Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The first of the title compounds, [Fe(C9H10N4O)3]Cl2·5.5H2O, is the first structurally characterized homoleptic tris­[bis­(imidazol-2-yl) ­ketone]-metal complex to be structurally defined. In the second of the title compounds, [FeCl2(C9H10N4O)2], a pair of monodentate donors supplants one of the bidentate ligands. In the third complex, [Fe2Cl4(C9H10N4O)2]·2CH3OH, a centrosymmetric binuclear compound with a pair of bridging chloride ligands, the introduction of a third chloro ligand results in five-coordination about each of the metal atoms; the environments of the latter are square pyramidal, with a chloro ligand at the apex and the two bidentate arrays about the base of the pyramid.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104010881/ta1447sup1.cif
Contains datablocks global, II, III, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104010881/ta1447Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104010881/ta1447IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104010881/ta1447IIIsup4.hkl
Contains datablock III

CCDC references: 245851; 245852; 245853

Comment top

Metal chelate complexes of N,N'-bidentate ligands with aromatic heterocyclic donors have long been prominent features in coordination chemistry. Many of these are derivative of 2,2'-bipyridyl, but more recently, the chelate ring size and flexibility have been increased by the introduction of diverse linking groups between the two rings. Thus bis(2-pyridyl)ketone complexes have been widely explored, with, in turn, further modifications by the incorporation of other heterocycles, some of different ring size, bis(imidazol-2-yl)ketone being of particular relevance here. Structurally characterized chelate complexes of ligands of the latter type have been restricted to arrays of metals with coordination number four, with the exception of chromium(III) (Rüther et al., 2002), ruthenium (Elgafi et al., 1997), copper(I) (Gorun et al., 1996) and copper(II) complexes (Byers et al., 1985). Some of these are homoleptic bis(ligand) metal ion complexes for diversely substituted ligands, those of particular interest in the context of the present ligands being for M = Zn(II) (Chen et al., 1995), Cu(II) (Stange & Kaim, 1996; McMaster et al., 1996) and Cu(I) (McMaster et al., 1996), homoleptic arrays of the unsubstituted ligand being recorded for these metals also (Long et al., 2001; Place et al., 1998).

The intention of the present work was to explore the nature of complexes formed with a metal ion system inherently capable of yielding complexes in which the coordination number about the metal is intrinsically higher. Iron(II) is such a system; other studies recorded in an accompanying paper (Batten et al., 2004a; see also references therein) have shown the possibility of forming homoleptic bis(ligand) metal arrays with tris-imidazolyl donors by the reaction of the ligand with the metal chloride. We turned our attention to such a possibility here with the parallel ligand bis(1-methyl-1H-imidazolyl) ketone, obtaining the three title complexes, which have been characterized by diffraction studies.

The results of the single-crystal X-ray studies are consistent in stoichiometry and connectivity with the formulation of the three title complexes, (I), (III) and (III), respectively. In (I) and (II), one mononuclear formula unit, devoid of crystallographic symmetry, composes the asymmetric unit of each structure; in (III), the asymmetric unit comprises one-half of the centrosymmetric binuclear unit. In (I), layers of cations, normal to a*, are interleaved by layers of anions and solvent moieties; although not modelled as disordered or with diminished site occupancies, displacement parameters of the latter are high, diminishing the precision of the determination. A similar comment applies to (III), where, despite good quality data, solvent disorder again militates against optimal precision in the determination.

Compound (I) is the first structurally characterized tris[bis(imidazolyl)ketone]metal ion system; like all such systems, the complex is inherently chiral (Fig. 1), although the crystal overall is racemic. The environment about the metal atom is remarkably close to octahedral; the mean Fe—N distance is 1.983 (12) Å, consistent with low-spin iron(II) with the maximum (cis angle) deviation from orthogonality [85.75 (15)°; Table 1). The cation departs from ideal 32 symmetry by distortion of the chelate rings; comparison with the other two complexes suggests the distortion to be a concomitant of Fe—N distance. The driver of this distortion? may just as well be close contacts at the periphery between the carbonyl and the methyl substitutents to either side; these should be most spacious in (I), where Fe—N is short, but here the distortion is largest, interplanar dihedral angles between the heterocycle planes for the three ligands being 18.0 (2), 24.5 (2) and 16.5 (2)°, with Fe atom deviations from the individual planes of 0.075 (6), 0.125 (6), 0.064 (6), 0.301 (6), 0.101 (6) and 0.307 (6) Å. The O(n0)···C(n131,n231) distances lie in the range 2.806 (5)–2.896 (6) Å.

In (II), one of the ligands is supplanted by a pair of chloride donors, cis in the coordination sphere, resulting in a neutral molecule in which the Fe-donor distances (Table 2) are consistent with a high-spin rather than a low-spin electronic state. The interplanar dihedral angles between the heterocycle moieties for the two ligands are 14.62 (8) and 9.42 (8)°. The Fe atom deviations from the individual planes are very large, viz. 0.276 (3), 0.301 (3), 0.563 (3) and 0.597 (3) Å; the C10/C20 deviations are much less [0.048 (3) Å maximum], so that the ring conformations are envelopes. The O(n0)···C(n131,n231) distances are generally smaller, despite the `flatter' ligand profile [range 2.782 (3)–2.817 (3) Å]. Angular distortions from orthogonality about the metal atom are greater in (II) than in (I), most notably in the bidentate 'bite' angles [89.68 (14), 88.95 (13) and 89.9 (14) in (I), and 82.17 (6) and 82.33 (6)° in (II)], in keeping with increased Fe—N distances. Furthermore, in (I), the N···N intraligand distances are 2.801 (4), 2.763 (4) and 2.807 (4) Å, while in (II) they are 2.868 (2) and 2.881 (2) Å.

In (III), with the displacement of a further bidentate ligand, the coordination number contracts to five, with concomitant formation of a centrosymmetric µ,µ'-dichloro-bridged binuclear complex and a (chelate-N2)FeCl(µ-Cl)2 coordination environment. This five-coordinate array may be contrasted with the mononuclear (chelate-N2)Fe(HOMe)Cl2 compound, (IV), described in the preceding paper (Batten et al., 2004b), which exhibits a similar bite angle [2.864 (10) Å in (III), cf. 2.855 (3) Å in (IV)]. In (IV), the Fe atom environment is quasi-trigonal bipyramidal; in (III), it is quasi-square-pyramidal, with the pyramid apex occupied by the monodentate Cl atom and the base composed of the pair of bidentate ligands. The Fe—N distances for the two complexes are similar [2.146 (6) and 2.148 (10) Å in (III), cf. 2.108 (2) (basal) and 2.149 (2) Å (axial) in (IV)]; the Fe—Cl(terminal) distance in (III) is 2.282 (3) Å, and the bridging distances are 2.455 (4) and 2.470 (3) Å [cf. 2.3246 (7) and 2.3290 (6) Å in (IV)]. The present ligand is more nearly planar than (IV) [the interplanar dihedral angle between the pair of heterocycles is 5.0 (4)°], but the Fe atom deviations are again large [0.43 (1) and 0.36 (1) Å], so that the chelate ring is again an envelope.

Experimental top

For the synthesis of (I), a solution of bis(l-methylimidazol-2-yl)methanone (0.233 g, 1.23 mmol) in methanol (40 ml) was added to a stirred solution of iron(II) chloride (0.052 g, 0.410 mmol) in methanol (20 ml). The rose colored solution that formed initially became purple as the amount of ligand added exceeded ca 0.25 equivalents. The solvent was removed under reduced pressure to give a dark-blue solid. This was recrystallized from methanol/dichloromethane, then from methanol/ether, and washed with light petroleum (3 × 7 ml) to give a blue microcrystalline solid, which was dried in a vacuum. The solid was dissolved in methanol (10 ml) and left to crystallize in a 50 ml Erlenmeyer flask capped with a small watch glass. A crop of dark-blue crystals suitable for X-ray analysis (0.06 g, 60%) was obtained. For the synthesis of (II), a solution of bis(l-methylimidazol-2-yl)methanone (0.7154 g, 3.761 mmol) in methanol (10 ml) was added dropwise to a stirred solution of iron(II) chloride (0.2383 g, 1.880 mmol) in methanol (16.5 ml). The rose colored solution that formed initially became purple as the amount of ligand added exceeded 1 equivalent. Diethylether (60 ml) was added to the dark-violet solution and the mixture was left to crystallize. Dark-blue crystals formed and were collected by cannula filtration, washed with diethyl ether (4 × 5 ml) and light petroleum (2 × 5 ml), and dried in a vacuum. Yield 0.8214 g, 1.620 mmol, 86%. Analysis found: C 42.82, H 3.68, N 21.82%; C18H20N8O2FeCl2 requires: C 42.63, H 3.97, N 22.09%. For the synthesis of (III), a solution of bis(l-methylimidazol-2-yl)methanone (0.1069 g, 0.562 mmol) in methanol (5.0 ml) was added dropwise to a stirred solution of iron(II) chloride (0.1867 g, 1.473 mmol) in methanol (20 ml). The blood-red solution that formed initially became purple at completion of ligand addition, whereupon methanol (10 ml) was added to return some of the red color to the solution. A layer of diethyl ether (60 ml) and a layer of light petroleum (17 ml) were added, and the reaction was allowed to stand for 3 d. The resulting mixture was filtered and the solvent was removed under reduced pressure to give a purple solid that was recrystallized from dichloromethane (30 ml) and light petroleum (50 ml). A mixture of blue and red crystals formed and were collected by cannula filtration; the red crystals were washed carefully with small portions of dichloromethane (40 ml) to remove the blue material and then dried in a vacuum. Yield 0.0926 g, 0.133 mmol, 24%.

Refinement top

H atoms were located from difference Fourier maps, and placed at idealized positions [C—H = 0.95 Å, and UisoH = 1.25Ueq(CCH) and 1.5Ueq(CCH3)] and not refined. For (I) and (III), the Hn atoms of the solvent molecules were not located. For (I), the site occupancy factor of atom O6 was assigned a value of 0.5 after trial refinement. For (III), the largest peak in the final difference map was located close to the atoms of the disordered methanol molecule (0.60 Å from C1 and 0.48 Å from O1').

Computing details top

For all compounds, data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: Xtal3.5 (Hall et al., 1995); program(s) used to refine structure: CRYLSQ in Xtal3.5; molecular graphics: Xtal3.5; software used to prepare material for publication: BONDLA and CIFIO in Xtal3.5.

Figures top
[Figure 1] Fig. 1. The cation of (I), projected down its quasi-3 axis. 50% probability displacement ellipsoids are shown for the non-H atoms, H atoms having arbitrary radii of 0.1 Å.
[Figure 2] Fig. 2. A single molecule of (II). 50% probability displacement ellipsoids are shown for the non-H atoms, H atoms having arbitrary radii of 0.1 Å.
[Figure 3] Fig. 3. The dimer of (III); displacement ellipsoids are shown at the 20% probability level.
(I) top
Crystal data top
[Fe(C9H10N4O)3]Cl2·5.5H2OF(000) = 3320
Mr = 796.54Dx = 1.497 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -c 2ycCell parameters from 6946 reflections
a = 21.3036 (10) Åθ = 2.5–28.5°
b = 13.9936 (7) ŵ = 0.64 mm1
c = 24.4634 (10) ÅT = 153 K
β = 104.230 (1)°Bar, dark blue
V = 7069.1 (6) Å30.24 × 0.14 × 0.13 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
9402 independent reflections
Radiation source: sealed tube6365 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
ω scansθmax = 29.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2928
Tmin = 0.69, Tmax = 0.86k = 1919
73261 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: difference Fourier map
wR(F2) = 0.13H-atom parameters not refined
S = 1.38 w = 1/(σ2(F2) + .60F2)
6365 reflections(Δ/σ)max = 0.001
460 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = 1.06 e Å3
0 constraints
Crystal data top
[Fe(C9H10N4O)3]Cl2·5.5H2OV = 7069.1 (6) Å3
Mr = 796.54Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.3036 (10) ŵ = 0.64 mm1
b = 13.9936 (7) ÅT = 153 K
c = 24.4634 (10) Å0.24 × 0.14 × 0.13 mm
β = 104.230 (1)°
Data collection top
Bruker SMART CCD
diffractometer
9402 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6365 reflections with I > 2σ(I)
Tmin = 0.69, Tmax = 0.86Rint = 0.083
73261 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.13H-atom parameters not refined
S = 1.38Δρmax = 1.16 e Å3
6365 reflectionsΔρmin = 1.06 e Å3
460 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe0.31160 (3)0.35463 (4)0.19031 (2)0.0234 (2)
N1110.37546 (15)0.3402 (2)0.14385 (13)0.0249 (15)
C1120.36879 (18)0.2903 (3)0.09635 (16)0.0250 (17)
N1130.42219 (16)0.3004 (3)0.07517 (14)0.0281 (16)
C11310.4364 (2)0.2534 (4)0.0260 (2)0.041 (2)
C1140.4641 (2)0.3580 (3)0.11116 (18)0.032 (2)
C1150.4352 (2)0.3831 (3)0.15315 (18)0.032 (2)
C100.3146 (2)0.2282 (3)0.07008 (17)0.0263 (17)
O100.30836 (15)0.1985 (2)0.02233 (13)0.0368 (16)
N1210.26417 (16)0.2417 (2)0.15250 (14)0.0252 (15)
C1220.26888 (18)0.2021 (3)0.10410 (16)0.0237 (17)
N1230.22502 (16)0.1297 (2)0.08905 (14)0.0274 (16)
C12310.2158 (2)0.0665 (3)0.0403 (2)0.037 (2)
C1240.1922 (2)0.1233 (3)0.1297 (2)0.035 (2)
C1250.2158 (2)0.1922 (3)0.16829 (19)0.034 (2)
N2110.35843 (16)0.4681 (2)0.22579 (14)0.0285 (16)
C2120.3643 (2)0.5516 (3)0.20061 (18)0.031 (2)
N2130.40219 (18)0.6123 (3)0.23803 (16)0.0350 (18)
C21310.4156 (3)0.7136 (4)0.2292 (2)0.049 (3)
C2140.4202 (2)0.5661 (4)0.2882 (2)0.037 (2)
C2150.3935 (2)0.4774 (3)0.28042 (18)0.033 (2)
C200.3365 (2)0.5758 (3)0.14120 (18)0.031 (2)
O200.35669 (17)0.6431 (2)0.11865 (14)0.0439 (17)
N2210.26052 (16)0.4376 (2)0.13005 (14)0.0255 (15)
C2220.2806 (2)0.5190 (3)0.11170 (17)0.0285 (19)
N2230.23831 (19)0.5485 (3)0.06358 (14)0.0334 (18)
C22310.2405 (3)0.6359 (3)0.0305 (2)0.045 (2)
C2240.1892 (2)0.4838 (3)0.05168 (18)0.034 (2)
C2250.2030 (2)0.4158 (3)0.09263 (17)0.0289 (19)
N3110.36250 (16)0.2655 (2)0.24806 (14)0.0258 (15)
C3120.3482 (2)0.2321 (3)0.29481 (17)0.0275 (18)
N3130.39352 (16)0.1680 (2)0.32155 (15)0.0297 (16)
C31310.4008 (2)0.1226 (3)0.3769 (2)0.038 (2)
C3140.4376 (2)0.1607 (3)0.29024 (19)0.033 (2)
C3150.4182 (2)0.2200 (3)0.24524 (19)0.034 (2)
C300.2896 (2)0.2538 (3)0.31387 (18)0.032 (2)
O300.27204 (18)0.2030 (3)0.34772 (16)0.050 (2)
N3210.25174 (16)0.3786 (2)0.24002 (14)0.0262 (15)
C3220.25281 (19)0.3390 (3)0.28974 (17)0.0268 (18)
N3230.21170 (16)0.3855 (3)0.31566 (14)0.0286 (16)
C32310.2024 (2)0.3687 (3)0.37237 (19)0.037 (2)
C3240.1842 (2)0.4579 (3)0.28102 (18)0.031 (2)
C3250.2089 (2)0.4535 (3)0.23435 (18)0.034 (2)
Cl10.41362 (6)0.05731 (9)0.11969 (6)0.0454 (6)
Cl20.38067 (8)0.37575 (13)0.41694 (7)0.0696 (9)
O10.0298 (2)0.4443 (3)0.03347 (18)0.069 (3)
O20.0001 (3)0.4042 (4)0.1945 (2)0.089 (3)
O30.4051 (3)0.7624 (4)0.0239 (2)0.098 (4)
O40.0002 (3)0.1750 (6)0.1010 (3)0.152 (6)
O50.0636 (3)0.3391 (6)0.1180 (3)0.129 (5)
O60.4568 (5)0.4537 (6)0.0328 (4)0.076 (6).50000
H1131a0.479930.265770.025240.05800*
H1131b0.429520.186740.027880.05800*
H1131c0.408220.278340.007580.05800*
H1140.505960.376970.107820.03900*
H1150.453710.424220.184040.03800*
H1231a0.256010.037780.039380.05700*
H1231b0.200400.102780.006610.05700*
H1231c0.185160.018310.042370.05700*
H1240.159020.078950.131250.04300*
H1250.201370.204160.201520.04000*
H2131a0.376700.745820.213310.07100*
H2131b0.443520.717350.203640.07100*
H2131c0.437250.741890.263930.07100*
H2140.446490.591200.322180.04500*
H2150.398540.429380.308650.04000*
H2231a0.206970.634220.003040.06700*
H2231b0.235600.690130.052240.06700*
H2231c0.281470.639060.021210.06700*
H2240.151630.486040.021170.04000*
H2250.176910.361270.094760.03400*
H3131a0.444600.102170.390570.05700*
H3131b0.390850.167890.402580.05700*
H3131c0.372850.069480.373300.05700*
H3140.475350.121200.298560.04000*
H3150.440100.228500.215910.04000*
H3231a0.243680.365170.398680.05400*
H3231b0.178170.420010.382510.05400*
H3231c0.180060.310260.372790.05400*
H3240.153630.503280.287730.03700*
H3250.197560.494330.202740.04100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.0224 (3)0.0250 (3)0.0240 (3)0.0003 (2)0.0080 (2)0.0015 (2)
N1110.0224 (16)0.0272 (17)0.0263 (16)0.0005 (13)0.0080 (13)0.0020 (13)
C1120.0229 (18)0.028 (2)0.026 (2)0.0027 (15)0.0090 (15)0.0037 (16)
N1130.0240 (16)0.0335 (19)0.0291 (17)0.0008 (14)0.0111 (14)0.0013 (15)
C11310.035 (2)0.054 (3)0.042 (3)0.003 (2)0.025 (2)0.004 (2)
C1140.0238 (19)0.039 (2)0.036 (2)0.0003 (18)0.0102 (16)0.004 (2)
C1150.025 (2)0.038 (2)0.034 (2)0.0065 (17)0.0077 (17)0.0030 (18)
C100.0252 (19)0.028 (2)0.027 (2)0.0035 (16)0.0079 (15)0.0001 (16)
O100.0373 (17)0.0449 (19)0.0306 (16)0.0067 (14)0.0130 (13)0.0056 (14)
N1210.0240 (16)0.0256 (17)0.0274 (17)0.0006 (13)0.0089 (13)0.0008 (14)
C1220.0213 (18)0.0228 (19)0.027 (2)0.0019 (14)0.0063 (15)0.0012 (15)
N1230.0297 (17)0.0232 (17)0.0306 (17)0.0038 (14)0.0098 (14)0.0021 (14)
C12310.045 (3)0.031 (2)0.039 (2)0.011 (2)0.017 (2)0.010 (2)
C1240.035 (2)0.036 (2)0.040 (2)0.0096 (18)0.019 (2)0.003 (2)
C1250.035 (2)0.035 (2)0.038 (2)0.0068 (18)0.020 (2)0.002 (2)
N2110.0283 (17)0.0292 (18)0.0302 (18)0.0016 (14)0.0113 (14)0.0047 (14)
C2120.029 (2)0.030 (2)0.036 (2)0.0046 (17)0.0116 (17)0.0086 (18)
N2130.0299 (19)0.033 (2)0.043 (2)0.0038 (15)0.0097 (16)0.0092 (17)
C21310.042 (3)0.033 (3)0.065 (4)0.010 (2)0.002 (2)0.010 (2)
C2140.030 (2)0.045 (3)0.036 (2)0.000 (2)0.0053 (18)0.010 (2)
C2150.029 (2)0.039 (2)0.032 (2)0.0011 (18)0.0073 (17)0.0048 (19)
C200.034 (2)0.027 (2)0.035 (2)0.0027 (17)0.0136 (18)0.0042 (18)
O200.053 (2)0.0368 (18)0.0467 (19)0.0118 (16)0.0216 (16)0.0023 (16)
N2210.0265 (17)0.0253 (17)0.0263 (16)0.0001 (14)0.0096 (13)0.0027 (14)
C2220.035 (2)0.027 (2)0.025 (2)0.0009 (17)0.0118 (17)0.0022 (16)
N2230.047 (2)0.0304 (19)0.0248 (17)0.0050 (17)0.0120 (16)0.0008 (15)
C22310.075 (4)0.029 (2)0.031 (2)0.005 (2)0.013 (2)0.004 (2)
C2240.037 (2)0.037 (2)0.028 (2)0.006 (2)0.0083 (18)0.0051 (18)
C2250.027 (2)0.031 (2)0.028 (2)0.0018 (16)0.0059 (16)0.0063 (17)
N3110.0235 (16)0.0272 (17)0.0284 (17)0.0007 (13)0.0094 (13)0.0002 (14)
C3120.031 (2)0.023 (2)0.030 (2)0.0029 (16)0.0121 (17)0.0005 (16)
N3130.0274 (17)0.0299 (19)0.0339 (19)0.0043 (14)0.0115 (15)0.0051 (14)
C31310.043 (3)0.037 (2)0.038 (2)0.011 (2)0.016 (2)0.011 (2)
C3140.024 (2)0.039 (2)0.038 (2)0.0043 (17)0.0112 (17)0.004 (2)
C3150.024 (2)0.045 (3)0.037 (2)0.0064 (18)0.0141 (18)0.006 (2)
C300.034 (2)0.032 (2)0.035 (2)0.0086 (18)0.0172 (18)0.0047 (18)
O300.057 (2)0.045 (2)0.062 (2)0.0197 (17)0.0416 (19)0.0228 (18)
N3210.0257 (16)0.0258 (17)0.0276 (17)0.0021 (13)0.0074 (13)0.0018 (13)
C3220.0249 (19)0.028 (2)0.030 (2)0.0024 (16)0.0117 (16)0.0015 (16)
N3230.0278 (17)0.0314 (18)0.0294 (17)0.0031 (14)0.0127 (14)0.0017 (14)
C32310.044 (3)0.041 (3)0.034 (2)0.012 (2)0.021 (2)0.001 (2)
C3240.031 (2)0.031 (2)0.032 (2)0.0078 (17)0.0091 (17)0.0024 (17)
C3250.038 (2)0.035 (2)0.030 (2)0.0089 (19)0.0104 (18)0.0014 (18)
Cl10.0343 (6)0.0382 (6)0.0650 (8)0.0002 (5)0.0149 (5)0.0062 (6)
Cl20.0627 (9)0.0789 (11)0.0799 (11)0.0384 (8)0.0418 (8)0.0198 (9)
O10.082 (3)0.066 (3)0.058 (3)0.005 (2)0.017 (2)0.000 (2)
O20.110 (4)0.075 (3)0.078 (3)0.029 (3)0.017 (3)0.018 (3)
O30.105 (4)0.102 (4)0.096 (4)0.001 (3)0.042 (3)0.012 (3)
O40.117 (5)0.224 (9)0.130 (6)0.068 (6)0.058 (4)0.101 (6)
O50.079 (4)0.178 (7)0.136 (5)0.050 (4)0.041 (4)0.039 (5)
O60.115 (8)0.038 (4)0.081 (6)0.011 (5)0.036 (6)0.000 (4)
Geometric parameters (Å, º) top
Fe—N1111.986 (4)C214—H2140.949
Fe—N1211.979 (3)C215—H2150.950
Fe—N2111.961 (3)C20—O201.222 (6)
Fe—N2211.979 (3)C20—C2221.465 (6)
Fe—N3111.993 (3)N221—C2221.333 (6)
Fe—N3211.995 (4)N221—C2251.371 (5)
N111—C1121.334 (5)C222—N2231.359 (5)
N111—C1151.375 (5)N223—C22311.474 (6)
C112—N1131.368 (6)N223—C2241.361 (6)
C112—C101.461 (5)C2231—H2231a0.947
N113—C11311.467 (6)C2231—H2231b0.946
N113—C1141.355 (5)C2231—H2231c0.956
C1131—H1131a0.948C224—C2251.360 (6)
C1131—H1131b0.948C224—H2240.951
C1131—H1131c0.955C225—H2250.953
C114—C1151.367 (7)N311—C3121.338 (6)
C114—H1140.953N311—C3151.363 (6)
C115—H1150.954C312—N3131.363 (5)
C10—O101.216 (5)C312—C301.468 (7)
C10—C1221.474 (6)N313—C31311.468 (6)
N121—C1221.333 (5)N313—C3141.354 (6)
N121—C1251.373 (6)C3131—H3131a0.953
C122—N1231.366 (5)C3131—H3131b0.954
N123—C12311.459 (6)C3131—H3131c0.943
N123—C1241.352 (6)C314—C3151.359 (6)
C1231—H1231a0.951C314—H3140.955
C1231—H1231b0.954C315—H3150.955
C1231—H1231c0.949C30—O301.217 (6)
C124—C1251.357 (6)C30—C3221.467 (6)
C124—H1240.948N321—C3221.332 (5)
C125—H1250.952N321—C3251.374 (6)
N211—C2121.341 (6)C322—N3231.366 (6)
N211—C2151.368 (5)N323—C32311.468 (6)
C212—N2131.360 (5)N323—C3241.358 (5)
C212—C201.468 (6)C3231—H3231a0.954
N213—C21311.472 (6)C3231—H3231b0.952
N213—C2141.355 (6)C3231—H3231c0.948
C2131—H2131a0.940C324—C3251.371 (7)
C2131—H2131b0.965C324—H3240.953
C2131—H2131c0.947C325—H3250.944
C214—C2151.360 (7)
N111—Fe—N12189.68 (14)N213—C214—C215107.1 (4)
N111—Fe—N21189.42 (15)N213—C214—H214126.3
N111—Fe—N22187.81 (14)C215—C214—H214126.6
N111—Fe—N31190.71 (14)N211—C215—C214109.4 (4)
N111—Fe—N321175.16 (13)N211—C215—H215125.5
N121—Fe—N211178.46 (15)C214—C215—H215125.2
N121—Fe—N22189.78 (13)C212—C20—O20121.6 (4)
N121—Fe—N31187.59 (13)C212—C20—C222116.3 (4)
N121—Fe—N32195.16 (14)O20—C20—C222122.0 (4)
N211—Fe—N22188.95 (13)Fe—N221—C222126.1 (3)
N211—Fe—N31193.66 (13)Fe—N221—C225127.2 (3)
N211—Fe—N32185.75 (15)C222—N221—C225105.8 (3)
N221—Fe—N311176.98 (14)C20—C222—N221125.9 (3)
N221—Fe—N32192.21 (14)C20—C222—N223123.1 (4)
N311—Fe—N32189.49 (14)N221—C222—N223110.6 (3)
Fe—N111—C112127.6 (3)C222—N223—C2231128.6 (4)
Fe—N111—C115126.7 (3)C222—N223—C224107.1 (4)
C112—N111—C115105.6 (4)C2231—N223—C224124.2 (4)
N111—C112—N113110.8 (3)N223—C2231—H2231a109.6
N111—C112—C10126.8 (4)N223—C2231—H2231b109.6
N113—C112—C10122.4 (4)N223—C2231—H2231c108.8
C112—N113—C1131128.5 (3)H2231a—C2231—H2231b110.1
C112—N113—C114107.0 (4)H2231a—C2231—H2231c109.4
C1131—N113—C114124.3 (4)H2231b—C2231—H2231c109.3
N113—C1131—H1131a109.5N223—C224—C225107.0 (3)
N113—C1131—H1131b109.5N223—C224—H224126.9
N113—C1131—H1131c109.2C225—C224—H224126.1
H1131a—C1131—H1131b110.1N221—C225—C224109.5 (4)
H1131a—C1131—H1131c109.2N221—C225—H225125.3
H1131b—C1131—H1131c109.3C224—C225—H225125.2
N113—C114—C115107.2 (4)Fe—N311—C312128.7 (3)
N113—C114—H114126.2Fe—N311—C315125.8 (3)
C115—C114—H114126.6C312—N311—C315105.3 (3)
N111—C115—C114109.5 (4)N311—C312—N313110.9 (4)
N111—C115—H115125.4N311—C312—C30126.2 (4)
C114—C115—H115125.2N313—C312—C30122.8 (4)
C112—C10—O10120.9 (4)C312—N313—C3131129.0 (4)
C112—C10—C122117.3 (4)C312—N313—C314106.7 (4)
O10—C10—C122121.7 (4)C3131—N313—C314123.9 (4)
Fe—N121—C122127.3 (3)N313—C3131—H3131a109.1
Fe—N121—C125127.1 (3)N313—C3131—H3131b109.3
C122—N121—C125105.4 (3)N313—C3131—H3131c109.5
C10—C122—N121127.1 (3)H3131a—C3131—H3131b108.9
C10—C122—N123122.3 (4)H3131a—C3131—H3131c109.7
N121—C122—N123110.6 (4)H3131b—C3131—H3131c110.2
C122—N123—C1231128.0 (4)N313—C314—C315107.2 (4)
C122—N123—C124107.1 (3)N313—C314—H314126.0
C1231—N123—C124124.9 (4)C315—C314—H314126.8
N123—C1231—H1231a109.5N311—C315—C314109.9 (4)
N123—C1231—H1231b109.4N311—C315—H315124.9
N123—C1231—H1231c110.0C314—C315—H315125.2
H1231a—C1231—H1231b109.0C312—C30—O30121.5 (4)
H1231a—C1231—H1231c109.7C312—C30—C322116.8 (4)
H1231b—C1231—H1231c109.2O30—C30—C322121.7 (4)
N123—C124—C125107.1 (4)Fe—N321—C322128.1 (3)
N123—C124—H124126.7Fe—N321—C325125.1 (3)
C125—C124—H124126.2C322—N321—C325105.8 (4)
N121—C125—C124109.8 (4)C30—C322—N321126.4 (4)
N121—C125—H125125.0C30—C322—N323122.7 (4)
C124—C125—H125125.2N321—C322—N323110.9 (3)
Fe—N211—C212126.7 (3)C322—N323—C3231127.8 (3)
Fe—N211—C215127.3 (3)C322—N323—C324107.0 (4)
C212—N211—C215106.0 (3)C3231—N323—C324124.9 (4)
N211—C212—N213110.0 (4)N323—C3231—H3231a109.3
N211—C212—C20126.5 (4)N323—C3231—H3231b109.5
N213—C212—C20123.4 (4)N323—C3231—H3231c109.4
C212—N213—C2131127.4 (4)H3231a—C3231—H3231b109.4
C212—N213—C214107.5 (4)H3231a—C3231—H3231c109.3
C2131—N213—C214124.7 (4)H3231b—C3231—H3231c110.0
N213—C2131—H2131a109.8N323—C324—C325106.9 (4)
N213—C2131—H2131b108.7N323—C324—H324126.7
N213—C2131—H2131c109.9C325—C324—H324126.3
H2131a—C2131—H2131b109.1N321—C325—C324109.4 (4)
H2131a—C2131—H2131c110.9N321—C325—H325125.1
H2131b—C2131—H2131c108.5C324—C325—H325125.5
(II) top
Crystal data top
[FeCl2(C9H10N4O)2]F(000) = 1040
Mr = 507.17Dx = 1.591 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 5040 reflections
a = 14.650 (2) Åθ = 2.4–34.5°
b = 9.134 (1) ŵ = 1.00 mm1
c = 16.180 (2) ÅT = 153 K
β = 102.078 (3)°Hexagonal plate, dark blue
V = 2117.2 (5) Å30.44 × 0.41 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
9074 independent reflections
Radiation source: sealed tube6873 reflections with I > 2.00 σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 34.7°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2322
Tmin = 0.81, Tmax = 1k = 1414
42826 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.082H-atom parameters not refined
S = 1.05 w = 1/(σ2(F2) + 2.3F2)
6873 reflections(Δ/σ)max = 0.045
280 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.54 e Å3
0 constraints
Crystal data top
[FeCl2(C9H10N4O)2]V = 2117.2 (5) Å3
Mr = 507.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.650 (2) ŵ = 1.00 mm1
b = 9.134 (1) ÅT = 153 K
c = 16.180 (2) Å0.44 × 0.41 × 0.28 mm
β = 102.078 (3)°
Data collection top
Bruker SMART CCD
diffractometer
9074 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6873 reflections with I > 2.00 σ(I)
Tmin = 0.81, Tmax = 1Rint = 0.044
42826 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.082H-atom parameters not refined
S = 1.05Δρmax = 0.69 e Å3
6873 reflectionsΔρmin = 0.54 e Å3
280 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.248382 (18)0.45708 (3)0.315662 (18)0.01715 (10)
Cl10.22045 (4)0.57205 (6)0.17690 (3)0.0250 (2)
Cl20.27728 (3)0.20961 (5)0.26468 (3)0.02297 (19)
N1110.21651 (11)0.6668 (2)0.36973 (11)0.0209 (7)
C1120.13859 (13)0.7128 (2)0.39287 (12)0.0201 (7)
N1130.14442 (13)0.8583 (2)0.41130 (13)0.0268 (8)
C11310.07587 (18)0.9525 (3)0.4393 (2)0.0395 (12)
C1140.22836 (16)0.9058 (3)0.39852 (16)0.0307 (10)
C1150.27199 (15)0.7868 (3)0.37403 (15)0.0282 (9)
C100.05498 (13)0.6262 (2)0.39544 (12)0.0207 (8)
O100.00361 (11)0.67229 (19)0.43352 (11)0.0309 (7)
N1210.10194 (11)0.4162 (2)0.31374 (11)0.0204 (7)
C1220.04096 (12)0.4861 (2)0.35054 (12)0.0190 (7)
N1230.03869 (11)0.4054 (2)0.34350 (11)0.0205 (7)
C12310.12540 (14)0.4401 (3)0.37103 (14)0.0265 (9)
C1240.02705 (14)0.2811 (2)0.30132 (14)0.0249 (9)
C1250.06049 (14)0.2882 (3)0.28360 (14)0.0256 (9)
N2110.39795 (11)0.4957 (2)0.34147 (11)0.0216 (7)
C2120.46336 (13)0.4123 (2)0.38886 (13)0.0212 (8)
N2130.54866 (11)0.4419 (2)0.37044 (12)0.0246 (7)
C21310.64000 (14)0.3778 (3)0.40725 (17)0.0349 (11)
C2140.53570 (14)0.5466 (3)0.31032 (15)0.0288 (9)
C2150.44251 (14)0.5794 (2)0.29268 (14)0.0261 (9)
C200.45110 (13)0.3017 (2)0.45101 (14)0.0235 (8)
O200.51602 (11)0.2222 (2)0.48319 (13)0.0385 (9)
N2210.28207 (11)0.35938 (19)0.44317 (10)0.0187 (6)
C2220.36094 (13)0.2903 (2)0.47713 (12)0.0195 (7)
N2230.34865 (12)0.2038 (2)0.54265 (11)0.0229 (7)
C22310.41415 (17)0.1051 (3)0.59683 (16)0.0342 (11)
C2240.25878 (15)0.2208 (2)0.55074 (13)0.0247 (9)
C2250.21879 (14)0.3160 (2)0.48907 (13)0.0229 (8)
H1131a0.015080.930930.407500.05700*
H1131b0.090051.052270.431440.05700*
H1131c0.077340.935150.497510.05700*
H1140.252121.003500.405310.03800*
H1150.333130.787130.361800.03500*
H1231a0.111740.459830.430080.03100*
H1231b0.153510.523950.341460.03100*
H1231c0.166970.359560.359650.03100*
H1240.071380.203220.286740.03100*
H1250.088140.214420.254700.03200*
H2131a0.686890.425730.384840.04400*
H2131b0.639460.276360.393720.04400*
H2131c0.652640.389380.466980.04400*
H2140.582670.589540.284790.03600*
H2150.412940.650190.251930.03300*
H2231a0.431700.028560.563170.04000*
H2231b0.468690.157830.622710.04000*
H2231c0.385880.064180.638970.04000*
H2240.229640.174900.591710.03000*
H2250.155150.347830.479000.02800*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.01325 (10)0.02002 (12)0.01968 (12)0.00019 (9)0.00690 (8)0.00081 (10)
Cl10.0270 (2)0.0256 (2)0.0240 (2)0.00678 (18)0.00947 (17)0.00268 (18)
Cl20.0213 (2)0.0223 (2)0.0275 (2)0.00176 (16)0.01030 (17)0.00393 (18)
N1110.0175 (7)0.0222 (8)0.0243 (8)0.0011 (6)0.0071 (6)0.0027 (6)
C1120.0190 (8)0.0201 (8)0.0220 (8)0.0009 (6)0.0063 (6)0.0020 (7)
N1130.0241 (8)0.0218 (8)0.0358 (10)0.0010 (7)0.0093 (7)0.0067 (7)
C11310.0336 (12)0.0256 (11)0.0623 (17)0.0048 (9)0.0168 (12)0.0127 (11)
C1140.0294 (10)0.0228 (10)0.0418 (13)0.0048 (8)0.0117 (9)0.0067 (9)
C1150.0230 (9)0.0254 (10)0.0391 (12)0.0050 (8)0.0131 (8)0.0063 (9)
C100.0180 (8)0.0226 (9)0.0221 (8)0.0032 (7)0.0057 (6)0.0008 (7)
O100.0246 (7)0.0316 (8)0.0411 (9)0.0008 (6)0.0174 (7)0.0082 (7)
N1210.0136 (6)0.0240 (8)0.0246 (8)0.0001 (6)0.0064 (6)0.0056 (6)
C1220.0134 (7)0.0220 (9)0.0220 (8)0.0004 (6)0.0048 (6)0.0009 (7)
N1230.0132 (6)0.0251 (8)0.0248 (8)0.0002 (6)0.0076 (6)0.0005 (6)
C12310.0166 (8)0.0298 (11)0.0368 (11)0.0012 (7)0.0138 (8)0.0002 (9)
C1240.0171 (8)0.0283 (10)0.0305 (10)0.0037 (7)0.0077 (7)0.0064 (8)
C1250.0170 (8)0.0297 (10)0.0320 (10)0.0039 (7)0.0092 (7)0.0113 (8)
N2110.0158 (6)0.0237 (8)0.0269 (8)0.0024 (6)0.0083 (6)0.0004 (6)
C2120.0146 (7)0.0237 (9)0.0268 (9)0.0028 (6)0.0080 (7)0.0040 (7)
N2130.0135 (6)0.0308 (9)0.0314 (9)0.0039 (6)0.0087 (6)0.0076 (7)
C21310.0135 (8)0.0457 (14)0.0469 (14)0.0010 (9)0.0091 (8)0.0089 (11)
C2140.0205 (8)0.0351 (11)0.0346 (11)0.0091 (8)0.0141 (8)0.0055 (9)
C2150.0221 (9)0.0289 (10)0.0297 (10)0.0063 (8)0.0111 (8)0.0019 (8)
C200.0167 (8)0.0241 (9)0.0297 (10)0.0007 (7)0.0047 (7)0.0017 (8)
O200.0211 (7)0.0408 (10)0.0543 (11)0.0090 (7)0.0092 (7)0.0126 (9)
N2210.0163 (6)0.0218 (7)0.0198 (7)0.0002 (6)0.0078 (5)0.0004 (6)
C2220.0182 (7)0.0194 (8)0.0213 (8)0.0007 (6)0.0054 (6)0.0010 (7)
N2230.0230 (7)0.0223 (8)0.0235 (8)0.0003 (6)0.0050 (6)0.0024 (6)
C22310.0311 (11)0.0329 (12)0.0373 (12)0.0029 (9)0.0037 (9)0.0126 (10)
C2240.0264 (9)0.0264 (10)0.0239 (9)0.0028 (8)0.0113 (7)0.0008 (8)
C2250.0214 (8)0.0273 (10)0.0228 (9)0.0006 (7)0.0107 (7)0.0009 (7)
Geometric parameters (Å, º) top
Fe—Cl12.4345 (6)C124—C1251.373 (3)
Fe—Cl22.4729 (6)C124—H1240.959
Fe—N1112.1961 (18)C125—H1250.957
Fe—N1212.1713 (17)N211—C2121.334 (2)
Fe—N2112.1719 (16)N211—C2151.360 (3)
Fe—N2212.2069 (16)C212—N2131.371 (3)
N111—C1121.341 (3)C212—C201.463 (3)
N111—C1151.358 (3)N213—C21311.468 (3)
C112—N1131.361 (3)N213—C2141.349 (3)
C112—C101.466 (3)C2131—H2131a0.948
N113—C11311.464 (3)C2131—H2131b0.952
N113—C1141.360 (3)C2131—H2131c0.951
C1131—H1131a0.951C214—C2151.368 (3)
C1131—H1131b0.949C214—H2140.958
C1131—H1131c0.951C215—H2150.959
C114—C1151.361 (3)C20—O201.223 (3)
C114—H1140.956C20—C2221.472 (3)
C115—H1150.957N221—C2221.330 (2)
C10—O101.231 (3)N221—C2251.362 (3)
C10—C1221.464 (3)C222—N2231.364 (3)
N121—C1221.335 (3)N223—C22311.466 (3)
N121—C1251.360 (3)N223—C2241.359 (3)
C122—N1231.365 (2)C2231—H2231a0.954
N123—C12311.466 (3)C2231—H2231b0.952
N123—C1241.354 (3)C2231—H2231c0.946
C1231—H1231a0.951C224—C2251.360 (3)
C1231—H1231b0.950C224—H2240.957
C1231—H1231c0.948C225—H2250.958
Cl1—Fe—Cl295.40 (2)H1231b—C1231—H1231c109.55
Cl1—Fe—N11188.99 (5)N123—C124—C125106.70 (18)
Cl1—Fe—N12194.93 (5)N123—C124—H124126.6
Cl1—Fe—N21194.33 (5)C125—C124—H124126.7
Cl1—Fe—N221176.52 (5)N121—C125—C124109.4 (2)
Cl2—Fe—N111174.63 (5)N121—C125—H125125.3
Cl2—Fe—N12194.34 (5)C124—C125—H125125.3
Cl2—Fe—N21188.63 (5)Fe—N211—C212126.33 (14)
Cl2—Fe—N22185.51 (5)Fe—N211—C215124.54 (13)
N111—Fe—N12182.17 (6)C212—N211—C215106.30 (17)
N111—Fe—N21194.13 (6)N211—C212—N213109.89 (18)
N111—Fe—N22190.28 (6)N211—C212—C20127.80 (18)
N121—Fe—N211169.96 (7)N213—C212—C20122.30 (17)
N121—Fe—N22188.34 (6)C212—N213—C2131128.9 (2)
N211—Fe—N22182.33 (6)C212—N213—C214107.42 (16)
Fe—N111—C112130.44 (13)C2131—N213—C214123.6 (2)
Fe—N111—C115123.35 (15)N213—C2131—H2131a109.5
C112—N111—C115105.56 (18)N213—C2131—H2131b109.4
N111—C112—N113110.42 (18)N213—C2131—H2131c109.6
N111—C112—C10127.17 (18)H2131a—C2131—H2131b109.5
N113—C112—C10122.35 (19)H2131a—C2131—H2131c109.6
C112—N113—C1131128.7 (2)H2131b—C2131—H2131c109.4
C112—N113—C114107.2 (2)N213—C214—C215106.8 (2)
C1131—N113—C114124.1 (2)N213—C214—H214126.6
N113—C1131—H1131a109.7C215—C214—H214126.6
N113—C1131—H1131b109.8N211—C215—C214109.5 (2)
N113—C1131—H1131c109.5N211—C215—H215125.1
H1131a—C1131—H1131b109.4C214—C215—H215125.3
H1131a—C1131—H1131c109.0C212—C20—O20120.4 (2)
H1131b—C1131—H1131c109.4C212—C20—C222119.52 (17)
N113—C114—C115106.5 (2)O20—C20—C222120.0 (2)
N113—C114—H114126.8Fe—N221—C222125.66 (14)
C115—C114—H114126.7Fe—N221—C225125.63 (12)
N111—C115—C114110.3 (2)C222—N221—C225105.55 (17)
N111—C115—H115124.6C20—C222—N221126.99 (18)
C114—C115—H115125.1C20—C222—N223122.44 (17)
C112—C10—O10120.29 (19)N221—C222—N223110.56 (18)
C112—C10—C122119.23 (18)C222—N223—C2231130.1 (2)
O10—C10—C122120.46 (18)C222—N223—C224107.26 (16)
Fe—N121—C122131.50 (13)C2231—N223—C224122.6 (2)
Fe—N121—C125121.23 (14)N223—C2231—H2231a109.3
C122—N121—C125106.31 (17)N223—C2231—H2231b109.6
C10—C122—N121126.98 (17)N223—C2231—H2231c110.1
C10—C122—N123122.84 (18)H2231a—C2231—H2231b108.7
N121—C122—N123110.14 (17)H2231a—C2231—H2231c109.5
C122—N123—C1231129.61 (18)H2231b—C2231—H2231c109.7
C122—N123—C124107.44 (17)N223—C224—C225106.3 (2)
C1231—N123—C124122.90 (17)N223—C224—H224126.7
N123—C1231—H1231a109.42C225—C224—H224127.0
N123—C1231—H1231b109.5N221—C225—C224110.36 (18)
N123—C1231—H1231c109.6N221—C225—H225124.6
H1231a—C1231—H1231b109.3C224—C225—H225125.0
H1231a—C1231—H1231c109.5
(III) top
Crystal data top
[Fe2Cl4(C9H10N4O)2]·2CH4OZ = 1
Mr = 693.97F(000) = 352
Triclinic, P1Dx = 1.663 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 8.358 (3) ÅCell parameters from 2043 reflections
b = 9.215 (3) Åθ = 2.5–27.4°
c = 10.650 (4) ŵ = 1.48 mm1
α = 93.175 (5)°T = 300 K
β = 108.871 (4)°Plate, red
γ = 113.923 (4)°0.25 × 0.22 × 0.1 mm
V = 692.8 (4) Å3
Data collection top
Bruker SMART CCD
diffractometer
3012 independent reflections
Radiation source: sealed tube2200 reflections with I > 2.00 σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.82, Tmax = 1k = 1211
6649 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: difference Fourier map
wR(F2) = 0.146H-atom parameters not refined
S = 0.96 w = 1/(σ2(F2) + 0.58F2)
2085 reflections(Δ/σ)max = 0.018
170 parametersΔρmax = 1.52 e Å3
0 restraintsΔρmin = 0.40 e Å3
0 constraints
Crystal data top
[Fe2Cl4(C9H10N4O)2]·2CH4Oγ = 113.923 (4)°
Mr = 693.97V = 692.8 (4) Å3
Triclinic, P1Z = 1
a = 8.358 (3) ÅMo Kα radiation
b = 9.215 (3) ŵ = 1.48 mm1
c = 10.650 (4) ÅT = 300 K
α = 93.175 (5)°0.25 × 0.22 × 0.1 mm
β = 108.871 (4)°
Data collection top
Bruker SMART CCD
diffractometer
3012 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2200 reflections with I > 2.00 σ(I)
Tmin = 0.82, Tmax = 1Rint = 0.024
6649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.146H-atom parameters not refined
S = 0.96Δρmax = 1.52 e Å3
2085 reflectionsΔρmin = 0.40 e Å3
170 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe0.52639 (18)0.63381 (14)0.37401 (12)0.0405 (5)
Cl10.5077 (4)0.6406 (3)0.5995 (3)0.0689 (12)
Cl20.2435 (3)0.6145 (3)0.2333 (2)0.0584 (11)
N110.7129 (9)0.8896 (8)0.4305 (7)0.043 (3)
C120.8073 (11)0.9828 (9)0.3613 (8)0.040 (3)
N130.8715 (10)1.1419 (8)0.4142 (7)0.044 (3)
C1310.9800 (15)1.2867 (10)0.3711 (11)0.063 (5)
C140.8134 (13)1.1497 (10)0.5187 (9)0.050 (4)
C150.7174 (13)0.9954 (10)0.5285 (9)0.049 (4)
C100.8387 (12)0.9261 (10)0.2440 (9)0.044 (3)
O100.9179 (10)1.0235 (7)0.1847 (7)0.064 (3)
N210.6779 (10)0.6310 (8)0.2457 (7)0.046 (3)
C220.7774 (11)0.7526 (9)0.1985 (8)0.040 (3)
N230.8176 (10)0.6939 (8)0.0993 (7)0.046 (3)
C2310.9235 (15)0.7813 (12)0.0180 (10)0.065 (5)
C240.7427 (15)0.5300 (12)0.0846 (10)0.058 (4)
C250.6561 (15)0.4921 (11)0.1741 (10)0.058 (4)
O10.4474 (10)0.0533 (8)0.1629 (8)0.0080 (16)*.50000
C10.455 (2)0.013 (2)0.0634 (14)0.025 (3)*.50000
O1'0.4692 (13)0.0480 (12)0.1112 (12)0.024 (2)*.50000
C1'0.420 (2)0.092 (2)0.0331 (17)0.044 (4)*.50000
H131a1.028631.384660.436440.09300*
H131b0.906771.296220.285560.09300*
H131c1.088981.280500.362780.09300*
H140.840691.248220.576510.05900*
H150.659620.963240.594710.06000*
H231a0.843940.804620.055710.09700*
H231b0.970040.715680.018250.09700*
H231c1.029330.880030.073540.09700*
H240.749840.454420.022530.06800*
H250.587830.383310.184100.07000*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.0437 (7)0.0394 (6)0.0437 (7)0.0160 (5)0.0254 (6)0.0158 (5)
Cl10.128 (2)0.0467 (13)0.0596 (16)0.0418 (15)0.0631 (17)0.0263 (11)
Cl20.0514 (14)0.0745 (16)0.0530 (14)0.0309 (13)0.0205 (11)0.0150 (12)
N110.044 (4)0.042 (4)0.046 (4)0.018 (3)0.023 (3)0.013 (3)
C120.039 (5)0.038 (4)0.043 (5)0.014 (4)0.018 (4)0.015 (4)
N130.043 (4)0.037 (4)0.048 (4)0.014 (3)0.018 (3)0.014 (3)
C1310.075 (7)0.033 (5)0.074 (7)0.011 (5)0.035 (6)0.018 (5)
C140.054 (6)0.045 (5)0.050 (6)0.019 (4)0.023 (4)0.004 (4)
C150.052 (6)0.048 (5)0.049 (5)0.017 (4)0.029 (4)0.011 (4)
C100.043 (5)0.040 (4)0.044 (5)0.013 (4)0.018 (4)0.016 (4)
O100.085 (5)0.045 (4)0.062 (4)0.014 (3)0.048 (4)0.022 (3)
N210.054 (4)0.041 (4)0.054 (5)0.020 (3)0.032 (4)0.018 (3)
C220.037 (5)0.041 (4)0.046 (5)0.017 (4)0.023 (4)0.015 (4)
N230.052 (5)0.043 (4)0.054 (5)0.021 (4)0.034 (4)0.020 (3)
C2310.087 (8)0.065 (6)0.065 (7)0.028 (6)0.060 (6)0.029 (5)
C240.076 (7)0.055 (6)0.067 (7)0.034 (5)0.047 (6)0.020 (5)
C250.080 (7)0.043 (5)0.074 (7)0.027 (5)0.054 (6)0.021 (5)
Geometric parameters (Å, º) top
Fe—Cl12.455 (4)C15—H150.972
Fe—Cl22.282 (3)C10—O101.222 (12)
Fe—N112.146 (6)C10—C221.464 (12)
Fe—N212.148 (10)N21—C221.333 (11)
Fe—Cl12.470 (3)N21—C251.366 (14)
N11—C121.342 (12)C22—N231.355 (14)
N11—C151.368 (13)N23—C2311.475 (15)
C12—N131.353 (11)N23—C241.357 (12)
C12—C101.467 (15)C231—H231a0.949
N13—C1311.473 (12)C231—H231b0.964
N13—C141.359 (14)C231—H231c0.953
C131—H131a0.957C24—C251.354 (18)
C131—H131b0.951C24—H240.966
C131—H131c0.967C25—H250.964
C14—C151.350 (12)O1—C11.22 (2)
C14—H140.967O1'—C1'1.33 (2)
Cl1—Fe—Cl2104.48 (13)C15—C14—H14127.1
Cl1—Fe—N1190.4 (2)N11—C15—C14109.7 (9)
Cl1—Fe—N21149.8 (2)N11—C15—H15124.7
Cl1—Fe—Cl180.68 (11)C14—C15—H15125.6
Cl2—Fe—N11104.4 (2)C12—C10—O10120.2 (8)
Cl2—Fe—N21105.6 (2)C12—C10—C22120.1 (8)
Cl2—Fe—Cl1109.42 (10)O10—C10—C22119.7 (9)
N11—Fe—N2183.5 (3)Fe—N21—C22129.0 (7)
N11—Fe—Cl1146.2 (2)Fe—N21—C25123.8 (6)
N21—Fe—Cl188.0 (2)C22—N21—C25106.0 (9)
Fe—Cl1—Fe99.32 (12)C10—C22—N21126.8 (9)
Fe—N11—C12128.7 (6)C10—C22—N23123.0 (8)
Fe—N11—C15123.7 (6)N21—C22—N23110.2 (8)
C12—N11—C15105.6 (7)C22—N23—C231129.8 (8)
N11—C12—N13110.3 (9)C22—N23—C24107.4 (8)
N11—C12—C10126.6 (7)C231—N23—C24122.8 (10)
N13—C12—C10123.1 (8)N23—C231—H231a110.4
C12—N13—C131129.4 (9)N23—C231—H231b110.1
C12—N13—C14107.3 (7)N23—C231—H231c110.1
C131—N13—C14123.3 (8)H231a—C231—H231b108.4
N13—C131—H131a112.1H231a—C231—H231c109.7
N13—C131—H131b112.0H231b—C231—H231c108.1
N13—C131—H131c109.9N23—C24—C25106.9 (10)
H131a—C131—H131b108.9N23—C24—H24126.8
H131a—C131—H131c105.9C25—C24—H24126.3
H131b—C131—H131c107.8N21—C25—C24109.5 (8)
N13—C14—C15107.1 (9)N21—C25—H25125.6
N13—C14—H14125.7C24—C25—H25124.9

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Fe(C9H10N4O)3]Cl2·5.5H2O[FeCl2(C9H10N4O)2][Fe2Cl4(C9H10N4O)2]·2CH4O
Mr796.54507.17693.97
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/cTriclinic, P1
Temperature (K)153153300
a, b, c (Å)21.3036 (10), 13.9936 (7), 24.4634 (10)14.650 (2), 9.134 (1), 16.180 (2)8.358 (3), 9.215 (3), 10.650 (4)
α, β, γ (°)90, 104.230 (1), 9090, 102.078 (3), 9093.175 (5), 108.871 (4), 113.923 (4)
V3)7069.1 (6)2117.2 (5)692.8 (4)
Z841
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.641.001.48
Crystal size (mm)0.24 × 0.14 × 0.130.44 × 0.41 × 0.280.25 × 0.22 × 0.1
Data collection
DiffractometerBruker SMART CCD
diffractometer
Bruker SMART CCD
diffractometer
Bruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.69, 0.860.81, 10.82, 1
No. of measured, independent and
observed reflections
73261, 9402, 6365 [I > 2σ(I)]42826, 9074, 6873 [I > 2.00 σ(I)]6649, 3012, 2200 [I > 2.00 σ(I)]
Rint0.0830.0440.024
(sin θ/λ)max1)0.6820.8000.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.13, 1.38 0.044, 0.082, 1.05 0.067, 0.146, 0.96
No. of reflections636568732085
No. of parameters460280170
H-atom treatmentH-atom parameters not refinedH-atom parameters not refinedH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.16, 1.060.69, 0.541.52, 0.40

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT, Xtal3.5 (Hall et al., 1995), CRYLSQ in Xtal3.5, BONDLA and CIFIO in Xtal3.5.

Selected geometric parameters (Å, º) for (I) top
Fe—N1111.986 (4)Fe—N2211.979 (3)
Fe—N1211.979 (3)Fe—N3111.993 (3)
Fe—N2111.961 (3)Fe—N3211.995 (4)
N111—Fe—N12189.68 (14)N121—Fe—N32195.16 (14)
N111—Fe—N21189.42 (15)N211—Fe—N22188.95 (13)
N111—Fe—N22187.81 (14)N211—Fe—N31193.66 (13)
N111—Fe—N31190.71 (14)N211—Fe—N32185.75 (15)
N111—Fe—N321175.16 (13)N221—Fe—N311176.98 (14)
N121—Fe—N211178.46 (15)N221—Fe—N32192.21 (14)
N121—Fe—N22189.78 (13)N311—Fe—N32189.49 (14)
N121—Fe—N31187.59 (13)
Selected geometric parameters (Å, º) for (II) top
Fe—Cl12.4345 (6)Fe—N1212.1713 (17)
Fe—Cl22.4729 (6)Fe—N2112.1719 (16)
Fe—N1112.1961 (18)Fe—N2212.2069 (16)
Cl1—Fe—Cl295.40 (2)Cl2—Fe—N22185.51 (5)
Cl1—Fe—N11188.99 (5)N111—Fe—N12182.17 (6)
Cl1—Fe—N12194.93 (5)N111—Fe—N21194.13 (6)
Cl1—Fe—N21194.33 (5)N111—Fe—N22190.28 (6)
Cl1—Fe—N221176.52 (5)N121—Fe—N211169.96 (7)
Cl2—Fe—N111174.63 (5)N121—Fe—N22188.34 (6)
Cl2—Fe—N12194.34 (5)N211—Fe—N22182.33 (6)
Cl2—Fe—N21188.63 (5)
Selected geometric parameters (Å, º) for (III) top
Fe—Cl12.455 (4)Fe—N212.148 (10)
Fe—Cl22.282 (3)Fe—Cl12.470 (3)
Fe—N112.146 (6)
Cl1—Fe—Cl2104.48 (13)Cl2—Fe—Cl1109.42 (10)
Cl1—Fe—N1190.4 (2)N11—Fe—N2183.5 (3)
Cl1—Fe—Cl180.68 (11)N11—Fe—Cl1146.2 (2)
Cl2—Fe—N11104.4 (2)N21—Fe—Cl188.0 (2)
Cl2—Fe—N21105.6 (2)Fe—Cl1—Fe99.32 (12)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds