Download citation
Download citation
link to html
The crystal structures of a pair of closely related macrocyclic cyano- and hydroxopenta­amine­cobalt(III) complexes, as their perchlorate salts, are reported. Although the two complexes, [Co(CN)(C11H27N5)](ClO4)2·H2O and [Co(OH)(C11H27N5)](ClO4)2, exhibit similar conformations, significant differences in the Co-N bond lengths arise from the influence of the sixth ligand (cyano as opposed to hydroxo). The ensuing hydrogen-bonding patterns are also distinctly different. Disorder in the perchlorate anions was clearly resolved and this was rationalized on the basis of distinct hydrogen-bonding motifs involving the anion O atoms and the N-H and O-H donors.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103023370/ta1425sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103023370/ta1425Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103023370/ta1425IIsup3.hkl
Contains datablock II

CCDC references: 229077; 229078

Comment top

The pendant amino-substitutued cyclam 6-methyl-1,4,8,11-tetraazacyclotetradecane-6-amine (L1) has the capability of binding as a pentadentate ligand via its four secondary amine and single primary amine N-donors. The ligand may coordinate in a folded (cis) (Lawrance et al., 1992) or planar (trans) configuration (Hambley et al., 1992). Within the trans form, there are two possible N-based isomeric forms, RSRS (trans-I) (Bernhardt et al., 2000), with all amine H atoms on the same side of the macrocyclic plane, and RRSS (trans-III) (Hambley et al., 1992), with two H atoms up and two down. In six-coordinate complexes of L1, the trans-I form has been most commonly encountered in complexes bearing the [CoL1] moiety (Bernhardt et al., 2000; Bernhardt et al., 2002). \sch

The related hexaamine L2 may bind in a hexadentate (Bernhardt et al., 1989; Bernhardt, Comba et al., 1990; Bernhardt et al., 1991), pentadentate (Bernhardt, Lawrance, Comba et al., 1990; Curtis et al., 1993) or tetradentate (Curtis et al., 1992; Bernhardt, Lawrance, Patalinghug et al., 1990) mode, depending on the protonation state of the pendant amines and the preferred coordination geometry of the metal ion. When bulky substituents are attached to one of the pendant amines of L2 (e.g. L3a-c), coordination of the substituted amine is disfavoured on steric grounds (Bernhardt & Hayes, 2002). Pentadentate coordination by ligands such as L3a-c has obvious parallels with the chemistry of L1.

In this work, we report the crystal structures of trans-[CoL1CN](ClO4)2·H2O, (I), and trans-[CoL1OH](ClO4)2, (II), where both complexes are in the trans-I configuration. These structures represent rare examples of structurally characterized cyano- and hydroxopentaaminecobalt(III) complexes.

The structure of (I) (Fig. 1) reveals the expected scorpionate conformation of the macrocyclic ligand, with the pendant amine tail coordinating above the CoN4 plane and trans to the cyano ligand. The trans-I N-based isomer is apparent. As expected, the Co—CN coordinate bond is the shortest (Table 1). The four secondary amine coordinate bonds are similar, and the Co—N bond to the pendant amine is significantly longer. For comparison, in all other high-resolution crystal structures of CoIII complexes containing the pentadentate-coordinated L1 moiety, including derivatives such as L3a-c, the five Co—N bonds lie within a relatively narrow range (1.94–1.96 Å). In (I), there is a significant increase in the average Co—N bond length. Upon closer inspection, the four in-plane Co—N bonds span the range 1.956 (3)–1.975 (3) Å, while the bond to the pendant amine is significantly longer [1.990 (2) Å]. This axial elongation may be attributed to the trans influence of the cyano ligand, as no significant differences between the bond lengths involving the secondary or primary amines have been seen in chloro (Bernhardt et al., 2000; Bernhardt & Macpherson, 2003), N-bound ferrocyanide (Bernhardt et al., 2000) or ferricyanide (Bernhardt et al., 2002) complexes bearing the (CoL1) moiety. Furthermore, in Na[CoL3bCN](ClO4)3, the only other cyanopentaaminecobalt(III) complex to be structurally characterized to date, a similar trans influence of the cyano ligand on the pendant amine coordinate bond length [2.001 (5) Å] was observed (Bernhardt & Hayes, 2002).

Hydrogen bonding is a feature of the structure of (I) (Fig. 2). The complex cations are arranged into a linear polymeric hydrogen-bonded array, with the pendant amino group as donor and the cyano ligand as acceptor (Table 2). All remaining N—H groups participate in hydrogen bonds to either the perchlorate anions or the water molecule. Of note is the bifurcated hydrogen bond formed between the water atom O1 and the pair of adjacent secondary amines (N2 and N3).

Disorder in the positions of perchlorate atoms O1B, O1C and O1D (O1B'', O1C'' and O1D'') was resolved and two distinct orientations of the anion were identified, related by a ca 70° rotation of the anion about the Cl1—O1A bond. The complementary occupancies of the two contributors were 83% and 17%, and no geometric restraints were used in refinement. The hydrogen bonds present in these two orientations are illustrated in Fig. 3. In the major contributor, atoms O1C and O1D participate in strong hydrogen-bonding interactions with the pendant amine and the water molecule (Table 2). Although these two interactions remain in the alternate minor orientation, they are somewhat more acute and hence weaker. To compensate for this misalignment, the minor contributor gains an extra hydrogen bond, with atom O1B'' as acceptor for a water molecule, whereas atom O1B has no partner in the major form.

The structure of (II) (Fig. 4) has also been determined. The conformation of the macrocycle is identical to that seen in (I), but the Co—N bond lengths (Table 3) now lie within the normal range for CoIII complexes of L1 and pentadentate-coordinated L2, and the Co—N5 bond length is not particularly long.

Substitution of cyano (a hydrogen-bond acceptor) with hydroxo (both a donor and an acceptor) results in a quite different hydrogen-bonding pattern for (II) (Fig. 5). Unlike the polymeric hydrogen-bonded chain seen in (I), the cations in (II) form centrosymmetric dimers, with the hydroxo O atom on one cation participating in a bifurcated hydrogen-bond with the secondary amine groups N2 and N3 on an adjacent complex (Table 4). This motif is reminiscent of that seen in (I), where the water molecule plays the role of acceptor in place of the hydroxo ligand. All other amine H atoms (except that attached to N1) and the hydroxo ligand participate in hydrogen bonding with the perchlorate anions.

Disorder was identified in both perchlorate anions in (II) (O1B, O1C and O1D/O1B'', O1C'' and O1D'', and O2B, O2C and O2D/O2B'', O2C'' and O2D''). The contributors were again refined with complementary occupancies (91% and 9%) without geometrical restraints. The two contributors (Fig. 6) to disorder in anion 1 are related by a ca 40° rotation about Cl1—O1A. In the major orientation, atoms O1B and O1D accept strong hydrogen bonds from N4—H4 and O1—H1C. In the minor contributor, only atom O2D'' is hydrogen-bonded, in a bifurcated motif with both N4—H4 and O1—H1C. Anion 2 bridges the pendant amines of adjacent cations. Rotation about Cl2—O2A, again by ca 40°, generates the two contributors, each of which forms a pair of hydrogen bonds of similar strength to two different complex cations.

In conclusion, some interesting variations in the structures of two closely related macrocyclic pentaamine complexes of CoIII have been identified. Introduction of a cyano ligand into the sixth coordination site, (I), leads to a lengthening of the Co—N bonds and a significant extension of the Co—N bond trans to the cyano ligand. By comparison, the coordinate bonds in the hydroxo analogue, (II), are typical of other complexes bearing the [CoL1] or pentadentate-coordinated [CoL2] moiety. Perchlorate disorder was resolved and rationalized on the basis of distinct hydrogen-bonding patterns.

Experimental top

The precursor, trans-I-[CoL1Cl](ClO4)2 (Bernhardt et al., 2000), was converted to the cyano complex by boiling an aqueous solution of the complex in the presence of a stoichiometric amount of KCN in a well ventilated fume hood. The compound was purified by cation-exchange chromatography and then crystallized as (I) by slow evaporation of a concentrated NaClO4 solution of the complex. The hydroxo analogue, (II), was prepared by base hydrolysis of trans-I-[CoL1Cl](ClO4)2 (pH 10) at room temperature, followed by slow evaporation of the solution at this pH.

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLUTON (Spek, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the complex cation in (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A plot of the hydrogen bonding in (I). Alkyl H atoms have been omitted. See Table 2 for symmetry codes.
[Figure 3] Fig. 3. A plot of the perchlorate disorder in (I). Alkyl H atoms have been omitted. See Table 2 for the perchlorate symmetry code. Atoms labelled with an asterisk (*) are at symmetry position (1 − x, 1/2 + y, 1 − z) and atoms labelled with a hash sign (#) are at symmetry position (x − 1, y + 1, z).
[Figure 4] Fig. 4. A view of the complex cation in (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 5] Fig. 5. A plot of the hydrogen bonding in (II). Alkyl H atoms have been omitted. See Table 4 for symmetry codes.
[Figure 6] Fig. 6. A plot of the perchlorate disorder in (II). Alkyl H atoms have been omitted. The atom labelled with an asterisk (*) is at symmetry position (1/2 − x, 1/2 + y, 1/2 − z).
(I) trans-cyano(6-methyl-1,4,8,11-tetraazacyclotetradecane-6-amine)cobalt(III) bis(perchlorate) hydrate top
Crystal data top
[Co(CN)(C11H27N5)](ClO4)2·H2OF(000) = 552
Mr = 531.24Dx = 1.667 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 7.4158 (5) Åθ = 10.8–14.2°
b = 8.9373 (8) ŵ = 1.12 mm1
c = 16.228 (2) ÅT = 293 K
β = 100.218 (7)°Prism, yellow
V = 1058.49 (18) Å30.5 × 0.2 × 0.2 mm
Z = 2
Data collection top
Enraf-Nonius CAD-4
diffractometer
2111 reflections with I > 2σ(I)
Radiation source: Enraf-Nonius FR590Rint = 0.028
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
non–profiled ω/2θ scansh = 18
Absorption correction: ψ scan
(North et al., 1968) Number of ψ-scan sets used was 5 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
k = 110
Tmin = 0.686, Tmax = 0.799l = 1919
2789 measured reflections3 standard reflections every 120 min
2240 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.0357P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.29 e Å3
2240 reflectionsΔρmin = 0.46 e Å3
285 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.046 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 193 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.036 (15)
Crystal data top
[Co(CN)(C11H27N5)](ClO4)2·H2OV = 1058.49 (18) Å3
Mr = 531.24Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.4158 (5) ŵ = 1.12 mm1
b = 8.9373 (8) ÅT = 293 K
c = 16.228 (2) Å0.5 × 0.2 × 0.2 mm
β = 100.218 (7)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2111 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968) Number of ψ-scan sets used was 5 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
Rint = 0.028
Tmin = 0.686, Tmax = 0.7993 standard reflections every 120 min
2789 measured reflections intensity decay: none
2240 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.29 e Å3
S = 1.11Δρmin = 0.46 e Å3
2240 reflectionsAbsolute structure: Flack (1983), 193 Friedel pairs
285 parametersAbsolute structure parameter: 0.036 (15)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5981 (5)0.7815 (5)0.9156 (2)0.0317 (9)
H1A0.46720.78270.89470.038*
H1B0.61790.76670.97580.038*
C20.6880 (5)0.6571 (5)0.8743 (2)0.0332 (8)
H2A0.81480.64570.90140.04*
H2B0.62480.56330.8790.04*
C30.5047 (5)0.6595 (4)0.7272 (2)0.0321 (8)
H3A0.41290.62940.75970.039*
H3B0.52540.57630.69160.039*
C40.4359 (4)0.7946 (4)0.6732 (2)0.0307 (8)
C50.5625 (5)0.8400 (5)0.6126 (2)0.0328 (8)
H5A0.57850.75630.57650.039*
H5B0.50820.92210.57770.039*
C60.8202 (5)1.0286 (5)0.6328 (2)0.0375 (9)
H6A0.79131.03610.57220.045*
H6B0.95241.03020.64960.045*
C70.7364 (6)1.1574 (5)0.6719 (2)0.0374 (9)
H7A0.79711.250.66170.045*
H7B0.60751.16620.64770.045*
C80.6471 (5)1.2338 (4)0.8056 (2)0.0365 (8)
H8A0.51921.22440.77980.044*
H8B0.6851.33570.79720.044*
C90.6671 (6)1.2033 (5)0.8984 (2)0.0389 (9)
H9A0.61121.28470.92440.047*
H9B0.79631.20120.92270.047*
C100.5802 (5)1.0574 (5)0.9178 (2)0.0333 (9)
H10A0.57551.05350.97710.04*
H10B0.45541.05320.88720.04*
C110.2415 (5)0.7701 (5)0.6267 (2)0.0416 (9)
H11A0.20140.85690.59360.062*
H11B0.16160.75340.66630.062*
H11C0.23860.68450.59070.062*
C120.9769 (4)0.8861 (4)0.8121 (2)0.0286 (8)
Co0.72008 (5)0.91291 (5)0.77850 (2)0.02164 (15)
N10.6831 (3)0.9264 (4)0.89511 (15)0.0257 (6)
H10.79640.93050.92760.031*
N20.6782 (4)0.6974 (4)0.78448 (17)0.0281 (7)
H20.77140.64970.76560.034*
N30.7445 (4)0.8869 (4)0.66107 (17)0.0285 (7)
H30.82650.81220.65810.034*
N40.7582 (4)1.1293 (4)0.76398 (18)0.0291 (7)
H40.87761.14830.78590.035*
N50.4524 (3)0.9221 (4)0.73397 (15)0.0262 (5)
H5C0.38550.90670.77440.031*
H5D0.41991.00970.70820.031*
N61.1317 (4)0.8715 (4)0.8275 (2)0.0436 (9)
Cl10.21918 (13)0.27347 (13)0.58617 (5)0.0407 (3)
O1A0.3584 (6)0.3828 (5)0.5814 (2)0.0762 (12)
O1B0.0425 (7)0.3196 (9)0.5517 (5)0.103 (2)0.828 (10)
O1C0.2293 (7)0.2149 (8)0.6694 (3)0.085 (2)0.828 (10)
O1D0.2616 (9)0.1436 (7)0.5403 (4)0.090 (2)0.828 (10)
O1B''0.157 (3)0.325 (3)0.6623 (14)0.063 (7)*0.172 (10)
O1C''0.271 (3)0.134 (3)0.6025 (15)0.057 (7)*0.172 (10)
O1D''0.108 (5)0.285 (4)0.5103 (19)0.095 (10)*0.172 (10)
Cl20.12881 (11)0.40451 (14)0.86750 (5)0.0369 (2)
O2A0.0032 (4)0.4608 (5)0.79759 (18)0.0620 (10)
O2B0.3084 (4)0.4602 (4)0.8684 (2)0.0631 (10)
O2C0.1316 (5)0.2443 (4)0.8623 (3)0.0713 (11)
O2D0.0657 (4)0.4478 (5)0.94231 (17)0.0616 (11)
O10.8552 (4)0.5732 (4)0.6376 (2)0.0553 (8)
H1C0.85170.58750.57790.066*
H1D0.96010.52710.67360.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0275 (19)0.034 (2)0.0345 (18)0.0044 (18)0.0076 (15)0.0070 (18)
C20.0316 (19)0.029 (2)0.0377 (18)0.0012 (16)0.0034 (15)0.0064 (17)
C30.0293 (18)0.030 (2)0.0373 (17)0.0075 (16)0.0061 (14)0.0019 (17)
C40.0237 (16)0.032 (2)0.0357 (16)0.0013 (16)0.0045 (13)0.0038 (17)
C50.0339 (17)0.039 (2)0.0259 (14)0.0009 (18)0.0058 (13)0.0034 (16)
C60.0343 (18)0.041 (2)0.0398 (18)0.0034 (18)0.0149 (15)0.0029 (18)
C70.040 (2)0.031 (2)0.0432 (19)0.0053 (18)0.0116 (16)0.0087 (18)
C80.0360 (19)0.0199 (18)0.055 (2)0.0028 (16)0.0132 (17)0.0021 (18)
C90.040 (2)0.032 (2)0.047 (2)0.0015 (18)0.0139 (17)0.0094 (19)
C100.033 (2)0.035 (2)0.0338 (18)0.0024 (19)0.0120 (16)0.0063 (19)
C110.0305 (19)0.046 (2)0.0438 (19)0.0057 (19)0.0044 (16)0.007 (2)
C120.0210 (15)0.028 (2)0.0381 (16)0.0007 (14)0.0092 (12)0.0006 (15)
Co0.0158 (2)0.0223 (2)0.0277 (2)0.0008 (2)0.00654 (14)0.0003 (2)
N10.0216 (11)0.0286 (16)0.0274 (11)0.0034 (15)0.0054 (9)0.0010 (15)
N20.0226 (14)0.0255 (17)0.0378 (15)0.0005 (14)0.0092 (12)0.0015 (13)
N30.0214 (12)0.033 (2)0.0323 (12)0.0023 (13)0.0075 (10)0.0016 (14)
N40.0236 (14)0.0245 (16)0.0403 (15)0.0032 (14)0.0087 (12)0.0007 (14)
N50.0207 (11)0.0285 (14)0.0300 (11)0.0002 (16)0.0058 (9)0.0004 (16)
N60.0230 (15)0.050 (2)0.0581 (19)0.0031 (14)0.0086 (13)0.0018 (17)
Cl10.0365 (5)0.0491 (6)0.0363 (4)0.0032 (5)0.0058 (3)0.0025 (4)
O1A0.085 (2)0.066 (3)0.079 (2)0.027 (2)0.0163 (19)0.002 (2)
O1B0.050 (3)0.120 (5)0.127 (5)0.030 (3)0.016 (3)0.021 (5)
O1C0.074 (3)0.126 (6)0.052 (2)0.014 (4)0.004 (2)0.025 (3)
O1D0.117 (5)0.061 (3)0.101 (5)0.000 (3)0.042 (4)0.021 (3)
Cl20.0275 (4)0.0401 (5)0.0414 (4)0.0008 (5)0.0018 (3)0.0017 (5)
O2A0.0548 (18)0.080 (3)0.0470 (15)0.0197 (18)0.0033 (13)0.0050 (17)
O2B0.0367 (15)0.070 (3)0.084 (2)0.0169 (16)0.0133 (15)0.003 (2)
O2C0.062 (2)0.041 (2)0.107 (3)0.0013 (18)0.007 (2)0.003 (2)
O2D0.0459 (16)0.094 (3)0.0432 (14)0.0144 (19)0.0029 (12)0.0062 (19)
O10.0514 (18)0.053 (2)0.0637 (18)0.0066 (17)0.0154 (15)0.0032 (17)
Geometric parameters (Å, º) top
C1—N11.503 (5)C10—H10A0.97
C1—C21.512 (6)C10—H10B0.97
C1—H1A0.97C11—H11A0.96
C1—H1B0.97C11—H11B0.96
C2—N21.491 (5)C11—H11C0.96
C2—H2A0.97C12—N61.138 (4)
C2—H2B0.97Co—N11.963 (2)
C3—N21.487 (4)Co—N21.956 (3)
C3—C41.526 (5)Co—N31.960 (3)
C3—H3A0.97Co—N41.975 (3)
C3—H3B0.97Co—N51.990 (2)
C4—N51.498 (5)Co—C121.901 (3)
C4—C111.520 (5)N1—H10.91
C4—C51.530 (5)N2—H20.91
C5—N31.496 (4)N3—H30.91
C5—H5A0.97N4—H40.91
C5—H5B0.97N5—H5C0.9
C6—N31.491 (5)N5—H5D0.9
C6—C71.502 (6)Cl1—O1C''1.32 (2)
C6—H6A0.97Cl1—O1D''1.36 (3)
C6—H6B0.97Cl1—O1B1.393 (5)
C7—N41.495 (5)Cl1—O1A1.434 (4)
C7—H7A0.97Cl1—O1C1.438 (4)
C7—H7B0.97Cl1—O1D1.444 (6)
C8—N41.485 (5)Cl1—O1B''1.47 (2)
C8—C91.512 (6)Cl2—O2B1.419 (3)
C8—H8A0.97Cl2—O2A1.426 (3)
C8—H8B0.97Cl2—O2D1.430 (3)
C9—C101.512 (6)Cl2—O2C1.435 (4)
C9—H9A0.97O1—H1C0.9728
C9—H9B0.97O1—H1D0.9773
C10—N11.480 (5)
N1—C1—C2107.5 (3)N6—C12—Co176.0 (3)
N1—C1—H1A110.2N1—Co—N287.82 (14)
C2—C1—H1A110.2N1—Co—N3175.76 (14)
N1—C1—H1B110.2N1—Co—N495.88 (14)
C2—C1—H1B110.2N1—Co—N592.67 (10)
H1A—C1—H1B108.5N1—Co—C1292.04 (12)
N2—C2—C1107.9 (3)N2—Co—N388.52 (12)
N2—C2—H2A110.1N2—Co—N4176.06 (13)
C1—C2—H2A110.1N2—Co—N584.37 (15)
N2—C2—H2B110.1N2—Co—C1291.22 (14)
C1—C2—H2B110.1N3—Co—N487.73 (13)
H2A—C2—H2B108.4N3—Co—N584.84 (11)
N2—C3—C4110.1 (3)N3—Co—C1290.17 (12)
N2—C3—H3A109.6N4—Co—N594.06 (15)
C4—C3—H3A109.6N4—Co—C1290.02 (14)
N2—C3—H3B109.6N5—Co—C12173.41 (15)
C4—C3—H3B109.6C10—N1—C1111.8 (2)
H3A—C3—H3B108.2C10—N1—Co117.1 (2)
N5—C4—C11113.3 (3)C1—N1—Co107.2 (2)
N5—C4—C3104.1 (3)C10—N1—H1106.7
C11—C4—C3111.3 (3)C1—N1—H1106.7
N5—C4—C5103.5 (3)Co—N1—H1106.7
C11—C4—C5110.8 (3)C3—N2—C2116.3 (3)
C3—C4—C5113.5 (3)C3—N2—Co108.7 (2)
N3—C5—C4109.7 (3)C2—N2—Co107.8 (2)
N3—C5—H5A109.7C3—N2—H2107.9
C4—C5—H5A109.7C2—N2—H2107.9
N3—C5—H5B109.7Co—N2—H2107.9
C4—C5—H5B109.7C6—N3—C5115.5 (3)
H5A—C5—H5B108.2C6—N3—Co107.7 (2)
N3—C6—C7108.3 (3)C5—N3—Co108.29 (19)
N3—C6—H6A110C6—N3—H3108.4
C7—C6—H6A110C5—N3—H3108.4
N3—C6—H6B110Co—N3—H3108.4
C7—C6—H6B110C8—N4—C7112.2 (3)
H6A—C6—H6B108.4C8—N4—Co117.3 (2)
N4—C7—C6108.3 (3)C7—N4—Co106.9 (2)
N4—C7—H7A110C8—N4—H4106.6
C6—C7—H7A110C7—N4—H4106.6
N4—C7—H7B110Co—N4—H4106.6
C6—C7—H7B110C4—N5—Co99.6 (2)
H7A—C7—H7B108.4C4—N5—H5C111.8
N4—C8—C9112.0 (3)Co—N5—H5C111.8
N4—C8—H8A109.2C4—N5—H5D111.8
C9—C8—H8A109.2Co—N5—H5D111.8
N4—C8—H8B109.2H5C—N5—H5D109.6
C9—C8—H8B109.2O1C''—Cl1—O1D''111.3 (19)
H8A—C8—H8B107.9O1C''—Cl1—O1A118.0 (10)
C8—C9—C10113.1 (3)O1D''—Cl1—O1A103.0 (15)
C8—C9—H9A108.9O1B—Cl1—O1A114.3 (4)
C10—C9—H9A108.9O1B—Cl1—O1C111.9 (4)
C8—C9—H9B108.9O1A—Cl1—O1C112.4 (3)
C10—C9—H9B108.9O1B—Cl1—O1D107.8 (4)
H9A—C9—H9B107.8O1A—Cl1—O1D107.2 (3)
N1—C10—C9111.9 (3)O1C—Cl1—O1D102.3 (4)
N1—C10—H10A109.2O1C''—Cl1—O1B''104.6 (15)
C9—C10—H10A109.2O1D''—Cl1—O1B''120.4 (18)
N1—C10—H10B109.2O1A—Cl1—O1B''99.7 (9)
C9—C10—H10B109.2O2B—Cl2—O2A111.3 (2)
H10A—C10—H10B107.9O2B—Cl2—O2D110.1 (2)
C4—C11—H11A109.5O2A—Cl2—O2D108.32 (19)
C4—C11—H11B109.5O2B—Cl2—O2C109.1 (2)
H11A—C11—H11B109.5O2A—Cl2—O2C108.6 (2)
C4—C11—H11C109.5O2D—Cl2—O2C109.3 (3)
H11A—C11—H11C109.5H1C—O1—H1D121.9
H11B—C11—H11C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2Di0.912.182.954 (4)142
N2—H2···O10.912.373.122 (4)140
N2—H2···O2Aii0.912.43.185 (5)145
N3—H3···O10.912.182.965 (5)144
N4—H4···O2Ciii0.912.233.115 (5)163
N5—H5C···N6iv0.92.233.073 (4)156
N5—H5D···O1Cv0.92.172.99 (2)150
N5—H5D···O1Cv0.92.333.173 (8)155
O1—H1C···O1Dvi0.972.022.930 (7)156
O1—H1C···O1Dvi0.972.333.11 (4)137
O1—H1D···O2Aii0.982.072.819 (5)132
O1—H1D···O1Bii0.982.353.12 (3)136
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x1, y, z; (v) x, y+1, z; (vi) x+1, y+1/2, z+1.
(II) trans-hydroxo(6-methyl-1,4,8,11-tetraazacyclotetradecane-6-amine)cobalt(III) bis(perchlorate) top
Crystal data top
[Co(OH)(C11H27N5)](ClO4)2F(000) = 1048
Mr = 504.21Dx = 1.71 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 23 reflections
a = 14.817 (5) Åθ = 11.2–13.4°
b = 9.535 (2) ŵ = 1.21 mm1
c = 15.409 (8) ÅT = 293 K
β = 115.91 (3)°Prism, red
V = 1958.1 (13) Å30.5 × 0.3 × 0.3 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.071
Radiation source: Enraf-Nonius FR590θmax = 25.0°, θmin = 1.6°
Graphite monochromatorh = 017
non–profiled ω scansk = 011
3569 measured reflectionsl = 1816
3430 independent reflections3 standard reflections every 120 min
2406 reflections with I > 2σ(I) intensity decay: 8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0915P)2]
where P = (Fo2 + 2Fc2)/3
3430 reflections(Δ/σ)max = 0.001
278 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Co(OH)(C11H27N5)](ClO4)2V = 1958.1 (13) Å3
Mr = 504.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.817 (5) ŵ = 1.21 mm1
b = 9.535 (2) ÅT = 293 K
c = 15.409 (8) Å0.5 × 0.3 × 0.3 mm
β = 115.91 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.071
3569 measured reflections3 standard reflections every 120 min
3430 independent reflections intensity decay: 8%
2406 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.03Δρmax = 0.70 e Å3
3430 reflectionsΔρmin = 0.69 e Å3
278 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5703 (3)0.0728 (5)0.2888 (3)0.0415 (11)
H1A0.52220.11530.30780.05*
H1B0.63540.07220.34430.05*
C20.5754 (3)0.1554 (5)0.2075 (3)0.0404 (11)
H2A0.63220.12430.19690.048*
H2B0.58410.25430.22370.048*
C30.3969 (3)0.2301 (5)0.1051 (3)0.0386 (11)
H3A0.41320.2820.16420.046*
H3B0.38720.29670.05420.046*
C40.3010 (3)0.1457 (5)0.0789 (3)0.0378 (10)
C50.2643 (3)0.0713 (5)0.0176 (3)0.0431 (11)
H5A0.25440.13890.0680.052*
H5B0.20060.02590.03280.052*
C60.2986 (4)0.1759 (5)0.0513 (3)0.0462 (12)
H6A0.2330.16610.10550.055*
H6B0.34240.22380.07350.055*
C70.2903 (4)0.2590 (6)0.0277 (4)0.0489 (13)
H7A0.27370.35590.00780.059*
H7B0.23790.22040.04240.059*
C80.3836 (4)0.3114 (6)0.2004 (4)0.0536 (14)
H8A0.33250.26240.21190.064*
H8B0.36410.40920.18830.064*
C90.4833 (4)0.3008 (6)0.2902 (4)0.0530 (13)
H9A0.5350.34460.27690.064*
H9B0.47840.35290.3420.064*
C100.5145 (4)0.1534 (6)0.3234 (3)0.0487 (13)
H10A0.57270.15560.38570.058*
H10B0.46070.10670.33170.058*
C110.2183 (4)0.2363 (6)0.0838 (4)0.0511 (13)
H11A0.24340.28190.14550.077*
H11B0.19750.30570.03370.077*
H11C0.16220.17820.07540.077*
Co0.43752 (4)0.05913 (6)0.12043 (4)0.0297 (2)
N10.5393 (3)0.0718 (4)0.2545 (2)0.0368 (9)
H10.59370.11420.25310.044*
N20.4802 (2)0.1330 (4)0.1183 (2)0.0324 (8)
H20.4940.14260.06660.039*
N30.3401 (3)0.0356 (4)0.0129 (3)0.0355 (8)
H30.37270.00260.04690.043*
N40.3886 (3)0.2510 (4)0.1138 (3)0.0415 (9)
H40.43130.30670.1010.05*
N50.3345 (3)0.0291 (4)0.1516 (2)0.0332 (8)
H5C0.3610.0620.21240.04*
H5D0.28410.03050.14260.04*
O10.5297 (2)0.1177 (3)0.0731 (2)0.0368 (7)
H1C0.55710.18610.09280.044*
Cl10.65270 (9)0.46674 (13)0.15831 (9)0.0466 (3)
O1A0.7207 (3)0.5556 (4)0.2301 (4)0.0951 (18)
O1B0.5509 (3)0.5001 (6)0.1324 (4)0.0764 (17)0.912 (8)
O1C0.6720 (5)0.4720 (9)0.0774 (5)0.107 (2)0.912 (8)
O1D0.6702 (4)0.3253 (5)0.1926 (4)0.0799 (18)0.912 (8)
O1B''0.571 (3)0.568 (4)0.093 (3)0.044 (11)*0.088 (8)
O1D''0.608 (4)0.377 (6)0.184 (4)0.072 (16)*0.088 (8)
O1C''0.688 (3)0.388 (5)0.105 (3)0.050 (12)*0.088 (8)
Cl20.08366 (9)0.18053 (14)0.12128 (9)0.0465 (3)
O2A0.0004 (3)0.1448 (4)0.1379 (3)0.0652 (11)
O2B0.0637 (5)0.1649 (8)0.0243 (4)0.102 (3)0.912 (8)
O2C0.1651 (4)0.0881 (6)0.1781 (5)0.0862 (19)0.912 (8)
O2D0.1163 (4)0.3212 (6)0.1522 (5)0.0688 (15)0.912 (8)
O2B''0.036 (3)0.276 (6)0.035 (3)0.060 (14)*0.088 (8)
O2C''0.129 (4)0.082 (5)0.091 (4)0.058 (13)*0.088 (8)
O2D''0.142 (3)0.274 (4)0.184 (3)0.021 (9)*0.088 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.033 (2)0.053 (3)0.036 (2)0.002 (2)0.013 (2)0.004 (2)
C20.031 (2)0.048 (3)0.038 (2)0.006 (2)0.0107 (19)0.004 (2)
C30.032 (2)0.041 (3)0.044 (3)0.007 (2)0.018 (2)0.006 (2)
C40.026 (2)0.046 (3)0.041 (2)0.009 (2)0.0150 (19)0.004 (2)
C50.029 (2)0.060 (3)0.037 (2)0.006 (2)0.012 (2)0.005 (2)
C60.047 (3)0.049 (3)0.043 (3)0.013 (2)0.020 (2)0.012 (2)
C70.050 (3)0.049 (3)0.055 (3)0.017 (2)0.030 (3)0.008 (2)
C80.068 (3)0.047 (3)0.061 (3)0.003 (3)0.042 (3)0.012 (3)
C90.066 (3)0.053 (3)0.051 (3)0.007 (3)0.036 (3)0.016 (3)
C100.054 (3)0.064 (3)0.035 (3)0.013 (3)0.026 (2)0.018 (2)
C110.037 (3)0.065 (4)0.053 (3)0.017 (3)0.022 (2)0.007 (3)
Co0.0266 (3)0.0359 (3)0.0307 (3)0.0012 (3)0.0164 (2)0.0026 (3)
N10.0331 (19)0.047 (2)0.0338 (19)0.0062 (17)0.0177 (16)0.0097 (18)
N20.0283 (18)0.036 (2)0.0356 (19)0.0008 (16)0.0166 (15)0.0021 (16)
N30.0316 (18)0.045 (2)0.0316 (19)0.0022 (17)0.0154 (16)0.0010 (17)
N40.049 (2)0.040 (2)0.048 (2)0.0012 (19)0.032 (2)0.0039 (19)
N50.0292 (18)0.039 (2)0.0327 (19)0.0041 (16)0.0144 (15)0.0007 (16)
O10.0378 (16)0.0366 (17)0.0448 (18)0.0086 (14)0.0260 (14)0.0051 (14)
Cl10.0363 (6)0.0441 (7)0.0543 (7)0.0008 (5)0.0153 (5)0.0063 (6)
O1A0.065 (3)0.060 (3)0.110 (4)0.006 (2)0.008 (3)0.037 (3)
O1B0.036 (2)0.093 (4)0.090 (4)0.014 (2)0.019 (2)0.005 (3)
O1C0.107 (5)0.148 (7)0.088 (4)0.012 (5)0.063 (4)0.014 (4)
O1D0.063 (3)0.040 (3)0.102 (4)0.005 (2)0.005 (3)0.005 (2)
Cl20.0432 (6)0.0575 (8)0.0481 (7)0.0000 (6)0.0285 (6)0.0067 (6)
O2A0.052 (2)0.070 (3)0.092 (3)0.005 (2)0.049 (2)0.008 (2)
O2B0.124 (5)0.144 (6)0.054 (3)0.056 (5)0.054 (3)0.030 (3)
O2C0.061 (3)0.090 (4)0.120 (5)0.028 (3)0.051 (3)0.028 (3)
O2D0.066 (3)0.062 (4)0.093 (4)0.003 (3)0.048 (3)0.008 (3)
Geometric parameters (Å, º) top
C1—N11.476 (6)C10—H10A0.97
C1—C21.510 (6)C10—H10B0.97
C1—H1A0.97C11—H11A0.96
C1—H1B0.97C11—H11B0.96
C2—N21.493 (5)C11—H11C0.96
C2—H2A0.97Co—N11.958 (4)
C2—H2B0.97Co—N21.943 (4)
C3—N21.485 (6)Co—N31.940 (4)
C3—C41.526 (6)Co—N41.954 (4)
C3—H3A0.97Co—N51.976 (4)
C3—H3B0.97Co—O11.892 (3)
C4—N51.500 (6)N1—H10.91
C4—C51.517 (7)N2—H20.91
C4—C111.528 (6)N3—H30.91
C5—N31.495 (6)N4—H40.91
C5—H5A0.97N5—H5C0.9
C5—H5B0.97N5—H5D0.9
C6—N31.483 (6)O1—H1C0.7581
C6—C71.503 (7)Cl1—O1D''1.25 (5)
C6—H6A0.97Cl1—O1C''1.38 (5)
C6—H6B0.97Cl1—O1C1.397 (6)
C7—N41.483 (6)Cl1—O1A1.409 (4)
C7—H7A0.97Cl1—O1B1.418 (4)
C7—H7B0.97Cl1—O1D1.430 (5)
C8—N41.485 (6)Cl1—O1B''1.53 (4)
C8—C91.523 (7)Cl2—O2D''1.33 (4)
C8—H8A0.97Cl2—O2C''1.35 (4)
C8—H8B0.97Cl2—O2B1.399 (5)
C9—C101.498 (7)Cl2—O2A1.419 (4)
C9—H9A0.97Cl2—O2D1.435 (5)
C9—H9B0.97Cl2—O2C1.441 (5)
C10—N11.486 (6)Cl2—O2B''1.50 (5)
N1—C1—C2108.1 (4)N1—Co—N495.42 (16)
N1—C1—H1A110.1N1—Co—N595.21 (15)
C2—C1—H1A110.1N1—Co—O192.01 (14)
N1—C1—H1B110.1N2—Co—N388.29 (15)
C2—C1—H1B110.1N2—Co—N4176.32 (16)
H1A—C1—H1B108.4N2—Co—N583.94 (15)
N2—C2—C1108.6 (4)N2—Co—O188.66 (14)
N2—C2—H2A110N3—Co—N488.03 (16)
C1—C2—H2A110N3—Co—N584.92 (15)
N2—C2—H2B110N3—Co—O187.41 (14)
C1—C2—H2B110N4—Co—N595.95 (15)
H2A—C2—H2B108.3N4—Co—O190.97 (15)
N2—C3—C4109.3 (4)N5—Co—O1169.48 (14)
N2—C3—H3A109.8C1—N1—C10111.6 (4)
C4—C3—H3A109.8C1—N1—Co107.2 (3)
N2—C3—H3B109.8C10—N1—Co118.0 (3)
C4—C3—H3B109.8C1—N1—H1106.5
H3A—C3—H3B108.3C10—N1—H1106.5
N5—C4—C5104.2 (4)Co—N1—H1106.5
N5—C4—C3103.1 (3)C3—N2—C2115.6 (4)
C5—C4—C3113.6 (4)C3—N2—Co109.4 (3)
N5—C4—C11113.2 (4)C2—N2—Co107.6 (3)
C5—C4—C11111.2 (4)C3—N2—H2108
C3—C4—C11111.3 (4)C2—N2—H2108
N3—C5—C4109.3 (3)Co—N2—H2108
N3—C5—H5A109.8C6—N3—C5115.1 (4)
C4—C5—H5A109.8C6—N3—Co107.8 (3)
N3—C5—H5B109.8C5—N3—Co109.0 (3)
C4—C5—H5B109.8C6—N3—H3108.2
H5A—C5—H5B108.3C5—N3—H3108.2
N3—C6—C7108.6 (4)Co—N3—H3108.2
N3—C6—H6A110C7—N4—C8111.6 (4)
C7—C6—H6A110C7—N4—Co107.0 (3)
N3—C6—H6B110C8—N4—Co118.6 (3)
C7—C6—H6B110C7—N4—H4106.3
H6A—C6—H6B108.4C8—N4—H4106.3
N4—C7—C6107.5 (4)Co—N4—H4106.3
N4—C7—H7A110.2C4—N5—Co100.0 (2)
C6—C7—H7A110.2C4—N5—H5C111.8
N4—C7—H7B110.2Co—N5—H5C111.8
C6—C7—H7B110.2C4—N5—H5D111.8
H7A—C7—H7B108.5Co—N5—H5D111.8
N4—C8—C9112.4 (4)H5C—N5—H5D109.5
N4—C8—H8A109.1Co—O1—H1C116.7
C9—C8—H8A109.1O1D''—Cl1—O1C''102 (3)
N4—C8—H8B109.1O1D''—Cl1—O1A117 (2)
C9—C8—H8B109.1O1C''—Cl1—O1A118.0 (19)
H8A—C8—H8B107.9O1C—Cl1—O1A108.9 (4)
C10—C9—C8113.9 (5)O1C—Cl1—O1B110.4 (4)
C10—C9—H9A108.8O1A—Cl1—O1B113.2 (3)
C8—C9—H9A108.8O1C—Cl1—O1D106.8 (4)
C10—C9—H9B108.8O1A—Cl1—O1D109.0 (3)
C8—C9—H9B108.8O1B—Cl1—O1D108.3 (3)
H9A—C9—H9B107.7O1D''—Cl1—O1B''106 (3)
N1—C10—C9112.5 (4)O1C''—Cl1—O1B''110 (2)
N1—C10—H10A109.1O1A—Cl1—O1B''102.9 (15)
C9—C10—H10A109.1O2D''—Cl2—O2C''118 (3)
N1—C10—H10B109.1O2D''—Cl2—O2A111.7 (17)
C9—C10—H10B109.1O2C''—Cl2—O2A119.8 (19)
H10A—C10—H10B107.8O2B—Cl2—O2A112.0 (3)
C4—C11—H11A109.5O2B—Cl2—O2D109.7 (4)
C4—C11—H11B109.5O2A—Cl2—O2D111.1 (3)
H11A—C11—H11B109.5O2B—Cl2—O2C108.3 (4)
C4—C11—H11C109.5O2A—Cl2—O2C108.2 (3)
H11A—C11—H11C109.5O2D—Cl2—O2C107.4 (4)
H11B—C11—H11C109.5O2D''—Cl2—O2B''98 (2)
N1—Co—N288.25 (15)O2C''—Cl2—O2B''104 (3)
N1—Co—N3176.51 (16)O2A—Cl2—O2B''100.8 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.912.042.892 (5)156
N3—H3···O1i0.912.022.878 (5)157
N4—H4···O1B0.912.463.301 (7)155
N5—H5C···O2Dii0.92.243.04 (4)148
N5—H5C···O2Dii0.92.263.128 (7)163
N5—H5D···O2C0.92.132.935 (6)148
N5—H5D···O2C0.92.142.97 (5)153
O1—H1C···O1D0.762.162.879 (5)158
O1—H1C···O1D0.762.222.94 (5)159
N4—H4···O1D0.912.453.18 (6)137
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(CN)(C11H27N5)](ClO4)2·H2O[Co(OH)(C11H27N5)](ClO4)2
Mr531.24504.21
Crystal system, space groupMonoclinic, P21Monoclinic, P21/n
Temperature (K)293293
a, b, c (Å)7.4158 (5), 8.9373 (8), 16.228 (2)14.817 (5), 9.535 (2), 15.409 (8)
β (°) 100.218 (7) 115.91 (3)
V3)1058.49 (18)1958.1 (13)
Z24
Radiation typeMo KαMo Kα
µ (mm1)1.121.21
Crystal size (mm)0.5 × 0.2 × 0.20.5 × 0.3 × 0.3
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968) Number of ψ-scan sets used was 5 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
Tmin, Tmax0.686, 0.799
No. of measured, independent and
observed [I > 2σ(I)] reflections
2789, 2240, 2111 3569, 3430, 2406
Rint0.0280.071
(sin θ/λ)max1)0.5940.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.11 0.049, 0.142, 1.03
No. of reflections22403430
No. of parameters285278
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.460.70, 0.69
Absolute structureFlack (1983), 193 Friedel pairs?
Absolute structure parameter0.036 (15)?

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS86 (Sheldrick, 1985), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLUTON (Spek, 1990), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
Co—N11.963 (2)Co—N41.975 (3)
Co—N21.956 (3)Co—N51.990 (2)
Co—N31.960 (3)Co—C121.901 (3)
N1—Co—N287.82 (14)N2—Co—C1291.22 (14)
N1—Co—N3175.76 (14)N3—Co—N487.73 (13)
N1—Co—N495.88 (14)N3—Co—N584.84 (11)
N1—Co—N592.67 (10)N3—Co—C1290.17 (12)
N1—Co—C1292.04 (12)N4—Co—N594.06 (15)
N2—Co—N388.52 (12)N4—Co—C1290.02 (14)
N2—Co—N4176.06 (13)N5—Co—C12173.41 (15)
N2—Co—N584.37 (15)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2Di0.912.182.954 (4)142
N2—H2···O10.912.373.122 (4)140
N2—H2···O2Aii0.912.43.185 (5)145
N3—H3···O10.912.182.965 (5)144
N4—H4···O2Ciii0.912.233.115 (5)163
N5—H5C···N6iv0.92.233.073 (4)156
N5—H5D···O1C''v0.92.172.99 (2)150
N5—H5D···O1Cv0.92.333.173 (8)155
O1—H1C···O1Dvi0.972.022.930 (7)156
O1—H1C···O1D''vi0.972.333.11 (4)137
O1—H1D···O2Aii0.982.072.819 (5)132
O1—H1D···O1B''ii0.982.353.12 (3)136
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x1, y, z; (v) x, y+1, z; (vi) x+1, y+1/2, z+1.
Selected geometric parameters (Å, º) for (II) top
Co—N11.958 (4)Co—N41.954 (4)
Co—N21.943 (4)Co—N51.976 (4)
Co—N31.940 (4)Co—O11.892 (3)
N1—Co—N288.25 (15)N2—Co—O188.66 (14)
N1—Co—N3176.51 (16)N3—Co—N488.03 (16)
N1—Co—N495.42 (16)N3—Co—N584.92 (15)
N1—Co—N595.21 (15)N3—Co—O187.41 (14)
N1—Co—O192.01 (14)N4—Co—N595.95 (15)
N2—Co—N388.29 (15)N4—Co—O190.97 (15)
N2—Co—N4176.32 (16)N5—Co—O1169.48 (14)
N2—Co—N583.94 (15)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.912.042.892 (5)156
N3—H3···O1i0.912.022.878 (5)157
N4—H4···O1B0.912.463.301 (7)155
N5—H5C···O2D''ii0.92.243.04 (4)148
N5—H5C···O2Dii0.92.263.128 (7)163
N5—H5D···O2C0.92.132.935 (6)148
N5—H5D···O2C''0.92.142.97 (5)153
O1—H1C···O1D0.762.162.879 (5)158
O1—H1C···O1D''0.762.222.94 (5)159
N4—H4···O1D''0.912.453.18 (6)137
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds