enantiomer, (III), m.p. 349–359 K, of (I) has been isolated from Laggera pterodonta (Zhao et al., 1977). The 1H and 13C NMR spectra recorded for (III) by these workers are similar to those recorded by us, except for one carbon signal.

None of the afore-mentioned authors made reference to the much earlier studies (Motl et al., 1958) on `juniper camphor', m.p. 439.5 K, which was isolated from the juniper oil obtained as a by-product during the fermentation of juniper berries in gin manufacture. On the basis of degradative evidence, these authors proposed structure (I), without specification of stereochemistry, for this compound, which was devoid of optical rotation. Chetty et al. (1968) claimed that the synthetic compound (I) was identical to Sorm's juniper camphor in all respects except optical rotation. The evidence adduced for the structure of the new compound suggests that it is the racemate of (I) and (III). Because of the large difference in melting point between the present compound and juniper camphor, we have confirmed the structural assignment by the determination of the crystal structure.

The results of the single-crystal X-ray study are consistent with the stoichiometry and connectivity proposed, the compound being a racemate, with two similar independent molecules comprising the asymmetric unit of the structure. The chirality of the latter is arbitrarily set, in accordance with that assigned to the earlier determination of the structure of cuauhtemone, (IV) (Ivie et al., 1974; Nakanishi et al., 1974), the conformations of all rings being (quasi-)chair (Fig. 1). In the present structure, the molecules pack with weak hydrogen bonding. The geometric parameters are essentially as expected for the structure of (III).

Experimental top

General directions have been reported previously (Baker et al., 2000). Dipterocarpus cornutus Dyer (Dipterocarpaceae) flowers were collected at Rimbo Panti, ca 300 m above sea level, 30 km north of Lubuk Sikaping, West Sumatra, Indonesia, in April 2001. The herbarium specimen (DR-150) was identified by Dr Rusjdi Tamin and is deposited at the herbarium of Andalas University. Air-dried flowers (250 g) were steam distilled and the oily distillate was crystallized from ethanol, yielding needles (500 mg) of the eudesmenol (m.p. 421–422 K, not raised on further recrystallization). High-resolution EIMS [M+H]++ found: 222.1985. 12C151H2616O requires m/z 222.1938. IR (max, cm−1, KBr): 3430, 2997, 2930, 2855, 1457, 1377, 1225, 1172, 1143, 1106, 926, 908. 1H NMR (500 MHz, CDC13): δ 0.96 (3H, s, 14-H), 1.05, (1H, m, 1-H), 1.10 (1H, dd, J = 14.9 and 5.5 Hz, 9-H), 1.13 (3H, d, J = 0.8 Hz, 15-H), 1.14 (1H, dd, J = 13.0 and 3.0 Hz, 5-H), 1.31 (1H, m, 3-H), 1.39 (1H, m, 1-H), 1.42 (1H, m, 9-H), 1.55 (2H, m, 2-H), 1.64 (1H, m, 6-H), 1.66 (3H, q, J = 1.1 Hz, 12-H or 13-H), 1.69 (3H, q, J = 1.1 Hz, 12-H or 13-H), 1.80 (1H, dddd, J = 12.5, 3.3, 3.3 and 1.7 Hz, 3-H), 1.89 (1H, dd, J = 14.2 and 14.2 Hz, 8-H), 2.49 (1H, ddddd, J = 14.5, 2.5, 2.5, 2.5 and 2.5 Hz, 8-H), 2.81 (1H, ddd, J = 13.4, 2.2 and 2.2 Hz, 6-H). 13C NMR (125 MHz, CDC13): δ 18.07 (C-14), 20.02 (C-12 or C-13), 20.07 (C-12 or C-13), 20.19 (C-2), 22.04 (C-15), 24.61 (C-6), 25.44 (C-8), 34.81 (C-10), 40.97 (C-1), 43.56 (C-3), 45.23 (C-9), 55.73 (C-5), 72.31 (C-4), 120.96 (C-11), 131.89 (C-7). EIMS: m/z 222, M++ (100%), 205 (16), 204 (81), 190 (15), 189 (100), 162 (10), 161 (55), 149 (20), 148 (20), 147 (19), 137 (23), 136 (11), 135 (56), 134 (25), 133 (35), 123 (28), 122 (35), 121 (45), 119 (19), 109 (35), 108 (19), 107 (37), 105 (38).

Refinement top

H atoms were located from difference Fourier maps, and C-bound H atoms then were placed at idealized positions [C—H = 0.95 Å, and Uiso(H) = 1.25Ueq(C) (CH and CH2) and 1.5Ueq(C,O) (CH3 and OH)] The material was difficult to obtain in a suitably crystalline form and the best available specimen was lost late in the data collection, resulting in 95% completeness after merging equivalents. SADABS (Sheldrick, 1996) was also instrumental (note the unreasonable Tmin and Tmax range) in smoothing irregularities arising from the non-optimal nature of the sample. The subsequent refinement, albeit on weak and limited data, was otherwise smooth and non-idiosyncratic.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: Xtal3.5 (Hall et al., 1995); program(s) used to refine structure: CRYLSQ in Xtal3.5; molecular graphics: Xtal3.5; software used to prepare material for publication: BONDLA and CIFIO in Xtal3.5.

Figures top
[Figure 1] Fig. 1. A projection of molecule 1 (molecule 2 is similar). (The first digit in the atom numbering denotes the number of the molecule.) 50% probability displacement ellipsoids are shown for C and O atoms. H atoms have arbitrary radii of 0.1 Å.
(I) top
Crystal data top
C15H26OZ = 4
Mr = 222.37F(000) = 496
Triclinic, P1Dx = 1.138 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 9.967 (4) ÅCell parameters from 1561 reflections
b = 9.973 (3) Åθ = 2.4–26.2°
c = 14.130 (5) ŵ = 0.07 mm1
α = 96.412 (6)°T = 150 K
β = 110.196 (6)°Bar, colourless
γ = 95.100 (6)°0.22 × 0.1 × 0.08 mm
V = 1297.6 (8) Å3
Data collection top
Bruker SMART CCD
diffractometer
4327 independent reflections
Radiation source: sealed tube2639 reflections with I > 2.00 σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
h = 1110
Tmin = 0.710, Tmax = 0.97k = 1111
9815 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: difference Fourier map
wR(F2) = 0.168H-atom parameters not refined
S = 1.06 w = 1/(σ2(F) + 0.37F2)
4327 reflections(Δ/σ)max = 0.004
289 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.49 e Å3
0 constraints
Crystal data top
C15H26Oγ = 95.100 (6)°
Mr = 222.37V = 1297.6 (8) Å3
Triclinic, P1Z = 4
a = 9.967 (4) ÅMo Kα radiation
b = 9.973 (3) ŵ = 0.07 mm1
c = 14.130 (5) ÅT = 150 K
α = 96.412 (6)°0.22 × 0.1 × 0.08 mm
β = 110.196 (6)°
Data collection top
Bruker SMART CCD
diffractometer
4327 independent reflections
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
2639 reflections with I > 2.00 σ(I)
Tmin = 0.710, Tmax = 0.97Rint = 0.040
9815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.168H-atom parameters not refined
S = 1.06Δρmax = 0.41 e Å3
4327 reflectionsΔρmin = 0.49 e Å3
289 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.4049 (4)0.6188 (4)0.6187 (3)0.0416 (17)
C120.5610 (4)0.6638 (4)0.6908 (3)0.0407 (16)
C130.5692 (4)0.6853 (3)0.8003 (3)0.0382 (15)
C140.5092 (4)0.5596 (3)0.8332 (2)0.0319 (14)
O140.4971 (3)0.6042 (2)0.93041 (18)0.0404 (11)
C150.3569 (4)0.5039 (3)0.7553 (2)0.0297 (13)
C160.2858 (4)0.3769 (3)0.7812 (2)0.0311 (14)
C170.1271 (4)0.3488 (3)0.7181 (3)0.0352 (15)
C180.1006 (4)0.3362 (4)0.6056 (3)0.0454 (17)
C190.1771 (4)0.4584 (4)0.5801 (3)0.0435 (17)
C1100.3396 (4)0.4854 (4)0.6412 (3)0.0336 (14)
C1110.0235 (4)0.3412 (3)0.7576 (3)0.0393 (16)
C1120.1359 (4)0.3223 (5)0.6950 (4)0.055 (2)
C1130.0517 (4)0.3511 (4)0.8700 (3)0.0473 (18)
C1140.4088 (4)0.3671 (4)0.6068 (3)0.0432 (17)
C1150.6143 (4)0.4554 (4)0.8536 (3)0.0387 (15)
C210.0205 (4)0.7232 (4)0.7934 (3)0.0392 (15)
C220.0177 (4)0.7298 (3)0.9074 (3)0.0363 (15)
C230.1798 (4)0.7527 (3)0.9623 (3)0.0358 (15)
C240.2545 (3)0.8802 (3)0.9410 (2)0.0283 (13)
O240.4074 (2)0.8722 (2)0.97952 (18)0.0357 (10)
C250.2051 (3)0.8816 (3)0.8259 (2)0.0278 (13)
C260.2761 (4)1.0070 (3)0.7973 (2)0.0338 (14)
C270.2522 (4)0.9871 (4)0.6851 (3)0.0390 (16)
C280.0933 (4)0.9504 (5)0.6203 (3)0.0493 (18)
C290.0222 (4)0.8310 (4)0.6532 (3)0.0468 (17)
C2100.0403 (3)0.8540 (3)0.7654 (2)0.0319 (14)
C2110.3561 (4)1.0018 (4)0.6477 (3)0.0418 (16)
C2120.3333 (5)0.9782 (5)0.5353 (3)0.060 (2)
C2130.5131 (4)1.0440 (4)0.7125 (3)0.0434 (17)
C2140.0447 (4)0.9680 (4)0.7828 (3)0.0413 (16)
C2150.2352 (4)1.0086 (3)1.0026 (3)0.0354 (15)
H11a0.402990.604890.550810.05000*
H11b0.348090.687610.626360.05000*
H12a0.595510.747740.675230.04900*
H12b0.618690.596950.682750.04900*
H13a0.514410.757020.808690.04400*
H13b0.666840.711970.843390.04400*
H140.433120.571910.959250.06100*
H150.305020.576760.763990.03700*
H16a0.299220.391040.851700.03800*
H16b0.331430.300760.767450.03800*
H18a0.000250.326960.568320.05700*
H18b0.136970.255470.585600.05700*
H19a0.135920.537340.595890.05400*
H19b0.162080.445210.509720.05400*
H112a0.150680.304510.624030.08200*
H112b0.176370.403110.707160.08200*
H112c0.185430.247410.712010.08200*
H113a0.000880.274450.881940.07000*
H113b0.020280.432140.892520.07000*
H113c0.152980.354730.907260.07000*
H114a0.369450.284440.619960.06200*
H114b0.510300.382590.642670.06200*
H114c0.390120.361450.535400.06200*
H115a0.573340.378900.873670.05300*
H115b0.702060.495050.906920.05300*
H115c0.633400.427250.793660.05300*
H21a0.122850.710660.760930.04800*
H21b0.017370.649060.768480.04800*
H22a0.021060.646100.920290.04400*
H22b0.023130.802350.931720.04400*
H23a0.218550.675810.941820.04100*
H23b0.199090.760741.033930.04100*
H240.418900.787820.955800.03600*
H250.241020.803770.803110.03400*
H26a0.377101.020840.835270.03900*
H26b0.235531.085370.813890.03900*
H28a0.083920.926720.551250.06000*
H28b0.045171.027410.626650.06000*
H29a0.064270.751890.640780.06100*
H29b0.078080.815860.613390.06100*
H212a0.357631.061490.513910.08800*
H212b0.234230.944380.496240.08800*
H212c0.392470.913520.521580.08800*
H213a0.556990.965600.732930.06400*
H213b0.520881.104380.772130.06400*
H213c0.562311.089540.675520.06400*
H214a0.007331.048970.766130.05900*
H214b0.035560.981780.852580.05900*
H214c0.143200.942990.741060.05900*
H215a0.283021.086850.988720.04800*
H215b0.277011.003881.074080.04800*
H215c0.136031.016470.985600.04800*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.037 (2)0.052 (2)0.037 (2)0.0035 (17)0.0139 (17)0.0123 (17)
C120.039 (2)0.038 (2)0.045 (2)0.0029 (16)0.0160 (18)0.0052 (17)
C130.039 (2)0.0319 (18)0.041 (2)0.0002 (15)0.0140 (17)0.0010 (15)
C140.0333 (18)0.0281 (17)0.0308 (18)0.0034 (14)0.0088 (15)0.0008 (14)
O140.0514 (15)0.0330 (13)0.0345 (13)0.0077 (11)0.0202 (12)0.0086 (10)
C150.0335 (18)0.0265 (16)0.0298 (18)0.0091 (14)0.0110 (15)0.0043 (13)
C160.0348 (18)0.0330 (18)0.0257 (17)0.0055 (15)0.0105 (14)0.0055 (13)
C170.0338 (19)0.0362 (19)0.0320 (19)0.0016 (15)0.0098 (16)0.0030 (15)
C180.0266 (18)0.067 (3)0.035 (2)0.0063 (18)0.0036 (16)0.0102 (18)
C190.038 (2)0.060 (2)0.030 (2)0.0008 (18)0.0082 (16)0.0138 (17)
C1100.0268 (17)0.041 (2)0.0299 (18)0.0011 (15)0.0066 (15)0.0080 (15)
C1110.041 (2)0.0321 (19)0.043 (2)0.0008 (16)0.0154 (18)0.0033 (16)
C1120.040 (2)0.060 (3)0.071 (3)0.005 (2)0.025 (2)0.016 (2)
C1130.056 (2)0.036 (2)0.058 (3)0.0001 (18)0.032 (2)0.0037 (18)
C1140.041 (2)0.048 (2)0.034 (2)0.0057 (17)0.0128 (17)0.0069 (16)
C1150.034 (2)0.037 (2)0.038 (2)0.0063 (16)0.0058 (16)0.0029 (15)
C210.0303 (19)0.035 (2)0.046 (2)0.0067 (15)0.0115 (17)0.0057 (16)
C220.036 (2)0.0244 (17)0.046 (2)0.0049 (14)0.0153 (17)0.0014 (15)
C230.038 (2)0.0266 (17)0.041 (2)0.0022 (15)0.0123 (16)0.0047 (15)
C240.0266 (17)0.0231 (16)0.0321 (18)0.0038 (13)0.0080 (14)0.0008 (13)
O240.0309 (13)0.0297 (12)0.0416 (14)0.0063 (10)0.0062 (11)0.0056 (10)
C250.0281 (17)0.0234 (16)0.0277 (17)0.0019 (13)0.0088 (14)0.0046 (13)
C260.0320 (18)0.0330 (18)0.0291 (18)0.0049 (14)0.0052 (15)0.0014 (14)
C270.034 (2)0.047 (2)0.0298 (19)0.0023 (16)0.0060 (16)0.0035 (16)
C280.037 (2)0.077 (3)0.0255 (19)0.004 (2)0.0053 (16)0.0031 (18)
C290.030 (2)0.068 (3)0.029 (2)0.0124 (18)0.0035 (16)0.0091 (18)
C2100.0262 (17)0.0363 (18)0.0268 (17)0.0046 (14)0.0061 (14)0.0042 (14)
C2110.040 (2)0.044 (2)0.037 (2)0.0010 (17)0.0097 (17)0.0037 (16)
C2120.057 (3)0.082 (3)0.041 (2)0.002 (2)0.020 (2)0.004 (2)
C2130.038 (2)0.044 (2)0.046 (2)0.0041 (17)0.0119 (18)0.0096 (17)
C2140.033 (2)0.049 (2)0.039 (2)0.0034 (17)0.0085 (16)0.0080 (17)
C2150.040 (2)0.0300 (18)0.0312 (18)0.0047 (15)0.0099 (16)0.0050 (14)
Geometric parameters (Å, º) top
C11—C121.529 (5)C21—C221.514 (5)
C11—C1101.541 (6)C21—C2101.539 (5)
C11—H11a0.948C21—H21a0.953
C11—H11b0.948C21—H21b0.946
C12—C131.510 (6)C22—C231.514 (5)
C12—H12a0.954C22—H22a0.951
C12—H12b0.941C22—H22b0.949
C13—C141.527 (5)C23—C241.528 (5)
C13—H13a0.959C23—H23a0.949
C13—H13b0.947C23—H23b0.955
C14—O141.445 (5)C24—O241.444 (4)
C14—C151.544 (4)C24—C251.530 (5)
C14—C1151.521 (5)C24—C2151.531 (5)
O14—H140.922O24—H240.902
C15—C161.538 (5)C25—C261.543 (5)
C15—C1101.549 (5)C25—C2101.550 (4)
C15—H150.949C25—H250.953
C16—C171.506 (4)C26—C271.506 (5)
C16—H16a0.951C26—H26a0.952
C16—H16b0.954C26—H26b0.954
C17—C181.508 (5)C27—C281.517 (5)
C17—C1111.333 (6)C27—C2111.320 (6)
C18—C191.523 (6)C28—C291.528 (6)
C18—H18a0.946C28—H28a0.947
C18—H18b0.965C28—H28b0.953
C19—C1101.532 (5)C29—C2101.521 (5)
C19—H19a0.959C29—H29a0.953
C19—H19b0.945C29—H29b0.951
C110—C1141.534 (6)C210—C2141.525 (5)
C111—C1121.510 (5)C211—C2121.512 (6)
C111—C1131.504 (6)C211—C2131.507 (5)
C112—H112a0.955C212—H212a0.954
C112—H112b0.957C212—H212b0.957
C112—H112c0.957C212—H212c0.959
C113—H113a0.952C213—H213a0.955
C113—H113b0.953C213—H213b0.955
C113—H113c0.959C213—H213c0.954
C114—H114a0.946C214—H214a0.947
C114—H114b0.951C214—H214b0.951
C114—H114c0.955C214—H214c0.947
C115—H115a0.949C215—H215a0.953
C115—H115b0.952C215—H215b0.959
C115—H115c0.949C215—H215c0.946
C12—C11—C110112.0 (3)C22—C21—C210112.3 (3)
C12—C11—H11a108.7C22—C21—H21a109.1
C12—C11—H11b109.3C22—C21—H21b109.5
C110—C11—H11a108.7C210—C21—H21a108.2
C110—C11—H11b108.3C210—C21—H21b108.3
H11a—C11—H11b109.9H21a—C21—H21b109.5
C11—C12—C13110.4 (4)C21—C22—C23110.8 (3)
C11—C12—H12a108.8C21—C22—H22a108.7
C11—C12—H12b109.9C21—C22—H22b109.2
C13—C12—H12a108.7C23—C22—H22a109.3
C13—C12—H12b109.1C23—C22—H22b109.4
H12a—C12—H12b109.9H22a—C22—H22b109.4
C12—C13—C14113.9 (3)C22—C23—C24113.6 (3)
C12—C13—H13a108.5C22—C23—H23a108.6
C12—C13—H13b108.8C22—C23—H23b108.1
C14—C13—H13a107.7C24—C23—H23a108.6
C14—C13—H13b108.9C24—C23—H23b108.7
H13a—C13—H13b109.0H23a—C23—H23b109.1
C13—C14—O14106.7 (3)C23—C24—O24106.9 (3)
C13—C14—C15109.4 (3)C23—C24—C25109.9 (2)
C13—C14—C115111.7 (3)C23—C24—C215111.0 (3)
O14—C14—C15108.5 (3)O24—C24—C25108.7 (3)
O14—C14—C115105.4 (3)O24—C24—C215105.4 (2)
C15—C14—C115114.7 (3)C25—C24—C215114.6 (3)
C14—O14—H14130.5C24—O24—H24106.9
C14—C15—C16113.8 (3)C24—C25—C26113.4 (2)
C14—C15—C110116.6 (3)C24—C25—C210116.8 (3)
C14—C15—H15101.2C24—C25—H25102.2
C16—C15—C110111.1 (2)C26—C25—C210111.4 (3)
C16—C15—H15107.5C26—C25—H25107.4
C110—C15—H15105.3C210—C25—H25104.3
C15—C16—C17110.8 (3)C25—C26—C27110.9 (3)
C15—C16—H16a109.1C25—C26—H26a109.4
C15—C16—H16b108.7C25—C26—H26b109.0
C17—C16—H16a109.8C27—C26—H26a109.0
C17—C16—H16b109.4C27—C26—H26b109.5
H16a—C16—H16b109.1H26a—C26—H26b109.0
C16—C17—C18111.6 (3)C26—C27—C28111.6 (3)
C16—C17—C111123.9 (3)C26—C27—C211124.3 (3)
C18—C17—C111124.5 (3)C28—C27—C211124.1 (3)
C17—C18—C19111.8 (3)C27—C28—C29112.0 (3)
C17—C18—H18a109.6C27—C28—H28a108.9
C17—C18—H18b108.7C27—C28—H28b108.9
C19—C18—H18a109.8C29—C28—H28a109.0
C19—C18—H18b108.4C29—C28—H28b108.6
H18a—C18—H18b108.6H28a—C28—H28b109.4
C18—C19—C110113.4 (3)C28—C29—C210113.5 (3)
C18—C19—H19a107.9C28—C29—H29a108.5
C18—C19—H19b109.5C28—C29—H29b108.8
C110—C19—H19a107.8C210—C29—H29a108.2
C110—C19—H19b109.0C210—C29—H29b108.6
H19a—C19—H19b109.2H29a—C29—H29b109.2
C11—C110—C15108.6 (3)C21—C210—C25108.2 (3)
C11—C110—C19109.7 (3)C21—C210—C29109.5 (3)
C11—C110—C114108.9 (3)C21—C210—C214108.8 (3)
C15—C110—C19106.4 (3)C25—C210—C29106.1 (3)
C15—C110—C114115.1 (3)C25—C210—C214115.6 (2)
C19—C110—C114108.0 (3)C29—C210—C214108.6 (3)
C17—C111—C112124.1 (4)C27—C211—C212124.6 (3)
C17—C111—C113123.9 (3)C27—C211—C213123.8 (3)
C112—C111—C113112.0 (4)C212—C211—C213111.6 (4)
C111—C112—H112a110.0C211—C212—H212a110.3
C111—C112—H112b110.2C211—C212—H212b109.9
C111—C112—H112c110.7C211—C212—H212c110.7
H112a—C112—H112b108.4H212a—C212—H212b108.5
H112a—C112—H112c108.6H212a—C212—H212c108.5
H112b—C112—H112c109.0H212b—C212—H212c108.9
C111—C113—H113a109.3C211—C213—H213a109.7
C111—C113—H113b109.3C211—C213—H213b109.5
C111—C113—H113c110.1C211—C213—H213c110.6
H113a—C113—H113b109.0H213a—C213—H213b108.7
H113a—C113—H113c110.3H213a—C213—H213c109.6
H113b—C113—H113c108.7H213b—C213—H213c108.9
C110—C114—H114a109.8C210—C214—H214a109.1
C110—C114—H114b109.6C210—C214—H214b109.1
C110—C114—H114c109.4C210—C214—H214c109.2
H114a—C114—H114b109.7H214a—C214—H214b109.7
H114a—C114—H114c109.4H214a—C214—H214c110.0
H114b—C114—H114c109.0H214b—C214—H214c109.6
C14—C115—H115a109.3C24—C215—H215a109.7
C14—C115—H115b109.4C24—C215—H215b109.6
C14—C115—H115c109.7C24—C215—H215c110.3
H115a—C115—H115b109.4H215a—C215—H215b108.5
H115a—C115—H115c109.6H215a—C215—H215c109.6
H115b—C115—H115c109.4H215b—C215—H215c109.1
C110—C11—C12—C1359.0 (4)C210—C21—C22—C2358.8 (4)
C12—C11—C110—C1554.2 (4)C22—C21—C210—C2554.4 (4)
C11—C12—C13—C1457.6 (4)C21—C22—C23—C2456.5 (4)
C12—C13—C14—C1551.1 (4)C22—C23—C24—C2550.2 (4)
C13—C14—C15—C11048.7 (4)C23—C24—C25—C21048.7 (4)
C110—C15—C16—C1759.8 (4)C210—C25—C26—C2759.3 (4)
C14—C15—C110—C1150.5 (4)C24—C25—C210—C2150.7 (4)
C16—C15—C110—C1958.8 (4)C26—C25—C210—C2959.2 (4)
C15—C16—C17—C1855.2 (4)C25—C26—C27—C2853.6 (4)
C16—C17—C18—C1952.5 (4)C26—C27—C28—C2951.2 (4)
C16—C17—C111—C1133.8 (6)C26—C27—C211—C2131.8 (6)
C18—C17—C111—C1121.7 (6)C28—C27—C211—C2122.7 (7)
C17—C18—C19—C11055.2 (5)C27—C28—C29—C21055.0 (5)
C18—C19—C110—C1556.9 (4)C28—C29—C210—C2557.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14···O14i0.922.473.008 (3)118
O24—H24···O140.902.102.977 (4)165
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H26O
Mr222.37
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.967 (4), 9.973 (3), 14.130 (5)
α, β, γ (°)96.412 (6), 110.196 (6), 95.100 (6)
V3)1297.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.22 × 0.1 × 0.08
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
SADABS; Sheldrick, 1996
Tmin, Tmax0.710, 0.97
No. of measured, independent and
observed [I > 2.00 σ(I)] reflections
9815, 4327, 2639
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.168, 1.06
No. of reflections4327
No. of parameters289
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.41, 0.49

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT, Xtal3.5 (Hall et al., 1995), CRYLSQ in Xtal3.5, BONDLA and CIFIO in Xtal3.5.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds