Download citation
Download citation
link to html
The crystal structures of a pair of cis and trans isomers of the macrocyclic chloro­penta­amine title complex, as their tetra­chloro­zincate(II) salts, [CoCl(C11H27N5)][ZnCl4], are re­ported. The two distinct isomeric forms lead to significant variations in the Co-N bond lengths and, furthermore, hydrogen bonding between the complex ions is influenced by the folded (cis) or planar (trans) conformations of the coordinated ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103021711/ta1423sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103021711/ta1423Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103021711/ta1423IIsup3.hkl
Contains datablock II

CCDC references: 226105; 226106

Comment top

The coordination chemistry of cyclic ligands may be expanded by the attachment of coordinating functional groups to the periphery of the ring to give so-called pendant-arm macrocycles. The pendant groups may be attached to the donor atoms (in the case of amines) or to the carbon skeleton. A family of penta- and hexadentate macrocyclic amines is now extant, bearing one or two primary amines attached to macrocyclic tetraamines of various sizes. One of the most studied representatives of this family is the pentadentate cyclam derivative 6-methyl-1,4,8,11-tetraazacyclotetradecane-6-amine (L; Lawrance et al., 1992). Like its parent cyclam, the 14-membered macrocycle L has the capability of coordinating in either a folded (cis) or planar (trans) configuration, with the pendant amine providing an extra donor group and structural rigidity. Three isomeric forms of pentadentate coordinated L have been structurally identified, cis-[CoLCl](ClO4)2 (Lawrance et al., 1992) and two N-based isomeric trans forms. Specifically, in the trans form, the macrocyclic secondary amines may adopt either the RSRS (trans-I) configuration (Bernhardt et al., 2000), with all amine H atoms on the same side of the macrocyclic plane, or the RRSS (trans-III) diastereomeric form, (III) (Hambley et al., 1992), with two H atoms up and two down. The sixth coordination site is available for ligand substitution reactions. In this work, we report the crystal structures of cis- and trans-[CoLCl]2+ as their [ZnCl4]2− salts. \sch

The structure of cis-[CoLCl][ZnCl4], (I) (Fig. 1), reveals the folded conformation of the pentadentate coordinated macrocycle, with the Cl ligand occupying the coordination site adjacent to the primary amine. The Co—N bond lengths (Table 1) are typical of a CoIII amine and the Co—Cl distance is also as expected. However, there are significant variations in the Co—N bonds within the complex cation, notably the Co—N3 bond of 1.940 (2) Å, which is the shortest, whereas the adjacent Co—N4 bond of 1.970 (2) Å is the longest. The corresponding coordinate bond lengths compare well with those determined for cis-[CoLCl](ClO4)2 (Lawrance et al., 1992).

The [ZnCl4]2− anion in (I) exhibits a distorted tetrahedral geometry, with significant variations in the Zn—Cl bond lengths (Table 1). The coordination angles also reveal a distortion from ideal tetrahedral symmetry. These distortions are related to hydrogen-bonding interactions with the amine H atoms of the coordinated macrocycle. The Cl ligands Cl2, Cl3 and Cl5 participate in hydrogen bonds with most of the amine H atoms, except that attached to atom N2, which makes no significant hydrogen-bonding contacts (Fig. 2). Interestingly, atom Cl2 forms a trifurcated hydrogen-bonded motif involving amine H atoms from two separate complex cations. There is no correlation between the number of hydrogen-bonding interactions invloving each acceptor and the respective Zn—Cl bond length.

The structure of trans-I-[CoLCl][ZnCl4], (II) (Fig. 3), has also been determined. The macrocyclic secondary amines encircle the metal centre and the pendant primary amine occupies the coordination site trans to the Cl ligand. In contrast with the structure of the cis isomer, (I), the Co—N bonds in (II) (Table 3) span a narrower range, while the Co—Cl bond length is significantly longer. The bond lengths determined match those reported for trans-I-[CoLCl](ClO4)2 (Bernhardt et al., 2000). In addition, the bond lengths are not markedly different in the N-based diastereomer trans-III-[CoLCl](ClO4)2, (III) (Hambley et al., 1992).

Molecular mechanics calculations (Bernhardt et al., 2002) have reproduced the variations in Co—N and Co—Cl bond lengths observed in cis-, trans-I– and trans-III-[CoLCl]2+. The folded cis configuration is best able to accommodate an expansion of the Co—N bond lengths, whereas the trans isomers tend to enforce shorter coordinate bond lengths. These calculations agree with the reported crystal structures of these complexes.

Hydrogen bonding between the amine H atoms and the Cl ligands is again a feature in (II). Unlike the cis isomer, (I), each amine H atom participates in a hydrogen bond with a Cl ligand from either a [ZnCl4]2− anion or an adjacent complex cation (Fig. 4, Table 4). Although atom Cl1 is in proximity to the four macrocyclic NH groups, the N—H···Cl angles are too acute (<120°) to be considered significant hydrogen bonds.

In conclusion, a pair of cis and trans isomeric chloropentaamine cobalt(III) complexes have each been crystallized as their tetrachlorozincate salts. The coordination geometries of the cations are the same as reported for the perchlorate salts of the respective isomers. Hydrogen bonding with the complex anions in this work has been found to be dependent on the isomeric form of the complex cation. In particular, the cis isomer, (I), possesses an unmatched hydrogen-bond donor (N2—H2) and acceptor (Cl4). By contrast, in the structure of the trans isomer, (II), all potential donors and acceptors are involved in hydrogen bonding.

Experimental top

Reaction of CoCl2·6H2O with L·5HCl in aerated aqueous solution gives predominantly cis-[CoLCl]2+, which may be separated from other products by cation exchange chromatography, as described by Lawrance et al. (1992). The cis-[CoLCl][ZnCl4] complex, (I), was crystallized from a concentrated HCl solution by addition of excess ZnCl2·6H2O. The trans-I-[CoLCl]2+ cation may be made selectively by reacting equimolar amounts of Na3[Co(CO3)3]·3H2O and L·5HCl, as reported by Bernhardt et al. (2000). Following purification by column chromatography, the complex was crystallized as trans-I-[CoLCl][ZnCl4], (II), by addition of excess ZnCl2·6H2O to an HCl solution.

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLUTON (Spek, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the cation and anion of (I), with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the hydrogen-bonding in (I). Alkyl H atoms have been omitted. Symmetry codes are as given in Table 2.
[Figure 3] Fig. 3. A view of the cation and anion of (II), with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. A view of the hydrogen-bonding in (II). Alkyl H atoms have been omitted. Symmetry codes are as given in Table 4.
(I) cis-chloro(6-methyl-1,4,8,11-tetraazacyclotetradecane-6-amine)cobalt(III) tetrachlorozincate(II) top
Crystal data top
[CoCl(C11H27N5)][ZnCl4]F(000) = 2160
Mr = 530.93Dx = 1.829 Mg m3
Orthorhombic, PcabMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2bc 2acCell parameters from 25 reflections
a = 11.619 (1) Åθ = 11.3–12.7°
b = 14.109 (3) ŵ = 2.80 mm1
c = 23.517 (3) ÅT = 296 K
V = 3855.2 (10) Å3Prism, red
Z = 80.6 × 0.5 × 0.5 mm
Data collection top
Enraf-Nonius TurboCAD4
diffractometer
2970 reflections with I > 2σ(I)
Radiation source: Enraf-Nonius FR590Rint = 0
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
non–profiled ω/2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968). Number of ψ-scan sets used was 6. θ correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
k = 016
Tmin = 0.284, Tmax = 0.335l = 027
3385 measured reflections3 standard reflections every 120 min
3385 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0263P)2 + 3.6352P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3385 reflectionsΔρmax = 0.56 e Å3
209 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00173 (8)
Crystal data top
[CoCl(C11H27N5)][ZnCl4]V = 3855.2 (10) Å3
Mr = 530.93Z = 8
Orthorhombic, PcabMo Kα radiation
a = 11.619 (1) ŵ = 2.80 mm1
b = 14.109 (3) ÅT = 296 K
c = 23.517 (3) Å0.6 × 0.5 × 0.5 mm
Data collection top
Enraf-Nonius TurboCAD4
diffractometer
2970 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968). Number of ψ-scan sets used was 6. θ correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
Rint = 0
Tmin = 0.284, Tmax = 0.3353 standard reflections every 120 min
3385 measured reflections intensity decay: 1%
3385 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.07Δρmax = 0.56 e Å3
3385 reflectionsΔρmin = 0.45 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0759 (2)0.08319 (16)0.69308 (10)0.0250 (5)
H1A0.07240.14340.67330.03*
H1B0.03260.08910.72820.03*
C20.1995 (2)0.05905 (16)0.70636 (9)0.0233 (5)
H2A0.20270.00940.73490.028*
H2B0.2390.11440.72110.028*
C30.2974 (2)0.10517 (16)0.61519 (10)0.0240 (5)
H3A0.25560.16310.62330.029*
H3B0.37870.11660.62150.029*
C40.27662 (19)0.07462 (16)0.55423 (10)0.0232 (5)
C50.3400 (2)0.01903 (17)0.54214 (10)0.0271 (5)
H5A0.41420.0190.56110.032*
H5B0.35290.02580.50160.032*
C60.3296 (2)0.17526 (18)0.59475 (12)0.0336 (6)
H6A0.36880.21720.56840.04*
H6B0.38610.14820.62040.04*
C70.2399 (2)0.22912 (16)0.62779 (11)0.0331 (6)
H7A0.27670.27370.65340.04*
H7B0.19090.26440.6020.04*
C80.0680 (2)0.20498 (17)0.68728 (11)0.0321 (6)
H8A0.01880.23090.65780.039*
H8B0.09290.25680.71140.039*
C90.0004 (2)0.13432 (18)0.72235 (11)0.0334 (6)
H9A0.05840.16810.74350.04*
H9B0.05190.1050.74970.04*
C100.0566 (2)0.05717 (17)0.68751 (11)0.0291 (5)
H10A0.10440.01930.71260.035*
H10B0.1070.08680.65980.035*
C110.3081 (2)0.15052 (19)0.51121 (11)0.0372 (6)
H11A0.29360.12740.47350.056*
H11B0.26240.20610.51790.056*
H11C0.38810.16610.5150.056*
Cl10.01609 (5)0.13125 (4)0.55816 (2)0.02731 (14)
Co0.14462 (2)0.050583 (19)0.610130 (12)0.01599 (9)
N10.02383 (16)0.00738 (13)0.65683 (8)0.0212 (4)
H10.02140.03910.63160.025*
N20.25598 (16)0.02638 (12)0.65289 (8)0.0191 (4)
H20.31710.01080.66220.023*
N30.26882 (16)0.09917 (13)0.56334 (8)0.0231 (4)
H30.23580.12670.53240.028*
N40.16983 (17)0.15977 (13)0.66080 (8)0.0230 (4)
H40.21510.13890.68980.028*
N50.15075 (15)0.05120 (13)0.55396 (8)0.0206 (4)
H5C0.10780.10120.56470.025*
H5D0.12740.03110.51950.025*
Zn0.31229 (2)0.110952 (19)0.367953 (12)0.02606 (9)
Cl20.16880 (6)0.08136 (6)0.43060 (3)0.04193 (18)
Cl30.42835 (6)0.21734 (5)0.41044 (3)0.04384 (19)
Cl40.41768 (7)0.02131 (5)0.34736 (3)0.04497 (19)
Cl50.21981 (6)0.16966 (4)0.28868 (2)0.03245 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0287 (13)0.0223 (12)0.0240 (12)0.0000 (10)0.0032 (10)0.0043 (10)
C20.0300 (12)0.0219 (11)0.0180 (11)0.0025 (10)0.0027 (10)0.0027 (9)
C30.0225 (12)0.0223 (11)0.0272 (12)0.0053 (9)0.0013 (10)0.0011 (10)
C40.0208 (12)0.0259 (12)0.0230 (12)0.0041 (10)0.0004 (10)0.0021 (10)
C50.0227 (12)0.0352 (14)0.0234 (12)0.0009 (10)0.0022 (10)0.0025 (10)
C60.0337 (14)0.0279 (13)0.0391 (15)0.0141 (11)0.0033 (12)0.0049 (11)
C70.0448 (16)0.0177 (12)0.0368 (14)0.0101 (11)0.0059 (12)0.0013 (10)
C80.0422 (15)0.0216 (12)0.0327 (14)0.0084 (11)0.0043 (12)0.0076 (11)
C90.0383 (15)0.0335 (13)0.0285 (13)0.0081 (12)0.0055 (11)0.0050 (11)
C100.0228 (12)0.0311 (13)0.0334 (13)0.0053 (10)0.0057 (10)0.0015 (11)
C110.0418 (15)0.0379 (15)0.0319 (14)0.0104 (12)0.0013 (12)0.0076 (12)
Cl10.0294 (3)0.0271 (3)0.0254 (3)0.0079 (2)0.0078 (2)0.0024 (2)
Co0.01757 (16)0.01480 (15)0.01560 (15)0.00015 (11)0.00332 (11)0.00064 (11)
N10.0200 (10)0.0222 (10)0.0213 (10)0.0001 (8)0.0016 (8)0.0025 (8)
N20.0190 (9)0.0179 (9)0.0203 (9)0.0008 (8)0.0052 (8)0.0003 (7)
N30.0239 (10)0.0231 (10)0.0223 (10)0.0036 (8)0.0027 (8)0.0045 (8)
N40.0301 (11)0.0170 (9)0.0218 (10)0.0002 (8)0.0055 (8)0.0003 (8)
N50.0201 (10)0.0219 (9)0.0196 (9)0.0007 (8)0.0035 (8)0.0003 (8)
Zn0.02982 (17)0.02577 (15)0.02259 (15)0.00013 (12)0.00032 (12)0.00107 (11)
Cl20.0370 (4)0.0689 (5)0.0198 (3)0.0181 (3)0.0024 (3)0.0060 (3)
Cl30.0309 (3)0.0287 (3)0.0719 (5)0.0019 (3)0.0142 (3)0.0082 (3)
Cl40.0640 (5)0.0327 (4)0.0382 (4)0.0175 (3)0.0131 (3)0.0056 (3)
Cl50.0383 (3)0.0362 (3)0.0229 (3)0.0074 (3)0.0015 (3)0.0044 (2)
Geometric parameters (Å, º) top
C1—N11.496 (3)C8—H8B0.97
C1—C21.509 (3)C9—C101.515 (4)
C1—H1A0.97C9—H9A0.97
C1—H1B0.97C9—H9B0.97
C2—N21.491 (3)C10—N11.491 (3)
C2—H2A0.97C10—H10A0.97
C2—H2B0.97C10—H10B0.97
C3—N21.501 (3)C11—H11A0.96
C3—C41.516 (3)C11—H11B0.96
C3—H3A0.97C11—H11C0.96
C3—H3B0.97Co—N11.961 (2)
C4—N51.499 (3)Co—N21.966 (2)
C4—C111.518 (3)Co—N31.940 (2)
C4—C51.539 (3)Co—N41.970 (2)
C5—N31.487 (3)Co—N51.953 (2)
C5—H5A0.97Co—Cl12.2404 (6)
C5—H5B0.97N1—H10.91
C6—N31.482 (3)N2—H20.91
C6—C71.506 (4)N3—H30.91
C6—H6A0.97N4—H40.91
C6—H6B0.97N5—H5C0.9
C7—N41.491 (3)N5—H5D0.9
C7—H7A0.97Zn—Cl32.2516 (7)
C7—H7B0.97Zn—Cl22.2636 (7)
C8—N41.482 (3)Zn—Cl42.2839 (8)
C8—C91.513 (4)Zn—Cl52.3057 (7)
C8—H8A0.97
N1—C1—C2109.96 (18)H10A—C10—H10B107.5
N1—C1—H1A109.7C4—C11—H11A109.5
C2—C1—H1A109.7C4—C11—H11B109.5
N1—C1—H1B109.7H11A—C11—H11B109.5
C2—C1—H1B109.7C4—C11—H11C109.5
H1A—C1—H1B108.2H11A—C11—H11C109.5
N2—C2—C1108.31 (18)H11B—C11—H11C109.5
N2—C2—H2A110N1—Co—N287.37 (8)
C1—C2—H2A110N1—Co—N3175.99 (8)
N2—C2—H2B110N1—Co—N495.38 (8)
C1—C2—H2B110N1—Co—N595.64 (8)
H2A—C2—H2B108.4N1—Co—Cl192.32 (6)
N2—C3—C4107.26 (18)N2—Co—N389.75 (8)
N2—C3—H3A110.3N2—Co—N491.42 (8)
C4—C3—H3A110.3N2—Co—N585.17 (8)
N2—C3—H3B110.3N2—Co—Cl1176.76 (6)
C4—C3—H3B110.3N3—Co—N487.49 (8)
H3A—C3—H3B108.5N3—Co—N581.32 (8)
N5—C4—C3102.83 (18)N3—Co—Cl190.40 (6)
N5—C4—C11112.8 (2)N4—Co—N5168.29 (8)
C3—C4—C11113.0 (2)N4—Co—Cl191.83 (6)
N5—C4—C5106.07 (18)N5—Co—Cl191.65 (6)
C3—C4—C5110.03 (19)C10—N1—C1114.49 (18)
C11—C4—C5111.6 (2)C10—N1—Co117.71 (15)
N3—C5—C4108.95 (18)C1—N1—Co109.16 (14)
N3—C5—H5A109.9C10—N1—H1104.7
C4—C5—H5A109.9C1—N1—H1104.7
N3—C5—H5B109.9Co—N1—H1104.7
C4—C5—H5B109.9C2—N2—C3114.22 (17)
H5A—C5—H5B108.3C2—N2—Co108.20 (14)
N3—C6—C7107.1 (2)C3—N2—Co108.55 (13)
N3—C6—H6A110.3C2—N2—H2108.6
C7—C6—H6A110.3C3—N2—H2108.6
N3—C6—H6B110.3Co—N2—H2108.6
C7—C6—H6B110.3C6—N3—C5116.95 (19)
H6A—C6—H6B108.6C6—N3—Co109.12 (15)
N4—C7—C6108.38 (19)C5—N3—Co109.58 (14)
N4—C7—H7A110C6—N3—H3106.9
C6—C7—H7A110C5—N3—H3106.9
N4—C7—H7B110Co—N3—H3106.9
C6—C7—H7B110C8—N4—C7111.86 (18)
H7A—C7—H7B108.4C8—N4—Co118.18 (15)
N4—C8—C9111.08 (19)C7—N4—Co106.22 (14)
N4—C8—H8A109.4C8—N4—H4106.6
C9—C8—H8A109.4C7—N4—H4106.6
N4—C8—H8B109.4Co—N4—H4106.6
C9—C8—H8B109.4C4—N5—Co101.23 (13)
H8A—C8—H8B108C4—N5—H5C111.5
C8—C9—C10113.9 (2)Co—N5—H5C111.5
C8—C9—H9A108.8C4—N5—H5D111.5
C10—C9—H9A108.8Co—N5—H5D111.5
C8—C9—H9B108.8H5C—N5—H5D109.3
C10—C9—H9B108.8Cl2—Zn—Cl3105.98 (3)
H9A—C9—H9B107.7Cl2—Zn—Cl4112.47 (3)
N1—C10—C9115.2 (2)Cl2—Zn—Cl5104.43 (3)
N1—C10—H10A108.5Cl3—Zn—Cl4108.53 (3)
C9—C10—H10A108.5Cl3—Zn—Cl5113.48 (3)
N1—C10—H10B108.5Cl4—Zn—Cl5111.84 (3)
C9—C10—H10B108.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.912.333.214 (2)164
N3—H3···Cl20.912.63.341 (2)139
N4—H4···Cl5ii0.912.483.272 (2)145
N5—H5C···Cl3iii0.92.663.494 (2)155
N5—H5D···Cl20.92.673.458 (2)147
N5—H5D···Cl1i0.92.853.4620 (19)127
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y1/2, z+1.
(II) trans-chloro(6-methyl-1,4,8,11-tetraazacyclotetradecane-6-amine)cobalt(III) tetrachlorozincate(II) top
Crystal data top
[CoCl(C11H27N5)][ZnCl4]F(000) = 1080
Mr = 530.93Dx = 1.76 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.9431 (9) Åθ = 11.4–13.9°
b = 12.167 (1) ŵ = 2.70 mm1
c = 13.9670 (7) ÅT = 296 K
β = 99.165 (7)°Prism, red
V = 2003.7 (2) Å30.5 × 0.5 × 0.1 mm
Z = 4
Data collection top
Enraf-Nonius TurboCAD4
diffractometer
2570 reflections with I > 2σ(I)
Radiation source: Enraf-Nonius FR590Rint = 0.024
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
non–profiled ω/2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968). Number of ψ-scan sets used was 3. θ correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
k = 014
Tmin = 0.346, Tmax = 0.774l = 1616
3698 measured reflections3 standard reflections every 120 min
3518 independent reflections intensity decay: 6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.6197P]
where P = (Fo2 + 2Fc2)/3
3518 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[CoCl(C11H27N5)][ZnCl4]V = 2003.7 (2) Å3
Mr = 530.93Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9431 (9) ŵ = 2.70 mm1
b = 12.167 (1) ÅT = 296 K
c = 13.9670 (7) Å0.5 × 0.5 × 0.1 mm
β = 99.165 (7)°
Data collection top
Enraf-Nonius TurboCAD4
diffractometer
2570 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968). Number of ψ-scan sets used was 3. θ correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
Rint = 0.024
Tmin = 0.346, Tmax = 0.7743 standard reflections every 120 min
3698 measured reflections intensity decay: 6%
3518 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.03Δρmax = 0.51 e Å3
3518 reflectionsΔρmin = 0.80 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0727 (3)0.1773 (3)0.7320 (3)0.0322 (10)
H1A0.13350.23030.74770.039*
H1B0.00860.20120.76150.039*
C20.0389 (3)0.1684 (4)0.6236 (3)0.0327 (9)
H2A0.03140.12750.60840.039*
H2B0.02710.24110.59540.039*
C30.2229 (3)0.1827 (3)0.5569 (3)0.0247 (8)
H3A0.21570.25630.58180.03*
H3B0.2170.18720.48690.03*
C40.3376 (3)0.1345 (3)0.6003 (3)0.0216 (8)
C50.3642 (3)0.0249 (3)0.5568 (3)0.0256 (8)
H5A0.3620.03280.48740.031*
H5B0.43970.00110.58520.031*
C60.3282 (3)0.1669 (3)0.6104 (3)0.0291 (9)
H6A0.3920.18470.5780.035*
H6B0.27160.22420.5960.035*
C70.3665 (3)0.1587 (3)0.7184 (3)0.0292 (9)
H7A0.38780.23060.74520.035*
H7B0.43170.11040.73230.035*
C80.3044 (3)0.0866 (4)0.8664 (3)0.0306 (9)
H8A0.36460.03230.87320.037*
H8B0.33360.15210.90140.037*
C90.2054 (4)0.0420 (4)0.9101 (3)0.0366 (10)
H9A0.14260.09330.89670.044*
H9B0.22720.0380.97990.044*
C100.1653 (3)0.0697 (4)0.8729 (3)0.0339 (10)
H10A0.11110.09780.91170.041*
H10B0.22940.11970.880.041*
C110.4321 (3)0.2167 (4)0.5945 (3)0.0317 (9)
H11A0.41370.28560.62180.048*
H11B0.44050.22740.52790.048*
H11C0.50190.18920.63010.048*
Cl10.05007 (8)0.11365 (8)0.62386 (7)0.0326 (2)
Co0.19650 (4)0.00020 (4)0.67508 (3)0.01871 (14)
N10.1113 (3)0.0663 (3)0.7691 (2)0.0255 (7)
H10.04730.02510.76710.031*
N20.1304 (2)0.1111 (3)0.5828 (2)0.0231 (7)
H20.09790.07580.5280.028*
N30.2792 (2)0.0582 (2)0.5762 (2)0.0229 (7)
H30.22920.06890.52070.028*
N40.2701 (2)0.1138 (3)0.7620 (2)0.0234 (7)
H40.21890.16940.760.028*
N50.3232 (2)0.1039 (3)0.7019 (2)0.0220 (7)
H5C0.30530.16270.73560.026*
H5D0.38590.07160.73410.026*
Zn0.27604 (4)0.50380 (4)0.73937 (3)0.02735 (14)
Cl20.24383 (8)0.37177 (8)0.84842 (7)0.0315 (2)
Cl30.34131 (9)0.65961 (8)0.82302 (7)0.0324 (2)
Cl40.41808 (8)0.44593 (9)0.66100 (8)0.0353 (3)
Cl50.11333 (8)0.53767 (10)0.63956 (8)0.0393 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (2)0.030 (2)0.043 (3)0.0027 (17)0.0101 (18)0.0095 (19)
C20.0216 (19)0.037 (2)0.040 (2)0.0087 (18)0.0059 (17)0.003 (2)
C30.0212 (18)0.025 (2)0.028 (2)0.0005 (16)0.0040 (16)0.0039 (17)
C40.0210 (18)0.026 (2)0.0183 (18)0.0023 (16)0.0037 (14)0.0008 (15)
C50.0228 (18)0.034 (2)0.0217 (19)0.0022 (16)0.0082 (15)0.0004 (16)
C60.035 (2)0.024 (2)0.029 (2)0.0045 (18)0.0102 (18)0.0026 (18)
C70.030 (2)0.029 (2)0.029 (2)0.0092 (18)0.0041 (17)0.0037 (17)
C80.033 (2)0.039 (2)0.019 (2)0.0041 (19)0.0023 (16)0.0007 (18)
C90.040 (2)0.049 (3)0.023 (2)0.002 (2)0.0114 (18)0.001 (2)
C100.035 (2)0.048 (3)0.021 (2)0.004 (2)0.0101 (17)0.0116 (19)
C110.024 (2)0.038 (2)0.033 (2)0.0097 (18)0.0049 (17)0.0007 (19)
Cl10.0304 (5)0.0357 (5)0.0296 (5)0.0120 (4)0.0015 (4)0.0002 (4)
Co0.0174 (2)0.0219 (3)0.0168 (3)0.0012 (2)0.00282 (18)0.0015 (2)
N10.0212 (16)0.0302 (18)0.0261 (17)0.0038 (14)0.0066 (13)0.0021 (14)
N20.0197 (15)0.0251 (17)0.0235 (17)0.0026 (13)0.0001 (13)0.0002 (14)
N30.0230 (16)0.0257 (17)0.0196 (16)0.0009 (13)0.0020 (12)0.0005 (13)
N40.0251 (16)0.0239 (17)0.0208 (16)0.0014 (14)0.0025 (13)0.0002 (14)
N50.0197 (15)0.0259 (17)0.0207 (16)0.0001 (13)0.0039 (12)0.0010 (13)
Zn0.0249 (2)0.0305 (3)0.0268 (3)0.0001 (2)0.00481 (19)0.0010 (2)
Cl20.0373 (5)0.0309 (5)0.0279 (5)0.0023 (4)0.0099 (4)0.0005 (4)
Cl30.0411 (6)0.0277 (5)0.0278 (5)0.0013 (4)0.0042 (4)0.0016 (4)
Cl40.0269 (5)0.0410 (6)0.0396 (6)0.0010 (4)0.0104 (4)0.0042 (5)
Cl50.0262 (5)0.0543 (7)0.0363 (6)0.0018 (5)0.0017 (4)0.0051 (5)
Geometric parameters (Å, º) top
C1—N11.492 (5)C8—H8B0.97
C1—C21.508 (6)C9—C101.506 (6)
C1—H1A0.97C9—H9A0.97
C1—H1B0.97C9—H9B0.97
C2—N21.484 (5)C10—N11.490 (5)
C2—H2A0.97C10—H10A0.97
C2—H2B0.97C10—H10B0.97
C3—N21.496 (4)C11—H11A0.96
C3—C41.524 (5)C11—H11B0.96
C3—H3A0.97C11—H11C0.96
C3—H3B0.97Co—N11.958 (3)
C4—N51.503 (4)Co—N21.944 (3)
C4—C51.520 (5)Co—N31.955 (3)
C4—C111.521 (5)Co—N41.957 (3)
C5—N31.487 (5)Co—N51.961 (3)
C5—H5A0.97Co—Cl12.256 (1)
C5—H5B0.97N1—H10.91
C6—N31.494 (5)N2—H20.91
C6—C71.509 (5)N3—H30.91
C6—H6A0.97N4—H40.91
C6—H6B0.97N5—H5C0.9
C7—N41.489 (5)N5—H5D0.9
C7—H7A0.97Zn—Cl22.2880 (11)
C7—H7B0.97Zn—Cl32.2969 (11)
C8—N41.488 (5)Zn—Cl42.2723 (11)
C8—C91.515 (6)Zn—Cl52.2420 (11)
C8—H8A0.97
N1—C1—C2107.6 (3)H10A—C10—H10B107.9
N1—C1—H1A110.2C4—C11—H11A109.5
C2—C1—H1A110.2C4—C11—H11B109.5
N1—C1—H1B110.2H11A—C11—H11B109.5
C2—C1—H1B110.2C4—C11—H11C109.5
H1A—C1—H1B108.5H11A—C11—H11C109.5
N2—C2—C1108.9 (3)H11B—C11—H11C109.5
N2—C2—H2A109.9N1—Co—N287.70 (13)
C1—C2—H2A109.9N1—Co—N3176.58 (13)
N2—C2—H2B109.9N1—Co—N496.04 (13)
C1—C2—H2B109.9N1—Co—N594.34 (13)
H2A—C2—H2B108.3N1—Co—Cl190.30 (10)
N2—C3—C4109.3 (3)N2—Co—N388.95 (12)
N2—C3—H3A109.8N2—Co—N4176.17 (12)
C4—C3—H3A109.8N2—Co—N584.20 (12)
N2—C3—H3B109.8N2—Co—Cl190.22 (9)
C4—C3—H3B109.8N3—Co—N487.30 (12)
H3A—C3—H3B108.3N3—Co—N584.66 (12)
N5—C4—C5102.9 (3)N3—Co—Cl190.37 (9)
N5—C4—C11114.2 (3)N4—Co—N594.65 (13)
C5—C4—C11110.6 (3)N4—Co—Cl190.60 (9)
N5—C4—C3103.9 (3)N5—Co—Cl1172.58 (9)
C5—C4—C3114.2 (3)C10—N1—C1112.0 (3)
C11—C4—C3110.7 (3)C10—N1—Co118.2 (2)
N3—C5—C4109.4 (3)C1—N1—Co107.7 (2)
N3—C5—H5A109.8C10—N1—H1106.1
C4—C5—H5A109.8C1—N1—H1106.1
N3—C5—H5B109.8Co—N1—H1106.1
C4—C5—H5B109.8C2—N2—C3115.9 (3)
H5A—C5—H5B108.2C2—N2—Co108.5 (2)
N3—C6—C7107.6 (3)C3—N2—Co109.1 (2)
N3—C6—H6A110.2C2—N2—H2107.7
C7—C6—H6A110.2C3—N2—H2107.7
N3—C6—H6B110.2Co—N2—H2107.7
C7—C6—H6B110.2C5—N3—C6114.6 (3)
H6A—C6—H6B108.5C5—N3—Co108.5 (2)
N4—C7—C6107.6 (3)C6—N3—Co108.2 (2)
N4—C7—H7A110.2C5—N3—H3108.4
C6—C7—H7A110.2C6—N3—H3108.4
N4—C7—H7B110.2Co—N3—H3108.4
C6—C7—H7B110.2C8—N4—C7111.8 (3)
H7A—C7—H7B108.5C8—N4—Co118.5 (2)
N4—C8—C9111.3 (3)C7—N4—Co107.8 (2)
N4—C8—H8A109.4C8—N4—H4105.9
C9—C8—H8A109.4C7—N4—H4105.9
N4—C8—H8B109.4Co—N4—H4105.9
C9—C8—H8B109.4C4—N5—Co100.4 (2)
H8A—C8—H8B108C4—N5—H5C111.7
C10—C9—C8114.2 (3)Co—N5—H5C111.7
C10—C9—H9A108.7C4—N5—H5D111.7
C8—C9—H9A108.7Co—N5—H5D111.7
C10—C9—H9B108.7H5C—N5—H5D109.5
C8—C9—H9B108.7Cl2—Zn—Cl3108.68 (4)
H9A—C9—H9B107.6Cl2—Zn—Cl4108.70 (4)
N1—C10—C9112.0 (3)Cl2—Zn—Cl5108.79 (4)
N1—C10—H10A109.2Cl3—Zn—Cl4106.37 (4)
C9—C10—H10A109.2Cl3—Zn—Cl5110.79 (4)
N1—C10—H10B109.2Cl4—Zn—Cl5113.39 (4)
C9—C10—H10B109.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl5i0.912.63.393 (3)146
N2—H2···Cl1ii0.912.583.316 (3)139
N3—H3···Cl2iii0.912.543.256 (3)135
N4—H4···Cl20.912.753.395 (3)129
N5—H5C···Cl3iv0.92.493.327 (3)156
N5—H5D···Cl4v0.92.573.420 (3)159
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y, z+1; (iii) x, y1/2, z1/2; (iv) x, y+1, z; (v) x+1, y+1/2, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[CoCl(C11H27N5)][ZnCl4][CoCl(C11H27N5)][ZnCl4]
Mr530.93530.93
Crystal system, space groupOrthorhombic, PcabMonoclinic, P21/c
Temperature (K)296296
a, b, c (Å)11.619 (1), 14.109 (3), 23.517 (3)11.9431 (9), 12.167 (1), 13.9670 (7)
α, β, γ (°)90, 90, 9090, 99.165 (7), 90
V3)3855.2 (10)2003.7 (2)
Z84
Radiation typeMo KαMo Kα
µ (mm1)2.802.70
Crystal size (mm)0.6 × 0.5 × 0.50.5 × 0.5 × 0.1
Data collection
DiffractometerEnraf-Nonius TurboCAD4
diffractometer
Enraf-Nonius TurboCAD4
diffractometer
Absorption correctionψ scan
(North et al., 1968). Number of ψ-scan sets used was 6. θ correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
ψ scan
(North et al., 1968). Number of ψ-scan sets used was 3. θ correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.
Tmin, Tmax0.284, 0.3350.346, 0.774
No. of measured, independent and
observed [I > 2σ(I)] reflections
3385, 3385, 2970 3698, 3518, 2570
Rint00.024
(sin θ/λ)max1)0.5940.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.07 0.034, 0.095, 1.03
No. of reflections33853518
No. of parameters209208
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.450.51, 0.80

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS86 (Sheldrick, 1985), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLUTON (Spek, 1990), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
Co—N11.961 (2)Co—Cl12.2404 (6)
Co—N21.966 (2)Zn—Cl32.2516 (7)
Co—N31.940 (2)Zn—Cl22.2636 (7)
Co—N41.970 (2)Zn—Cl42.2839 (8)
Co—N51.953 (2)Zn—Cl52.3057 (7)
N1—Co—N287.37 (8)N3—Co—Cl190.40 (6)
N1—Co—N3175.99 (8)N4—Co—N5168.29 (8)
N1—Co—N495.38 (8)N4—Co—Cl191.83 (6)
N1—Co—N595.64 (8)N5—Co—Cl191.65 (6)
N1—Co—Cl192.32 (6)Cl2—Zn—Cl3105.98 (3)
N2—Co—N389.75 (8)Cl2—Zn—Cl4112.47 (3)
N2—Co—N491.42 (8)Cl2—Zn—Cl5104.43 (3)
N2—Co—N585.17 (8)Cl3—Zn—Cl4108.53 (3)
N2—Co—Cl1176.76 (6)Cl3—Zn—Cl5113.48 (3)
N3—Co—N487.49 (8)Cl4—Zn—Cl5111.84 (3)
N3—Co—N581.32 (8)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.912.333.214 (2)164
N3—H3···Cl20.912.63.341 (2)139
N4—H4···Cl5ii0.912.483.272 (2)145
N5—H5C···Cl3iii0.92.663.494 (2)155
N5—H5D···Cl20.92.673.458 (2)147
N5—H5D···Cl1i0.92.853.4620 (19)127
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y1/2, z+1.
Selected geometric parameters (Å, º) for (II) top
Co—N11.958 (3)Co—Cl12.256 (1)
Co—N21.944 (3)Zn—Cl22.2880 (11)
Co—N31.955 (3)Zn—Cl32.2969 (11)
Co—N41.957 (3)Zn—Cl42.2723 (11)
Co—N51.961 (3)Zn—Cl52.2420 (11)
N1—Co—N287.70 (13)N3—Co—Cl190.37 (9)
N1—Co—N3176.58 (13)N4—Co—N594.65 (13)
N1—Co—N496.04 (13)N4—Co—Cl190.60 (9)
N1—Co—N594.34 (13)N5—Co—Cl1172.58 (9)
N1—Co—Cl190.30 (10)Cl2—Zn—Cl3108.68 (4)
N2—Co—N388.95 (12)Cl2—Zn—Cl4108.70 (4)
N2—Co—N4176.17 (12)Cl2—Zn—Cl5108.79 (4)
N2—Co—N584.20 (12)Cl3—Zn—Cl4106.37 (4)
N2—Co—Cl190.22 (9)Cl3—Zn—Cl5110.79 (4)
N3—Co—N487.30 (12)Cl4—Zn—Cl5113.39 (4)
N3—Co—N584.66 (12)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl5i0.912.63.393 (3)146
N2—H2···Cl1ii0.912.583.316 (3)139
N3—H3···Cl2iii0.912.543.256 (3)135
N4—H4···Cl20.912.753.395 (3)129
N5—H5C···Cl3iv0.92.493.327 (3)156
N5—H5D···Cl4v0.92.573.420 (3)159
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y, z+1; (iii) x, y1/2, z1/2; (iv) x, y+1, z; (v) x+1, y+1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds