Download citation
Download citation
link to html
The title compound, [Pt(C6H10NO2)(C5H14N2)]2(SO4), crystallizes with two cations in the asymmetric unit. The two complex cations, which have a square-planar PtII coordination, are chemically identical but differ slightly in the conformations of their amine groups. A neutral complex, viz. (2,2-di­methyl-1,3-propane­di­amine-[kappa]2N,N')bis(2-piperidine­carb­oxyl­ato-[kappa]N)platinum(II), is shown to form in solution and to change rapidly into the title compound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103025678/ta1426sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103025678/ta1426Isup2.hkl
Contains datablock I

CCDC reference: 229087

Comment top

The structural and chemical properties of metal complexes of piperidinecarboxylates have not been studied widely, while those of pyridinecarboxylates have (Gonzales-Vergara et al., 1982; Strearns et al., 1992). Diaminoplatinum(II) complexes of pyridinecarboxylates exhibit significant anticancer activity in vitro (Song et al., 1999 and 2000), even though they do not obey the generally accepted structure–activity relationships (Reedijk,1992) for tumor-active platinum compounds. One molecule of 2-pyridinecarboxylate binds a diaminoplatinum(II) molecule via N,O-coordination, giving a cationic complex, while two molecules of 3- or 4-pyridinecarboxylate bind a diaminoplatinum(II) molecule via N,N-coordination, giving a neutral zwitterionic complex. We investigate here the structure of a PtII complex, (I), of a piperidinecarboxylate ligand that has donor N and carboxylate O atoms similar to those found in pyridinecarboxylate complexes.

The reaction of (dmpda-k2N,N')platinum(II) sulfate (where dmpda is 2,2-dimethyl-1,3-propanediamine) and two equivalents of 2-piperidinecarboxylate in D2O produces a mixture of a neutral complex, [(dmpda-κ2N,N')bis(pip-κN)platinum(II)] (II) (where pip is piperidinecarboxylato), and a cationic complex, [(dmpda-κ2N,N')(pip-κ2N,O)platinum(II)]+, in an initial molar ratio of ca 1:0.3 (Scheme 2). This ratio was? assessed by the integration of the 1H NMR peak at 3.64 p.p.m., corresponding to two methyne protons in the neutral complex, and the peak at 3.90 p.p.m., which is due to the methyne proton in the cationic complex. The signal intensity of the peak at 3.6 p.p.m. decreases, while that at 3.9 p.p.m. increases, so that the molar ratio is reversed in 3 d. This change is faster at higher temperatures, and certainly signifies the transformation of the neutral complex to the cationic complex, accompanied by the loss of one pip ligand. The cationic complex is so stable that its 1H NMR signals do not change thereafter.

In the crystal structure of (I) there are two chemically identical [(dmpda-κ2N,N')(pip-κ2N,O)Pt]+ ions. (Fig. 1). The dmpda ligands in these two molecules are slightly different in their conformations, which reflects the structural flexibility of the dmpda ligand. One pip ligand chelates a Pt atom via a carboxylate O atom and the ring N atom, thus forming a five-membered ring. The sulfate ion is not coordinated to the Pt atom. Pt—N and Pt—O distances (Table 1) fall in the ranges found in other platinum compounds (Goto et al., 1992; Kuroda et al., 1983). The coordination geometries around the Pt atoms are slightly distorted square planar, with the O1—Pt1—N1 [81.50 (17)°] and N4—Pt2—O3 [82.0 (2) °] angles exhibiting maximum deviations for the two Pt complex ions (Table 1). The Pt atom and four coordinated atoms of each Pt complex ion form a well defined least-squares plane, to which the piperidine ring stands almost orthogonal.

Strong hydrogen bonds are observed not only between a platinum complex ion and the sulfate anion but also between complex cations. All N atoms serve as hydrogen-bond donors. Sulfate O atoms (O5, O6 and O7), and carboxylate O atoms (O1 and O3) coordinated with Pt atoms, serve as hydrogen-bond acceptors. Such a net of hydrogen bonds helps construct a layer whose orientation includes the a direction and the bc diagonal. Short interatomic distances that might accommodate hydrogen-bonding interactions are listed in Table 2.

It is noticeable that the distance across the platinum coordination plane in (I), between a methyl group in the amine and methylene groups in the pip ligand, is 5–6 Å. It is unlikely that significant steric hindrance occurs in this distance, even though the thermal motion of the dmpda ligand is considered. However, the steric hindrance is expected to increase severely in the case of the N,N-coordinated complex, (II), between a methyl group of the dmpda ligand and the carboxylate group of a pip ligand across the platinum coordination plane (Scheme 1). This steric hindrance is possibly an important reason for the transformation of (II) to (I). This transformation would diminish remarkably the steric hindrance occurring across the platinum coordination plane of the N,N-coordinated complex. This study on the crystal structure of (I) suggests that the transformation of the neutral complex to the cationic complex may be induced by the steric interaction between the amine and piperidinecarboxylate ligands.

Experimental top

To a suspension of (dmpda)PtI2 (1.17 g, 2.0 mmol) in water (35 ml) was added silver sulfate (0.62 g, 2.0 mmol) in water (65 ml). The reaction mixture was stirred for 6 h, with protection from light. After the precipitate AgI had been filtered off, Ba[pip]2 (0.78 g, 2.0 mmol) was added to the filtrate. The reaction mixture was stirred for 3 d, at which point the precipitated BaSO4 was filtered off and the filtrate was evaporated to dryness under reduced pressure. The product was finally recrystallized from methanol and ether. Crystals suitable for X-ray analysis were obtained by slow evaporation of the methanol solution at room temperature over a period of 1 week. After filtration, the crystals were washed with ether. Analysis calculated for C22H48N6O8Pt2S: C 27.88, H 5.07, N 8.87%; found: C 27.78, H 5.02, N 8.75%. 1H NMR (D2O): δ 3.90 (t, 1H, CH), 2.94 (m, 2H, CH2), 2.42 (m, 4H, CH2-dmpda), 2.25 (m, 1H, CH2), 2.10 (m, 1H, CH2), 1.89 (m, 1H, CH2), 1.60 (m, 3H,CH2), 0.96 (d, 6H, CH3-dmpda).

Refinement top

The locations of all the H atoms were constrained to ideal positions an refined using a riding model.

Computing details top

Data collection: CD4CA0 (Enraf–Nonius, 1989); cell refinement: CD4CA0; data reduction: CADDAT (Enraf-Nonius, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for window (Farrugia, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of [(dmpda-κ2N,N')(pip-κ2N,O)Pt(II)]2SO4. Displacement ellipsoids are shown at the 50% probability level.
Bis[(2,2-Dimethyl-1,3-propanediamine-κ2N,N')(piperidine-2-carboxylato- κ2N,O)platinum(II)] sulfate top
Crystal data top
[Pt(C5H14N2)(C6H10NO2)]2SO4Z = 2
Mr = 946.90F(000) = 916
Triclinic, P1Dx = 2.049 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0043 (13) ÅCell parameters from 25 reflections
b = 11.0480 (18) Åθ = 10.5–14.3°
c = 23.763 (3) ŵ = 9.22 mm1
α = 101.882 (14)°T = 293 K
β = 91.135 (13)°Block, pale yellow
γ = 95.216 (12)°0.25 × 0.2 × 0.12 mm
V = 1535.0 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
4241 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.0°, θmin = 0.9°
ω/2θ scansh = 07
Absorption correction: empirical (using intensity measurements)
(CADDAT; Enraf–Nonius, 1989)
k = 1313
Tmin = 0.12, Tmax = 0.33l = 2828
5955 measured reflections3 standard reflections every 3600 min
5387 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0187P)2 + 2.3696P]
where P = (Fo2 + 2Fc2)/3
5387 reflections(Δ/σ)max = 0.001
352 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Pt(C5H14N2)(C6H10NO2)]2SO4γ = 95.216 (12)°
Mr = 946.90V = 1535.0 (5) Å3
Triclinic, P1Z = 2
a = 6.0043 (13) ÅMo Kα radiation
b = 11.0480 (18) ŵ = 9.22 mm1
c = 23.763 (3) ÅT = 293 K
α = 101.882 (14)°0.25 × 0.2 × 0.12 mm
β = 91.135 (13)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
4241 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
(CADDAT; Enraf–Nonius, 1989)
Rint = 0.021
Tmin = 0.12, Tmax = 0.333 standard reflections every 3600 min
5955 measured reflections intensity decay: none
5387 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.09Δρmax = 0.74 e Å3
5387 reflectionsΔρmin = 0.73 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.18372 (4)0.098463 (19)0.101509 (9)0.02370 (7)
Pt20.20426 (4)0.41393 (2)0.399760 (10)0.03048 (8)
N10.3085 (8)0.2795 (4)0.1227 (2)0.0262 (11)
H1D0.35430.29770.16050.031*
N20.0822 (9)0.0971 (4)0.1822 (2)0.0292 (11)
H2D0.18950.14160.20690.035*
H2E0.04080.13830.18710.035*
N30.0665 (9)0.0819 (4)0.0676 (2)0.0318 (12)
H3D0.05760.08010.04610.038*
H3E0.16910.11420.04330.038*
N40.0457 (9)0.2747 (5)0.3934 (2)0.0329 (12)
H4D0.16260.29160.37230.039*
N50.1344 (9)0.4512 (5)0.3224 (2)0.0357 (13)
H5D0.24200.42390.29850.043*
H5E0.00460.40710.30830.043*
N60.4705 (9)0.5449 (5)0.4073 (2)0.0373 (13)
H6D0.53400.55560.44280.045*
H6E0.57230.51590.38190.045*
O10.3039 (7)0.1158 (4)0.02385 (17)0.0330 (10)
O20.5715 (9)0.2254 (4)0.0124 (2)0.0481 (13)
O30.2574 (8)0.3715 (5)0.4781 (2)0.0453 (12)
O40.0935 (10)0.2682 (5)0.5393 (2)0.0595 (15)
C10.4596 (11)0.2075 (5)0.0277 (3)0.0305 (14)
C20.5075 (10)0.2902 (5)0.0873 (3)0.0308 (14)
H20.62800.25560.10540.037*
C30.5917 (12)0.4244 (6)0.0863 (3)0.0399 (16)
H3A0.66400.46350.12320.048*
H3B0.70240.42470.05710.048*
C40.4042 (13)0.4989 (6)0.0737 (3)0.0474 (19)
H4A0.46290.58430.07530.057*
H4B0.34000.46470.03540.057*
C50.2263 (12)0.4953 (6)0.1170 (3)0.0434 (17)
H5A0.10740.54390.10900.052*
H5B0.28950.53130.15540.052*
C60.1314 (11)0.3609 (6)0.1143 (3)0.0349 (15)
H6A0.02230.35930.14380.042*
H6B0.05490.32850.07720.042*
C70.0304 (12)0.0214 (6)0.1998 (3)0.0346 (15)
H7A0.04300.00550.23630.041*
H7B0.17000.05520.20630.041*
C80.1165 (12)0.1186 (6)0.1576 (3)0.0390 (16)
C90.3288 (12)0.0673 (8)0.1410 (4)0.062 (2)
H9A0.40560.03520.17510.093*
H9B0.42410.13250.11660.093*
H9C0.29100.00190.12080.093*
C100.1765 (19)0.2271 (7)0.1879 (4)0.080 (3)
H10A0.25980.19860.22130.120*
H10B0.04170.25770.19930.120*
H10C0.26550.29270.16200.120*
C110.0107 (12)0.1712 (5)0.1049 (3)0.0349 (15)
H11A0.14830.19910.11750.042*
H11B0.07850.24320.08250.042*
C120.0892 (12)0.3028 (7)0.4939 (3)0.0406 (16)
C130.1169 (12)0.2758 (6)0.4531 (3)0.0381 (16)
H130.20700.34610.46380.046*
C140.2655 (14)0.1594 (7)0.4580 (3)0.056 (2)
H14A0.27830.15690.49840.068*
H14B0.41420.16460.44250.068*
C150.1799 (17)0.0399 (7)0.4270 (4)0.066 (3)
H15A0.04200.02740.44600.079*
H15B0.28900.02960.42850.079*
C160.1383 (16)0.0447 (7)0.3654 (3)0.057 (2)
H16A0.27690.05360.34560.068*
H16B0.08080.03160.34600.068*
C170.0322 (13)0.1558 (6)0.3644 (3)0.0461 (18)
H17A0.17140.14420.38310.055*
H17B0.06210.15910.32470.055*
C180.1153 (11)0.5830 (6)0.3210 (3)0.0396 (16)
H18A0.00190.61350.34730.048*
H18B0.06470.58800.28260.048*
C190.3333 (11)0.6683 (6)0.3370 (3)0.0393 (16)
C200.5131 (13)0.6364 (7)0.2942 (3)0.053 (2)
H20A0.45630.63720.25630.079*
H20B0.55600.55530.29520.079*
H20C0.64100.69650.30400.079*
C210.2748 (17)0.8020 (7)0.3389 (5)0.076 (3)
H21A0.15990.82130.36590.115*
H21B0.22230.80880.30140.115*
H21C0.40570.85900.35050.115*
C220.4177 (12)0.6674 (6)0.3976 (3)0.0453 (18)
H22A0.55140.72510.40660.054*
H22B0.30530.69770.42430.054*
S0.3998 (3)0.27077 (16)0.25816 (7)0.0342 (4)
O50.3262 (8)0.3495 (4)0.3148 (2)0.0450 (12)
O60.2283 (10)0.2803 (6)0.2166 (3)0.0690 (17)
O70.6049 (9)0.3157 (6)0.2391 (2)0.0621 (16)
O80.4530 (13)0.1439 (5)0.2624 (3)0.083 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02617 (13)0.02439 (12)0.01915 (12)0.00031 (9)0.00118 (9)0.00249 (9)
Pt20.02765 (15)0.03900 (15)0.02299 (14)0.00007 (11)0.00266 (11)0.00408 (11)
N10.031 (3)0.033 (3)0.015 (2)0.001 (2)0.001 (2)0.005 (2)
N20.034 (3)0.028 (3)0.021 (3)0.002 (2)0.004 (2)0.003 (2)
N30.036 (3)0.033 (3)0.024 (3)0.000 (2)0.002 (2)0.000 (2)
N40.034 (3)0.033 (3)0.028 (3)0.001 (2)0.006 (2)0.002 (2)
N50.033 (3)0.045 (3)0.027 (3)0.001 (3)0.003 (2)0.005 (2)
N60.030 (3)0.048 (3)0.033 (3)0.006 (3)0.006 (2)0.012 (3)
O10.039 (3)0.037 (2)0.021 (2)0.001 (2)0.0055 (19)0.0018 (18)
O20.061 (3)0.044 (3)0.038 (3)0.002 (2)0.022 (3)0.006 (2)
O30.042 (3)0.062 (3)0.030 (3)0.010 (2)0.008 (2)0.011 (2)
O40.065 (4)0.074 (4)0.040 (3)0.010 (3)0.008 (3)0.020 (3)
C10.034 (4)0.031 (3)0.027 (3)0.005 (3)0.003 (3)0.006 (3)
C20.026 (3)0.031 (3)0.037 (4)0.001 (3)0.001 (3)0.010 (3)
C30.039 (4)0.035 (3)0.044 (4)0.009 (3)0.000 (3)0.009 (3)
C40.058 (5)0.030 (3)0.056 (5)0.004 (3)0.004 (4)0.018 (3)
C50.045 (4)0.031 (3)0.056 (5)0.010 (3)0.015 (4)0.010 (3)
C60.029 (3)0.035 (3)0.041 (4)0.007 (3)0.005 (3)0.006 (3)
C70.045 (4)0.038 (3)0.020 (3)0.000 (3)0.008 (3)0.006 (3)
C80.046 (4)0.038 (4)0.031 (4)0.004 (3)0.008 (3)0.006 (3)
C90.028 (4)0.075 (5)0.065 (6)0.005 (4)0.011 (4)0.022 (4)
C100.135 (10)0.048 (5)0.048 (5)0.036 (5)0.026 (6)0.008 (4)
C110.042 (4)0.022 (3)0.039 (4)0.001 (3)0.005 (3)0.005 (3)
C120.041 (4)0.052 (4)0.028 (4)0.006 (3)0.007 (3)0.011 (3)
C130.039 (4)0.040 (4)0.033 (4)0.002 (3)0.004 (3)0.002 (3)
C140.059 (5)0.060 (5)0.043 (5)0.022 (4)0.001 (4)0.008 (4)
C150.095 (7)0.044 (4)0.054 (5)0.014 (4)0.023 (5)0.014 (4)
C160.084 (6)0.042 (4)0.040 (4)0.002 (4)0.001 (4)0.001 (3)
C170.061 (5)0.046 (4)0.027 (4)0.007 (4)0.001 (3)0.003 (3)
C180.030 (4)0.047 (4)0.042 (4)0.004 (3)0.005 (3)0.010 (3)
C190.032 (4)0.037 (4)0.047 (4)0.002 (3)0.008 (3)0.007 (3)
C200.048 (5)0.063 (5)0.049 (5)0.003 (4)0.008 (4)0.017 (4)
C210.081 (7)0.046 (5)0.099 (8)0.006 (5)0.036 (6)0.010 (5)
C220.034 (4)0.040 (4)0.057 (5)0.007 (3)0.008 (3)0.003 (3)
S0.0296 (8)0.0421 (8)0.0278 (8)0.0047 (7)0.0027 (7)0.0004 (7)
O50.042 (3)0.050 (3)0.037 (3)0.009 (2)0.019 (2)0.004 (2)
O60.059 (4)0.085 (4)0.065 (4)0.016 (3)0.032 (3)0.013 (3)
O70.040 (3)0.104 (4)0.033 (3)0.030 (3)0.010 (2)0.015 (3)
O80.119 (6)0.047 (3)0.077 (5)0.012 (4)0.004 (4)0.006 (3)
Geometric parameters (Å, º) top
Pt1—N22.025 (5)C7—H7A0.9700
Pt1—N12.028 (5)C7—H7B0.9700
Pt1—O12.034 (4)C8—C111.518 (9)
Pt1—N32.044 (5)C8—C91.519 (11)
Pt2—N52.010 (5)C8—C101.541 (9)
Pt2—N42.029 (5)C9—H9A0.9600
Pt2—N62.035 (5)C9—H9B0.9600
Pt2—O32.038 (5)C9—H9C0.9600
N1—C21.485 (8)C10—H10A0.9600
N1—C61.489 (8)C10—H10B0.9600
N1—H1D0.9100C10—H10C0.9600
N2—C71.465 (7)C11—H11A0.9700
N2—H2D0.9000C11—H11B0.9700
N2—H2E0.9000C12—C131.525 (9)
N3—C111.478 (7)C13—C141.523 (9)
N3—H3D0.9000C13—H130.9800
N3—H3E0.9000C14—C151.513 (12)
N4—C171.473 (8)C14—H14A0.9700
N4—C131.489 (8)C14—H14B0.9700
N4—H4D0.9100C15—C161.501 (11)
N5—C181.478 (8)C15—H15A0.9700
N5—H5D0.9000C15—H15B0.9700
N5—H5E0.9000C16—C171.530 (10)
N6—C221.479 (8)C16—H16A0.9700
N6—H6D0.9000C16—H16B0.9700
N6—H6E0.9000C17—H17A0.9700
O1—C11.302 (7)C17—H17B0.9700
O2—C11.215 (7)C18—C191.535 (9)
O3—C121.315 (8)C18—H18A0.9700
O4—C121.216 (8)C18—H18B0.9700
C1—C21.526 (8)C19—C201.513 (10)
C2—C31.528 (8)C19—C221.518 (10)
C2—H20.9800C19—C211.540 (10)
C3—C41.513 (10)C20—H20A0.9600
C3—H3A0.9700C20—H20B0.9600
C3—H3B0.9700C20—H20C0.9600
C4—C51.501 (10)C21—H21A0.9600
C4—H4A0.9700C21—H21B0.9600
C4—H4B0.9700C21—H21C0.9600
C5—C61.529 (8)C22—H22A0.9700
C5—H5A0.9700C22—H22B0.9700
C5—H5B0.9700S—O81.433 (6)
C6—H6A0.9700S—O61.453 (6)
C6—H6B0.9700S—O71.466 (5)
C7—C81.513 (9)S—O51.479 (5)
N2—Pt1—N193.06 (19)C11—C8—C9111.5 (6)
N2—Pt1—O1174.38 (17)C7—C8—C10106.6 (6)
N1—Pt1—O181.50 (17)C11—C8—C10106.4 (6)
N2—Pt1—N395.47 (19)C9—C8—C10109.7 (7)
N1—Pt1—N3171.36 (19)C8—C9—H9A109.5
O1—Pt1—N390.01 (18)C8—C9—H9B109.5
N5—Pt2—N495.0 (2)H9A—C9—H9B109.5
N5—Pt2—N687.4 (2)C8—C9—H9C109.5
N4—Pt2—N6175.9 (2)H9A—C9—H9C109.5
N5—Pt2—O3176.8 (2)H9B—C9—H9C109.5
N4—Pt2—O382.0 (2)C8—C10—H10A109.5
N6—Pt2—O395.6 (2)C8—C10—H10B109.5
C2—N1—C6115.0 (5)H10A—C10—H10B109.5
C2—N1—Pt1105.7 (3)C8—C10—H10C109.5
C6—N1—Pt1110.1 (4)H10A—C10—H10C109.5
C2—N1—H1D108.6H10B—C10—H10C109.5
C6—N1—H1D108.6N3—C11—C8114.0 (5)
Pt1—N1—H1D108.6N3—C11—H11A108.8
C7—N2—Pt1119.9 (4)C8—C11—H11A108.8
C7—N2—H2D107.4N3—C11—H11B108.8
Pt1—N2—H2D107.4C8—C11—H11B108.8
C7—N2—H2E107.4H11A—C11—H11B107.7
Pt1—N2—H2E107.4O4—C12—O3122.3 (6)
H2D—N2—H2E106.9O4—C12—C13122.2 (6)
C11—N3—Pt1121.3 (4)O3—C12—C13115.5 (6)
C11—N3—H3D107.0N4—C13—C14112.9 (5)
Pt1—N3—H3D107.0N4—C13—C12109.1 (5)
C11—N3—H3E107.0C14—C13—C12113.9 (6)
Pt1—N3—H3E107.0N4—C13—H13106.8
H3D—N3—H3E106.7C14—C13—H13106.8
C17—N4—C13113.6 (5)C12—C13—H13106.8
C17—N4—Pt2110.2 (4)C15—C14—C13113.7 (7)
C13—N4—Pt2106.1 (4)C15—C14—H14A108.8
C17—N4—H4D108.9C13—C14—H14A108.8
C13—N4—H4D108.9C15—C14—H14B108.8
Pt2—N4—H4D108.9C13—C14—H14B108.8
C18—N5—Pt2116.3 (4)H14A—C14—H14B107.7
C18—N5—H5D108.2C16—C15—C14110.5 (7)
Pt2—N5—H5D108.2C16—C15—H15A109.5
C18—N5—H5E108.2C14—C15—H15A109.5
Pt2—N5—H5E108.2C16—C15—H15B109.5
H5D—N5—H5E107.4C14—C15—H15B109.5
C22—N6—Pt2115.2 (4)H15A—C15—H15B108.1
C22—N6—H6D108.5C15—C16—C17108.4 (6)
Pt2—N6—H6D108.5C15—C16—H16A110.0
C22—N6—H6E108.5C17—C16—H16A110.0
Pt2—N6—H6E108.5C15—C16—H16B110.0
H6D—N6—H6E107.5C17—C16—H16B110.0
C1—O1—Pt1112.9 (4)H16A—C16—H16B108.4
C12—O3—Pt2113.6 (4)N4—C17—C16112.6 (6)
O2—C1—O1123.6 (6)N4—C17—H17A109.1
O2—C1—C2120.0 (6)C16—C17—H17A109.1
O1—C1—C2116.3 (5)N4—C17—H17B109.1
N1—C2—C1109.3 (5)C16—C17—H17B109.1
N1—C2—C3113.3 (5)H17A—C17—H17B107.8
C1—C2—C3113.9 (5)N5—C18—C19114.5 (5)
N1—C2—H2106.6N5—C18—H18A108.6
C1—C2—H2106.6C19—C18—H18A108.6
C3—C2—H2106.6N5—C18—H18B108.6
C4—C3—C2112.1 (5)C19—C18—H18B108.6
C4—C3—H3A109.2H18A—C18—H18B107.6
C2—C3—H3A109.2C20—C19—C22110.8 (6)
C4—C3—H3B109.2C20—C19—C18112.4 (6)
C2—C3—H3B109.2C22—C19—C18111.1 (6)
H3A—C3—H3B107.9C20—C19—C21110.0 (7)
C5—C4—C3110.1 (6)C22—C19—C21105.6 (6)
C5—C4—H4A109.6C18—C19—C21106.7 (6)
C3—C4—H4A109.6C19—C20—H20A109.5
C5—C4—H4B109.6C19—C20—H20B109.5
C3—C4—H4B109.6H20A—C20—H20B109.5
H4A—C4—H4B108.2C19—C20—H20C109.5
C4—C5—C6109.8 (5)H20A—C20—H20C109.5
C4—C5—H5A109.7H20B—C20—H20C109.5
C6—C5—H5A109.7C19—C21—H21A109.5
C4—C5—H5B109.7C19—C21—H21B109.5
C6—C5—H5B109.7H21A—C21—H21B109.5
H5A—C5—H5B108.2C19—C21—H21C109.5
N1—C6—C5112.3 (5)H21A—C21—H21C109.5
N1—C6—H6A109.1H21B—C21—H21C109.5
C5—C6—H6A109.1N6—C22—C19115.3 (6)
N1—C6—H6B109.1N6—C22—H22A108.4
C5—C6—H6B109.1C19—C22—H22A108.4
H6A—C6—H6B107.9N6—C22—H22B108.4
N2—C7—C8115.3 (5)C19—C22—H22B108.4
N2—C7—H7A108.5H22A—C22—H22B107.5
C8—C7—H7A108.5O8—S—O6110.7 (4)
N2—C7—H7B108.5O8—S—O7107.5 (4)
C8—C7—H7B108.5O6—S—O7109.4 (4)
H7A—C7—H7B107.5O8—S—O5111.1 (4)
C7—C8—C11111.2 (6)O6—S—O5110.2 (4)
C7—C8—C9111.2 (6)O7—S—O5107.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O7i0.911.852.745 (7)169
N2—H2D···O7i0.902.182.987 (7)150
N2—H2E···O60.902.032.882 (8)158
N3—H3D···O1ii0.902.153.022 (7)163
N3—H3E···O2iii0.902.122.974 (7)158
N4—H4D···O50.911.912.787 (7)161
N5—H5D···O7i0.901.952.817 (7)160
N5—H5E···O50.902.052.877 (7)152
N6—H6D···O3iv0.902.203.074 (7)163
N6—H6E···O5i0.902.313.100 (8)147
Symmetry codes: (i) x+1, y, z; (ii) x, y, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pt(C5H14N2)(C6H10NO2)]2SO4
Mr946.90
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.0043 (13), 11.0480 (18), 23.763 (3)
α, β, γ (°)101.882 (14), 91.135 (13), 95.216 (12)
V3)1535.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)9.22
Crystal size (mm)0.25 × 0.2 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(CADDAT; Enraf–Nonius, 1989)
Tmin, Tmax0.12, 0.33
No. of measured, independent and
observed [I > 2σ(I)] reflections
5955, 5387, 4241
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.065, 1.09
No. of reflections5387
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.73

Computer programs: CD4CA0 (Enraf–Nonius, 1989), CD4CA0, CADDAT (Enraf-Nonius, 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for window (Farrugia, 1998), SHELXL97.

Selected geometric parameters (Å, º) top
Pt1—N22.025 (5)Pt2—N52.010 (5)
Pt1—N12.028 (5)Pt2—N42.029 (5)
Pt1—O12.034 (4)Pt2—N62.035 (5)
Pt1—N32.044 (5)Pt2—O32.038 (5)
N2—Pt1—N193.06 (19)N5—Pt2—N495.0 (2)
N1—Pt1—O181.50 (17)N5—Pt2—N687.4 (2)
N2—Pt1—N395.47 (19)N4—Pt2—O382.0 (2)
O1—Pt1—N390.01 (18)N6—Pt2—O395.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O7i0.911.852.745 (7)169
N2—H2D···O7i0.902.182.987 (7)150
N2—H2E···O60.902.032.882 (8)158
N3—H3D···O1ii0.902.153.022 (7)163
N3—H3E···O2iii0.902.122.974 (7)158
N4—H4D···O50.911.912.787 (7)161
N5—H5D···O7i0.901.952.817 (7)160
N5—H5E···O50.902.052.877 (7)152
N6—H6D···O3iv0.902.203.074 (7)163
N6—H6E···O5i0.902.313.100 (8)147
Symmetry codes: (i) x+1, y, z; (ii) x, y, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds