Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, octa-tert-butoxybis­[[mu]3-2,2'-(N-methyl­imino)­diethanolato]­di-[mu]-oxo-tetratitanium(IV), [Ti2O{(OCH2CH2)2(NCH3)}{(CH3)3CO}4]2 or [Ti4(C5H11NO2)2(C4H9O)8O2], lies about an inversion centre, and displays the less usual zigzag configuration. One O atom of the N-methyl­diethoxo­amine ligand bridges the symmetry-related Ti atoms, while the other bridges the two independent Ti atoms, with the N atom binding to give a facial configuration. Four tBuO- ligands and a bridging oxide complete the respective five- and sixfold coordination of the two Ti atoms. The Ti-O bond lengths range in a self-consistent fashion from 1.7624 (17) to 2.0878 (18) Å, while the Ti-N bond length is 2.374 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103027902/ta1427sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103027902/ta1427Isup2.hkl
Contains datablock I

CCDC reference: 233100

Comment top

This study is part of a programme aimed at modifying metal alkoxides as precursors to high-tech oxides. A recent review (Hubert-Pfalzgraf, 2003) discusses many structural features and applications of this class of compound. The varied coordination chemistry of N-methyldiethoxoamine (MDEA) has been of great interest to us in forming volatile complexes (Sevast'yanov et al., 2001; Kemmitt et al., 2003), mixed metal alkoxides (Gainsford et al., 2002a,b), an oxoalkoxide structure, (Kemmitt Al-Salim & Gainsford, 1999) and other complexes with different metal:ligand ratios (Kemmitt Al-Salim Gainsford & Henderson, 1999; Kemmitt Al-Salim & Gainsford, 2002; Kemmitt Gainsford & Robson-Marsden, 2002). Aminoalkoxide ligands influence the formation of partial hydrolysis condensates, as noted by the contrasting structures observed in cyclic hexanuclear MDEA oxotitanate (Kemmitt Al-Salim & Gainsford, 1999), dimethylaminoethoxide (DMAE) oxotitanate, which forms a Ti4O4 cluster core (Johnson et al., 2001), and the isolated linear oxo-bridges observed in triethanolaminotitanates (Kemmitt et al., 2000). In the current structure, the title titanium complex, (I), has fewer amine functions and retains some alkoxide ligands, resulting in a new structural type for partial hydrolysis condensates. \sch

The crystal structure of (I) consists of independent centrosymmetric [Ti2O(N-methyldiethoxoamine)(t-butoxide)4]2 complexes (Fig 1). There are a few weak intermolecular contacts, e.g. C13—H13A···H13A(1 − x, 1 − y, −z) 2.22 Å. The four Ti atoms are arranged in the less usual zigzag configuration, Ti1—Ti2—Ti2i 117.40 (2)° [symmetry code: (i) −x, −y, 1 − z]. The terminal Ti1 atoms are pentacoordinate, while the linking Ti2 atoms are hexacoordinate.

The Ti1 stereochemistry can best be described as distorted bipyramidal, with apical atoms O1 and O7 of the MDEA bridging ligand and one t-butoxide, and equatorial atoms O5, O6 and O3 from two t-butoxides and the bridging oxide, respectively (mean O—Ti—O 118.4°).

The hexacoordinate Ti2 stereochemistry approaches a trigonal antiprism arrangement. One trigonal face of the antiprism is occupied by the three coordinating atoms of the MDEA ligand, O1, O2 and N1, where atom O2 bridges the two symmetry-related Ti2 atoms and atom O1 bridges the two independent atoms Ti1 and Ti2. The other face of the antiprism is occupied by atoms O3, O4 and O2 from the bridging oxide, a t-butoxide and the arm of the symmetry-related MDEA ligand, respectively. The Ti—O(bridging) [1.7624 (17)–2.0878 (18) Å] and Ti—N [2.374 (2) Å] bond lengths are within the normal ranges for this type of complex.

The Ti1···Ti2 and Ti2···Ti2i distances of 3.0459 (7) and 3.3101 (10) Å compare with the values of 3.307 (3) and 3.242 (4) Å in the similar zigzag Ti4 structure [Ti4(OiPr)8(µ,η2-OCH2CHCHCH2O)23,η2-OCH2CH CHCH2O)2] found by Miele-Pajot et al. (1999). The shorter Ti1···Ti2 distance in (I) is expected from the smaller less constrained bridging between atoms Ti1 and Ti2. Ti···Ti distances in the range 2.952–3.570 Å are observed in other Ti—O—Ti bridged complexes.

Tetratitanium oxygen-bridged complexes adopt eight different configurations, as observed in a search of the Cambridge Structural Database (CSD, July, 2003 update; Allen, 2002). A previous analysis of multititanium oxygen-bridged compounds was given by Boyle et al. (1997). In the following list, the items are `type' followed by, in brackets, the numbers found, an example CSD code and the reference for that example: square (13, RONBUR; Troyanov & Gorbenko, 1997), cube (10, GOXMUB; Guerrero et al., 1999), capped parallelogram (10, NEMBIQ; Weymann-Schildknetch & Henry, 2001), butterfly (1, GOMVIN; Boyle et al., 1998), planar linear (2, JUKQUB; Franceschi et al., 1999) planar with µ3-O—Ti bridge (3, NOCYOT; Moran et al., 1998), bowed linear or plate (1, FETMIA; Pedersen et al., 1987) and zigzag [2, (I) and WOGLEJ; Miele-Pajot et al., 1999]. In most cases (except the last two), the Ti atoms are six-coordinate. It is noted that the zigzag configuration is found in a related Zr4 compound, [Zr22-O2-O'-methyliminodiethanolate) (µ2-O-n-propanolate)3(n-propanolate)3]2, and an analogous TiZr2Ti compound, but with the MDEA ligands adopting planar meridional binding conformations around the Zr atoms (Gainsford et al., 2002b,c).

Experimental top

Crystals of the title compound were isolated from liquid Ti2(MDEA)(OtBu)6, prepared by the addition of Ti(t-butoxide)4 (27.2 g, 0.08 mol) to a solution of MDEA (4.76 g, 0.04 mol) in anhydrous toluene (100 ml) at room temperature. After stirring for 4 h, the solvent was distilled off, leaving the crude product as a mobile oil. The extremely moisture-sensitive liquid was briefly exposed to atmospheric air and then stored in an airtight flask. Within minutes, feathery crystals of (I) appeared around the neck of the flask. X-ray quality crystals grew slowly in the liquid over several months.

Refinement top

All non-methyl and methyl H atoms were constrained to Uiso(H) = 1.2 or 1.3 times, respectively, Ueq of their parent atom. Atom C21 was disordered over two sites and given a common isotropic displacement parameter. All non-H atoms were refined with anisotropic displacement parameters.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.
octa-tert-butoxy-bis[µ3-2,2'-(N-methylimino)diethanolato]di-µ-oxo- tetratitanium(IV) top
Crystal data top
[Ti4O2(C5H11NO2)2(C4H9O)8]F(000) = 1120
Mr = 1042.79Dx = 1.223 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5496 reflections
a = 9.2937 (10) Åθ = 2.3–23.8°
b = 23.058 (3) ŵ = 0.60 mm1
c = 13.5360 (16) ÅT = 163 K
β = 102.436 (2)°Block, colourless
V = 2832.7 (6) Å30.36 × 0.15 × 0.15 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
5693 independent reflections
Radiation source: fine-focus sealed tube3634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
Detector resolution: 8.192 pixels mm-1θmax = 26.4°, θmin = 1.8°
ϕ and ω scansh = 116
Absorption correction: multi-scan
(Blessing, 1995)
k = 2828
Tmin = 0.678, Tmax = 0.914l = 1616
33365 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0351P)2 + 1.5206P]
where P = (Fo2 + 2Fc2)/3
5693 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Ti4O2(C5H11NO2)2(C4H9O)8]V = 2832.7 (6) Å3
Mr = 1042.79Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.2937 (10) ŵ = 0.60 mm1
b = 23.058 (3) ÅT = 163 K
c = 13.5360 (16) Å0.36 × 0.15 × 0.15 mm
β = 102.436 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5693 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3634 reflections with I > 2σ(I)
Tmin = 0.678, Tmax = 0.914Rint = 0.081
33365 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.01Δρmax = 0.34 e Å3
5693 reflectionsΔρmin = 0.28 e Å3
291 parameters
Special details top

Experimental. Crystal decay was monitored by repeating the initial 10 frames at the end of the data collection and analyzing duplicate reflections. The standard 0.8 mm diameter collimator was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.19063 (6)0.11133 (2)0.72467 (4)0.02662 (14)
Ti20.06662 (5)0.00141 (2)0.62365 (3)0.02170 (12)
O10.26024 (19)0.02810 (8)0.69609 (13)0.0273 (4)
O20.10824 (18)0.02296 (7)0.48488 (12)0.0215 (4)
O30.01569 (19)0.06678 (7)0.66401 (13)0.0254 (4)
O40.0217 (2)0.05266 (8)0.71304 (13)0.0306 (5)
O50.2957 (2)0.10188 (9)0.85277 (14)0.0424 (5)
O60.3001 (2)0.14026 (8)0.64192 (14)0.0334 (5)
O70.0833 (2)0.17403 (8)0.74002 (16)0.0403 (5)
N10.2475 (2)0.06676 (9)0.58990 (17)0.0278 (5)
C10.3960 (3)0.00117 (12)0.7124 (2)0.0341 (7)
H1A0.44680.00160.78450.041*
H1B0.46010.01630.67080.041*
C20.3645 (3)0.06397 (12)0.6831 (2)0.0360 (7)
H2A0.45510.08280.67130.043*
H2B0.33250.08490.73850.043*
C30.1901 (3)0.12633 (11)0.5731 (2)0.0378 (8)
H3A0.26970.15240.56450.049*
H3B0.11110.12740.51210.049*
H3C0.15130.13880.63150.049*
C40.2998 (3)0.04625 (12)0.4991 (2)0.0312 (7)
H4A0.25630.07080.44020.037*
H4B0.40840.05010.51150.037*
C50.2569 (3)0.01648 (12)0.4757 (2)0.0286 (7)
H5A0.32190.04250.52370.034*
H5B0.26640.02640.40620.034*
C60.0165 (4)0.06348 (13)0.8084 (2)0.0407 (8)
C70.1252 (5)0.0738 (2)0.8855 (3)0.0832 (14)
H7A0.17950.10580.86280.108*
H7B0.10230.08370.95080.108*
H7C0.18550.03860.89280.108*
C80.1102 (5)0.11798 (15)0.7954 (3)0.0664 (11)
H8A0.20340.11040.74740.086*
H8B0.13030.12940.86080.086*
H8C0.05740.14930.76950.086*
C90.1012 (5)0.01290 (15)0.8362 (3)0.0683 (12)
H9A0.03930.02190.84330.089*
H9B0.12990.02090.90040.089*
H9C0.18970.00660.78300.089*
C100.4068 (4)0.12584 (15)0.9310 (2)0.0465 (9)
C110.5510 (4)0.1253 (2)0.8959 (3)0.0855 (15)
H11A0.57670.08530.88240.111*
H11B0.62890.14200.94860.111*
H11C0.54050.14830.83380.111*
C120.3681 (5)0.18700 (19)0.9538 (4)0.0972 (17)
H12A0.35910.21080.89280.126*
H12B0.44580.20291.00770.126*
H12C0.27430.18710.97580.126*
C130.4170 (5)0.0874 (2)1.0225 (3)0.0826 (14)
H13A0.32150.08661.04220.107*
H13B0.49230.10261.07860.107*
H13C0.44370.04791.00620.107*
C140.3188 (3)0.18807 (12)0.5788 (2)0.0367 (7)
C150.4486 (4)0.17289 (14)0.5318 (3)0.0504 (9)
H15A0.53220.16070.58500.066*
H15B0.47650.20700.49690.066*
H15C0.42060.14120.48310.066*
C160.1810 (4)0.19426 (16)0.4978 (3)0.0600 (10)
H16A0.15870.15730.46210.078*
H16B0.19560.22430.44970.078*
H16C0.09880.20520.52870.078*
C170.3512 (5)0.24201 (15)0.6429 (3)0.0658 (12)
H17A0.26970.24940.67660.086*
H17B0.36230.27510.59980.086*
H17C0.44250.23650.69380.086*
C180.0382 (4)0.20265 (14)0.7673 (3)0.0469 (9)
C190.0596 (5)0.17745 (17)0.8669 (3)0.0752 (13)
H19A0.07480.13550.85980.098*
H19B0.14580.19540.88520.098*
H19C0.02810.18520.92000.098*
C200.0022 (4)0.26684 (14)0.7769 (3)0.0582 (10)
H20A0.08830.27260.82850.076*
H20B0.08350.28770.79660.076*
H20C0.01180.28170.71170.076*
C21A0.1768 (9)0.1844 (5)0.7017 (8)0.0527 (14)*0.517 (15)
H21A0.18480.14210.70340.068*0.517 (15)
H21B0.17930.19710.63230.068*0.517 (15)
H21C0.25940.20190.72540.068*0.517 (15)
C21B0.1675 (10)0.2019 (5)0.6695 (8)0.0527 (14)*0.483 (15)
H21D0.20120.16190.65460.068*0.483 (15)
H21E0.13160.21760.61200.068*0.483 (15)
H21F0.24950.22570.68140.068*0.483 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0263 (3)0.0264 (3)0.0277 (3)0.0055 (2)0.0069 (2)0.0063 (2)
Ti20.0202 (3)0.0204 (2)0.0234 (2)0.0000 (2)0.00230 (19)0.0006 (2)
O10.0177 (11)0.0288 (10)0.0321 (10)0.0031 (8)0.0018 (8)0.0021 (8)
O20.0159 (11)0.0218 (9)0.0268 (10)0.0011 (7)0.0044 (8)0.0013 (8)
O30.0207 (11)0.0252 (10)0.0293 (10)0.0005 (8)0.0035 (8)0.0036 (8)
O40.0343 (12)0.0302 (11)0.0273 (10)0.0024 (9)0.0066 (9)0.0032 (8)
O50.0413 (14)0.0511 (14)0.0309 (11)0.0171 (11)0.0008 (10)0.0075 (10)
O60.0319 (12)0.0292 (11)0.0420 (12)0.0029 (9)0.0147 (10)0.0021 (9)
O70.0342 (13)0.0327 (11)0.0572 (14)0.0061 (9)0.0167 (11)0.0196 (10)
N10.0226 (14)0.0240 (12)0.0346 (13)0.0038 (10)0.0012 (11)0.0001 (10)
C10.0252 (17)0.0399 (17)0.0327 (15)0.0037 (14)0.0035 (13)0.0028 (14)
C20.0285 (18)0.0348 (17)0.0397 (17)0.0134 (13)0.0037 (14)0.0012 (14)
C30.038 (2)0.0231 (16)0.0508 (19)0.0049 (13)0.0068 (16)0.0029 (13)
C40.0232 (17)0.0350 (16)0.0352 (16)0.0043 (13)0.0056 (13)0.0071 (13)
C50.0188 (16)0.0350 (17)0.0323 (15)0.0009 (12)0.0064 (13)0.0018 (12)
C60.051 (2)0.0405 (19)0.0332 (17)0.0046 (16)0.0139 (16)0.0090 (14)
C70.080 (3)0.130 (4)0.033 (2)0.000 (3)0.000 (2)0.025 (2)
C80.084 (3)0.054 (2)0.073 (3)0.014 (2)0.042 (2)0.010 (2)
C90.110 (4)0.053 (2)0.057 (2)0.001 (2)0.051 (2)0.0007 (18)
C100.042 (2)0.058 (2)0.0338 (17)0.0164 (17)0.0032 (15)0.0068 (16)
C110.044 (3)0.136 (4)0.072 (3)0.032 (3)0.003 (2)0.008 (3)
C120.097 (4)0.077 (3)0.100 (4)0.019 (3)0.018 (3)0.043 (3)
C130.080 (3)0.118 (4)0.042 (2)0.027 (3)0.005 (2)0.011 (2)
C140.039 (2)0.0260 (16)0.0482 (19)0.0033 (14)0.0162 (16)0.0028 (14)
C150.047 (2)0.050 (2)0.062 (2)0.0045 (17)0.0277 (19)0.0106 (18)
C160.046 (2)0.050 (2)0.080 (3)0.0045 (18)0.006 (2)0.023 (2)
C170.091 (3)0.038 (2)0.079 (3)0.021 (2)0.040 (2)0.0108 (19)
C180.036 (2)0.0420 (19)0.065 (2)0.0012 (15)0.0168 (18)0.0250 (17)
C190.085 (3)0.055 (2)0.105 (3)0.002 (2)0.063 (3)0.006 (2)
C200.073 (3)0.041 (2)0.065 (2)0.0068 (18)0.024 (2)0.0121 (18)
Geometric parameters (Å, º) top
Ti1—O71.794 (2)C9—H9A0.9800
Ti1—O61.7957 (19)C9—H9B0.9800
Ti1—O51.810 (2)C9—H9C0.9800
Ti1—O31.9488 (18)C10—C121.504 (5)
Ti1—O12.0878 (18)C10—C131.511 (5)
Ti1—Ti23.0459 (7)C10—C111.515 (5)
Ti2—O31.7624 (17)C11—H11A0.9800
Ti2—O41.8034 (18)C11—H11B0.9800
Ti2—O11.9755 (18)C11—H11C0.9800
Ti2—O2i2.0044 (17)C12—H12A0.9800
Ti2—O22.0751 (17)C12—H12B0.9800
Ti2—N12.374 (2)C12—H12C0.9800
Ti2—Ti2i3.3101 (10)C13—H13A0.9800
O1—C11.406 (3)C13—H13B0.9800
O2—C51.422 (3)C13—H13C0.9800
O4—C61.433 (3)C14—C161.503 (4)
O5—C101.422 (3)C14—C171.509 (4)
O6—C141.429 (3)C14—C151.521 (4)
O7—C181.423 (3)C15—H15A0.9800
N1—C31.473 (3)C15—H15B0.9800
N1—C21.479 (3)C15—H15C0.9800
N1—C41.493 (3)C16—H16A0.9800
C1—C21.513 (4)C16—H16B0.9800
C1—H1A0.9900C16—H16C0.9800
C1—H1B0.9900C17—H17A0.9800
C2—H2A0.9900C17—H17B0.9800
C2—H2B0.9900C17—H17C0.9800
C3—H3A0.9800C18—C21A1.460 (8)
C3—H3B0.9800C18—C201.517 (4)
C3—H3C0.9800C18—C191.520 (5)
C4—C51.516 (4)C18—C21B1.585 (9)
C4—H4A0.9900C19—H19A0.9800
C4—H4B0.9900C19—H19B0.9800
C5—H5A0.9900C19—H19C0.9800
C5—H5B0.9900C20—H20A0.9800
C6—C91.499 (5)C20—H20B0.9800
C6—C71.512 (5)C20—H20C0.9800
C6—C81.517 (4)C21A—H21A0.9800
C7—H7A0.9800C21A—H21B0.9800
C7—H7B0.9800C21A—H21C0.9800
C7—H7C0.9800C21B—H21D0.9800
C8—H8A0.9800C21B—H21E0.9800
C8—H8B0.9800C21B—H21F0.9800
C8—H8C0.9800
O7—Ti1—O6100.17 (9)H7A—C7—H7B109.5
O7—Ti1—O5100.64 (10)C6—C7—H7C109.5
O6—Ti1—O5112.40 (9)H7A—C7—H7C109.5
O7—Ti1—O392.27 (8)H7B—C7—H7C109.5
O6—Ti1—O3117.79 (8)C6—C8—H8A109.5
O5—Ti1—O3124.68 (9)C6—C8—H8B109.5
O7—Ti1—O1164.71 (8)H8A—C8—H8B109.5
O6—Ti1—O189.21 (8)C6—C8—H8C109.5
O5—Ti1—O186.68 (8)H8A—C8—H8C109.5
O3—Ti1—O172.61 (7)H8B—C8—H8C109.5
O7—Ti1—Ti2125.02 (7)C6—C9—H9A109.5
O6—Ti1—Ti2104.32 (6)C6—C9—H9B109.5
O5—Ti1—Ti2113.65 (7)H9A—C9—H9B109.5
O3—Ti1—Ti232.89 (5)C6—C9—H9C109.5
O1—Ti1—Ti240.06 (5)H9A—C9—H9C109.5
O3—Ti2—O4105.07 (9)H9B—C9—H9C109.5
O3—Ti2—O179.37 (8)O5—C10—C12110.5 (3)
O4—Ti2—O1102.15 (8)O5—C10—C13106.8 (3)
O3—Ti2—O2i102.64 (8)C12—C10—C13110.9 (3)
O4—Ti2—O2i93.50 (8)O5—C10—C11108.3 (3)
O1—Ti2—O2i163.18 (7)C12—C10—C11109.8 (3)
O3—Ti2—O298.85 (8)C13—C10—C11110.5 (3)
O4—Ti2—O2154.15 (8)C10—C11—H11A109.5
O1—Ti2—O291.64 (7)C10—C11—H11B109.5
O2i—Ti2—O271.54 (8)H11A—C11—H11B109.5
O3—Ti2—N1150.98 (8)C10—C11—H11C109.5
O4—Ti2—N189.37 (8)H11A—C11—H11C109.5
O1—Ti2—N172.97 (8)H11B—C11—H11C109.5
O2i—Ti2—N1101.40 (7)C10—C12—H12A109.5
O2—Ti2—N173.74 (7)C10—C12—H12B109.5
O3—Ti2—Ti136.90 (6)H12A—C12—H12B109.5
O4—Ti2—Ti1112.20 (6)C10—C12—H12C109.5
O1—Ti2—Ti142.86 (5)H12A—C12—H12C109.5
O2i—Ti2—Ti1135.17 (5)H12B—C12—H12C109.5
O2—Ti2—Ti192.81 (5)C10—C13—H13A109.5
N1—Ti2—Ti1114.39 (6)C10—C13—H13B109.5
O3—Ti2—Ti2i103.24 (6)H13A—C13—H13B109.5
O4—Ti2—Ti2i126.95 (6)C10—C13—H13C109.5
O1—Ti2—Ti2i126.70 (6)H13A—C13—H13C109.5
O2i—Ti2—Ti2i36.49 (5)H13B—C13—H13C109.5
O2—Ti2—Ti2i35.06 (5)O6—C14—C16108.4 (2)
N1—Ti2—Ti2i86.80 (6)O6—C14—C17109.1 (3)
Ti1—Ti2—Ti2i117.40 (2)C16—C14—C17112.0 (3)
C1—O1—Ti2127.12 (16)O6—C14—C15106.4 (2)
C1—O1—Ti1135.69 (16)C16—C14—C15110.2 (3)
Ti2—O1—Ti197.07 (8)C17—C14—C15110.6 (3)
C5—O2—Ti2i124.03 (15)C14—C15—H15A109.5
C5—O2—Ti2115.15 (15)C14—C15—H15B109.5
Ti2i—O2—Ti2108.46 (8)H15A—C15—H15B109.5
Ti2—O3—Ti1110.21 (9)C14—C15—H15C109.5
C6—O4—Ti2148.97 (18)H15A—C15—H15C109.5
C10—O5—Ti1145.2 (2)H15B—C15—H15C109.5
C14—O6—Ti1144.92 (18)C14—C16—H16A109.5
C18—O7—Ti1153.6 (2)C14—C16—H16B109.5
C3—N1—C2110.3 (2)H16A—C16—H16B109.5
C3—N1—C4109.9 (2)C14—C16—H16C109.5
C2—N1—C4112.2 (2)H16A—C16—H16C109.5
C3—N1—Ti2111.93 (17)H16B—C16—H16C109.5
C2—N1—Ti2103.28 (16)C14—C17—H17A109.5
C4—N1—Ti2109.10 (15)C14—C17—H17B109.5
O1—C1—C2107.6 (2)H17A—C17—H17B109.5
O1—C1—H1A110.2C14—C17—H17C109.5
C2—C1—H1A110.2H17A—C17—H17C109.5
O1—C1—H1B110.2H17B—C17—H17C109.5
C2—C1—H1B110.2O7—C18—C21A110.7 (4)
H1A—C1—H1B108.5O7—C18—C20107.6 (3)
N1—C2—C1109.3 (2)C21A—C18—C20118.8 (5)
N1—C2—H2A109.8O7—C18—C19108.4 (3)
C1—C2—H2A109.8C21A—C18—C1999.4 (6)
N1—C2—H2B109.8C20—C18—C19111.5 (3)
C1—C2—H2B109.8O7—C18—C21B106.2 (4)
H2A—C2—H2B108.3C20—C18—C21B101.3 (5)
N1—C3—H3A109.5C19—C18—C21B121.1 (6)
N1—C3—H3B109.5C18—C19—H19A109.5
H3A—C3—H3B109.5C18—C19—H19B109.5
N1—C3—H3C109.5H19A—C19—H19B109.5
H3A—C3—H3C109.5C18—C19—H19C109.5
H3B—C3—H3C109.5H19A—C19—H19C109.5
N1—C4—C5110.9 (2)H19B—C19—H19C109.5
N1—C4—H4A109.5C18—C20—H20A109.5
C5—C4—H4A109.5C18—C20—H20B109.5
N1—C4—H4B109.5H20A—C20—H20B109.5
C5—C4—H4B109.5C18—C20—H20C109.5
H4A—C4—H4B108.0H20A—C20—H20C109.5
O2—C5—C4107.4 (2)H20B—C20—H20C109.5
O2—C5—H5A110.2C18—C21A—H21A109.5
C4—C5—H5A110.2C18—C21A—H21B109.5
O2—C5—H5B110.2H21A—C21A—H21B109.5
C4—C5—H5B110.2C18—C21A—H21C109.5
H5A—C5—H5B108.5H21A—C21A—H21C109.5
O4—C6—C9109.6 (2)H21B—C21A—H21C109.5
O4—C6—C7107.5 (3)C18—C21B—H21D109.5
C9—C6—C7112.1 (3)C18—C21B—H21E109.5
O4—C6—C8106.7 (3)H21D—C21B—H21E109.5
C9—C6—C8110.8 (3)C18—C21B—H21F109.5
C7—C6—C8110.0 (3)H21D—C21B—H21F109.5
C6—C7—H7A109.5H21E—C21B—H21F109.5
C6—C7—H7B109.5
O7—Ti1—Ti2—O35.76 (13)Ti2i—Ti2—O3—Ti1118.30 (7)
O6—Ti1—Ti2—O3119.42 (12)O7—Ti1—O3—Ti2175.28 (10)
O5—Ti1—Ti2—O3117.82 (12)O6—Ti1—O3—Ti272.55 (12)
O1—Ti1—Ti2—O3169.59 (12)O5—Ti1—O3—Ti280.12 (13)
O7—Ti1—Ti2—O491.41 (11)O1—Ti1—O3—Ti27.00 (8)
O6—Ti1—Ti2—O4154.92 (9)O3—Ti2—O4—C614.4 (4)
O5—Ti1—Ti2—O432.16 (10)O1—Ti2—O4—C667.7 (4)
O3—Ti1—Ti2—O485.66 (12)O2i—Ti2—O4—C6118.5 (4)
O1—Ti1—Ti2—O483.93 (10)O2—Ti2—O4—C6171.6 (3)
O7—Ti1—Ti2—O1175.35 (12)N1—Ti2—O4—C6140.1 (4)
O6—Ti1—Ti2—O170.99 (10)Ti1—Ti2—O4—C623.9 (4)
O5—Ti1—Ti2—O151.77 (11)Ti2i—Ti2—O4—C6134.4 (3)
O3—Ti1—Ti2—O1169.59 (12)O7—Ti1—O5—C1067.1 (4)
O7—Ti1—Ti2—O2i28.86 (12)O6—Ti1—O5—C1038.7 (4)
O6—Ti1—Ti2—O2i84.80 (10)O3—Ti1—O5—C10167.4 (3)
O5—Ti1—Ti2—O2i152.43 (10)O1—Ti1—O5—C10126.5 (4)
O3—Ti1—Ti2—O2i34.62 (12)Ti2—Ti1—O5—C10156.9 (3)
O1—Ti1—Ti2—O2i155.79 (11)O7—Ti1—O6—C1411.3 (3)
O7—Ti1—Ti2—O295.27 (10)O5—Ti1—O6—C14117.3 (3)
O6—Ti1—Ti2—O218.40 (8)O3—Ti1—O6—C1486.8 (3)
O5—Ti1—Ti2—O2141.16 (9)O1—Ti1—O6—C14156.6 (3)
O3—Ti1—Ti2—O2101.03 (11)Ti2—Ti1—O6—C14119.1 (3)
O1—Ti1—Ti2—O289.38 (9)O6—Ti1—O7—C18163.1 (5)
O7—Ti1—Ti2—N1168.68 (10)O5—Ti1—O7—C1881.6 (5)
O6—Ti1—Ti2—N155.01 (9)O3—Ti1—O7—C1844.3 (5)
O5—Ti1—Ti2—N167.75 (10)O1—Ti1—O7—C1836.0 (7)
O3—Ti1—Ti2—N1174.43 (11)Ti2—Ti1—O7—C1847.5 (5)
O1—Ti1—Ti2—N115.98 (10)O3—Ti2—N1—C3168.17 (18)
O7—Ti1—Ti2—Ti2i69.12 (9)O4—Ti2—N1—C347.07 (18)
O6—Ti1—Ti2—Ti2i44.54 (7)O1—Ti2—N1—C3149.98 (19)
O5—Ti1—Ti2—Ti2i167.30 (8)O2i—Ti2—N1—C346.37 (19)
O3—Ti1—Ti2—Ti2i74.88 (10)O2—Ti2—N1—C3113.10 (19)
O1—Ti1—Ti2—Ti2i115.53 (8)Ti1—Ti2—N1—C3161.27 (16)
O3—Ti2—O1—C1177.1 (2)Ti2i—Ti2—N1—C380.00 (18)
O4—Ti2—O1—C173.8 (2)O3—Ti2—N1—C249.5 (3)
O2i—Ti2—O1—C184.3 (3)O4—Ti2—N1—C271.61 (17)
O2—Ti2—O1—C184.2 (2)O1—Ti2—N1—C231.30 (16)
N1—Ti2—O1—C111.7 (2)O2i—Ti2—N1—C2165.06 (16)
Ti1—Ti2—O1—C1176.5 (2)O2—Ti2—N1—C2128.22 (17)
Ti2i—Ti2—O1—C184.2 (2)Ti1—Ti2—N1—C242.59 (17)
O3—Ti2—O1—Ti16.34 (8)Ti2i—Ti2—N1—C2161.32 (16)
O4—Ti2—O1—Ti1109.65 (8)O3—Ti2—N1—C470.0 (2)
O2i—Ti2—O1—Ti192.2 (3)O4—Ti2—N1—C4168.87 (17)
O2—Ti2—O1—Ti192.36 (7)O1—Ti2—N1—C488.21 (17)
N1—Ti2—O1—Ti1164.80 (9)O2i—Ti2—N1—C475.43 (17)
Ti2i—Ti2—O1—Ti192.33 (7)O2—Ti2—N1—C48.71 (16)
O7—Ti1—O1—C1169.4 (3)Ti1—Ti2—N1—C476.92 (17)
O6—Ti1—O1—C162.4 (2)Ti2i—Ti2—N1—C441.81 (16)
O5—Ti1—O1—C150.1 (2)Ti2—O1—C1—C211.1 (3)
O3—Ti1—O1—C1178.0 (2)Ti1—O1—C1—C2173.83 (18)
Ti2—Ti1—O1—C1176.1 (3)C3—N1—C2—C1166.6 (2)
O7—Ti1—O1—Ti214.6 (4)C4—N1—C2—C170.6 (3)
O6—Ti1—O1—Ti2113.63 (9)Ti2—N1—C2—C146.8 (3)
O5—Ti1—O1—Ti2133.88 (9)O1—C1—C2—N140.6 (3)
O3—Ti1—O1—Ti25.90 (7)C3—N1—C4—C5139.3 (2)
O3—Ti2—O2—C5115.59 (16)C2—N1—C4—C597.6 (3)
O4—Ti2—O2—C586.7 (2)Ti2—N1—C4—C516.2 (3)
O1—Ti2—O2—C536.10 (16)Ti2i—O2—C5—C481.6 (2)
O2i—Ti2—O2—C5143.95 (19)Ti2—O2—C5—C456.0 (2)
N1—Ti2—O2—C535.63 (16)N1—C4—C5—O244.1 (3)
Ti1—Ti2—O2—C578.98 (15)Ti2—O4—C6—C930.3 (5)
Ti2i—Ti2—O2—C5143.95 (19)Ti2—O4—C6—C791.7 (4)
O3—Ti2—O2—Ti2i100.46 (9)Ti2—O4—C6—C8150.3 (3)
O4—Ti2—O2—Ti2i57.2 (2)Ti1—O5—C10—C1254.9 (5)
O1—Ti2—O2—Ti2i179.95 (8)Ti1—O5—C10—C13175.7 (3)
O2i—Ti2—O2—Ti2i0.0Ti1—O5—C10—C1165.3 (5)
N1—Ti2—O2—Ti2i108.32 (9)Ti1—O6—C14—C1659.6 (4)
Ti1—Ti2—O2—Ti2i137.07 (7)Ti1—O6—C14—C1762.6 (4)
O4—Ti2—O3—Ti1107.04 (10)Ti1—O6—C14—C15178.1 (2)
O1—Ti2—O3—Ti17.18 (9)Ti1—O7—C18—C21A64.4 (8)
O2i—Ti2—O3—Ti1155.77 (8)Ti1—O7—C18—C20164.2 (3)
O2—Ti2—O3—Ti182.83 (9)Ti1—O7—C18—C1943.6 (6)
N1—Ti2—O3—Ti110.5 (2)Ti1—O7—C18—C21B88.0 (7)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ti4O2(C5H11NO2)2(C4H9O)8]
Mr1042.79
Crystal system, space groupMonoclinic, P21/n
Temperature (K)163
a, b, c (Å)9.2937 (10), 23.058 (3), 13.5360 (16)
β (°) 102.436 (2)
V3)2832.7 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.36 × 0.15 × 0.15
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.678, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
33365, 5693, 3634
Rint0.081
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.098, 1.01
No. of reflections5693
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.28

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected bond lengths (Å) top
Ti1—O71.794 (2)Ti2—O41.8034 (18)
Ti1—O61.7957 (19)Ti2—O11.9755 (18)
Ti1—O51.810 (2)Ti2—O2i2.0044 (17)
Ti1—O31.9488 (18)Ti2—O22.0751 (17)
Ti1—O12.0878 (18)Ti2—N12.374 (2)
Ti2—O31.7624 (17)
Symmetry code: (i) x, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds