Download citation
Download citation
link to html
Both of the title compounds, catena-poly­[[[tetra­aqua­magnesium(I)]-[mu]-4,4'-bi­pyridine-[kappa]2N:N'] diiodide bis(4,4'-bi­pyridine) solvate], {[Mg(C10H8N2)(H2O)4]I2·2C10H8N2}n, (I), and catena-poly­[[[[mu]-4,4'-bi­pyridine-bis­[di­iodo­bis­(propan-1-ol)­strontium(I)]]-di-[mu]-4,4'-bi­pyridine-[kappa]4N:N'] bis(4,4'-bi­pyri­dine) solvate], {[Sr2I4(C10H8N2)3(C3H8O)4]·2C10H8N2}n, (II), are one-dimensional polymers which are single- and double-stranded, respectively, the metal atoms being linked by the 4,4'-bi­pyridine moieties. The Mg complex, (I), is [cis-{(H2O)4Mg(N-4,4'-bi­pyridine-N')(2/2)}]([infinity]|[infinity])I2·4,4'-bi­pyridine and Mg has a six-coordinate quasi-octahedral coordination environment. The Sr complex, (II), is isomorphous with its previously defined Ba counterpart [Kepert, Waters & White (1996). Aust. J. Chem. 49, 117-135], being [(propan-1-ol)2I2Sr(N-4,4'-bi­pyridine-N')(3/2)]([infinity]|[infinity])·4,4'-bi­pyridine, with the I atoms trans-axial in a seven-coordinate pentagonal-bipyramidal Sr environment.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103020407/ta1418sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103020407/ta1418Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103020407/ta1418IIsup3.hkl
Contains datablock II

CCDC references: 226093; 226094

Comment top

In the course of extended studies undertaken some years ago concerning the synthesis and structural characterization of nitrogen base adducts of simple group 2 salts with simple nitrogen base ligands, a hitherto largely unexplored fundamental field, we investigated derivatives formed between the metal halides and the inherently bridging bidentate ligand 4,4'-bipyridine, in the expectation that unusual polymeric arrays might be obtained (Kepert et al., 1996). In doing so, the metal iodides were dissolved with the ligand in 1:2 millimolar stoichiometry in a few ml of alcoholic solvent (propan-1-ol for the heavier metals, methanol for the lighter) under anaerobic conditions, i.e. specifically excluding moisture. At the time, a crystalline deposit was obtained only of a barium complex, which proved to be an adduct of stoichiometry BaI2:4,4'-bipyridine:propan-1-ol (1:2.5:2), a novel polymer in which seven-coordinate Ba atoms of pentagonal-bipyramidal stereochemistry (environment: BaI2N3O2), comprising the two axial I atoms, three pyridyl N atoms (from different ligands) and two propan-1-ol O atoms, were linked into a one-dimensional double-stranded polymer. After standing for some years, two parallel vials containing magnesium iodide with ligand in methanol, and strontium iodide with ligand in propan-1-ol, deposited significant quantities of colourless well formed crystals, the title complexes, (I) and (II), respectively. The strontium complex, (II), proved to be a counterpart of the previously described barium adduct, while the magnesium complex, (I), is an adduct of the form MgI2-4,4'-bipyridine-water (1:3:4), presumably consequent upon the slow admission of water from the surroundings over an extended period and/or some presence in the initial mixture. In both complexes, coordinated bridging 4,4'-bipyridine moieties are found, so that polymers result. In both compounds, uncoordinated 4,4'-bipyridine moieties are also found, which are prone to stack or interleave interstitially, being (quasi-)planar but not inflexibly so. \sch

In complex (I), one half of the 1:3:4 MgI2-4,4'-bipyridine-water formula unit comprises the asymmetric unit of the structure, the Mg atom being disposed on a crystallographic 2 axis, while the mid-point of the central bond of the coordinated 4,4'-bipyridine ligand lies at a crystallographic centre of symmetry, the two C5N rings necessarily parallel and essentially coplanar, the Mg atom deviant by 0.234 (6) and 0.199 (14) Å. The lattice 4,4'-bipyridine moiety is fully crystallographically independent. The Mg atom environment is six-coordinate and quasi-octahedral in stereochemistry. Symmetry-related 4,4'-bipyridine moieties lie cis in the coordination sphere, bonded through their N atoms and bridging to inversion-related Mg atoms to generate an infinite one-dimensional zigzag polymeric cation along the crystallographic c axis (Fig. 2).

The Mg-coordinated atom distances (Table 1) are unremarkable and are comparable with values recorded for similar bonds in examples of pyridine base and aqua ligand complexes (e.g. Waters & White, 1996), there being no significant difference in the two Mg—OH2 distances indicative of any significant difference in trans effects of the two ligand types.

Although the polymer of (I) is one-dimensional, its profile is extended in the second dimension (b) by its zigzag aspect, with the overall array having a planar core disposed in the bc face of the cell (Fig. 2 b) and the dihedral angle of the C5N ligand plane to that face being 51.0 (1)°. One H atom from each water molecule is involved in a strong hydrogen bond projecting out of the plane to the same nearby iodide ion (Table 2), and these interactions are perhaps responsible for the considerable deviations of the angles about the Mg atom from orthogonality. Whereas the coordinated ligand is essentially planar, the uncoordinated moiety is twisted about its central bond, the dihedral angle between the two C5N planes (χ2 20 and 1) being 33.8 (2)°.

The strontium complex, (II), is isomorphous with its barium counterpart, previously recorded elsewhere (Kepert et al., 1996). One full formula unit, devoid of crystallographic symmetry (but see below), comprises the asymmetric unit of the structure. The coordinated 4,4'-bipyridine complement comprises the two halves of different ligands 1, this ligand bridging to a (b-) unit-translation-related metal atom, and one half of ligand 2, which lies with the midpoint of its central bond disposed at a crystallographic inversion centre. The two rings of the second ligand are necessarily parallel and quasi-coplanar, the metal atom deviating from the C5N plane (χ2 5.6) by 0.34 (1) Å. The two similar component planes (χ2 6.5 and 0.4) of the first ligand lie twisted about the central bond with respect to each other, with an interplanar dihedral angle of 23.0 (4)° and with the associated Sr atoms considerably [0.81 (1) and 1.23 (3) Å] out of plane in each case. [The third uncoordinated ligand is crystallographically fully independent and is also similarly twisted, the interplanar dihedral angle being 33.7 (4)°].

The metal atoms of (II) are seven-coordinate, the coordination environment approximating nicely to pentagonal-bipyramidal stereochemistry, with the I atoms occupying the trans/axial sites. Two of the five equatorial sites (not cis) are occupied by the propan-1-ol ligand O atoms, which thus define the orientation of the other three pyridine N atoms in the I2SrO2N3 coordination sphere. As implied above, two of the N atoms come from the two independent rings of the symmetry-related ligands 1 which extend the resulting polymer in b; the other is from the independent half of ligand 2 which, by inversion, extends the polymer in the second dimension across the cell diagonal. The resulting planar array (Fig. 3a) comprises a double-stranded polymer running parallel to b (Fig. 3 b).

The metal atom environment of (II) may be compared with that of its barium counterpart, in which the Ba—I(1,2)/O(1 A,B)/N(11,21,11') distances are 3.382 (4), 3.403 (4), 2.69 (2), 2.74 (1), 2.85 (2), 2.94 (2) and 2.91 (2) Å, respectively. Thus the mean differences between Ba and Sr bond lengths for I, O and N donors are 0.13, 0.15, 0.14 Å, respectively, suggesting no outstanding differential between bond types.

Experimental top

The complexes were obtained as outlined above. Analysis for (I): found: C 43.7, H 4.0, N 8.4%; C31H36I2N5O2Sr requires: C 43.70, H 4.26, N 8.22%. Analysis for (II): found: C 44.2, H 3.7, N 10.3%; C30H32I2MgN6O4 requires: C 44.01, H 3.94, N 10.26%.

Refinement top

The H atoms were located from difference Fourier maps and placed at idealized positions for those on C [C—H = 0.95 Å, UisoH = 1.25Ueq(C) (CH) and 1.5Ueq(C,O) (CH3 and OH)], and were refined (in x, y, z and U) for (I) but not refined for (II). Atoms C1A and C2A of one propanol group of (II) were each modelled as disordered over two sites, C1A and C1A', and C2A and C2A', and assigned site occupancy factors of 0.5 after initial trial refinement.

Computing details top

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: Xtal3.5 (Hall et al., 1995); program(s) used to solve structure: Xtal3.5; program(s) used to refine structure: CRYLSQ in Xtal3.5; molecular graphics: Xtal3.5; software used to prepare material for publication: BONDLA and CIFIO in Xtal3.5.

Figures top
[Figure 1] Fig. 1. (a) The numbering scheme and coordination around the Mg atom for (I). (b) The numbering scheme and coordination around the Sr atom for (II). Displacement ellipsoids are drawn at the 20% probability level in this and other figures and H atoms are shown with arbitrary radii of 0.1 Å.
[Figure 2] Fig. 2. (a) A strand of the polymeric cation of the magnesium complex, (I), projected normal to its plane (bc) and with its axis, parallel to crystallographic c, horizontal in the page. (b) Unit-cell contents of (I) projected down b, showing the disposition of anions and lattice 4,4'-bipyridine moieties between the polymer planes, which lie about the bc face of the cell.
[Figure 3] Fig. 3. (a) The double-stranded array of (II), generated by the unit b-translation, together with inversion (b horizontal in the page). (b) Unit-cell projection of (II) down the polymer axis b, showing its extent and disposition across the cell diagonal.
(I) catena-poly[[[tetraaquamagnesium(I)]-µ-4,4'-bipyridine-κ2N:N'] diiodide bis(4,4'-bipyridine) solvate] top
Crystal data top
[Mg(C10H8N2)(H2O)4]I2·2C10H8N2F(000) = 1616
Mr = 818.75Dx = 1.577 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -c 2ycCell parameters from 8 reflections
a = 27.574 (7) Åθ = 18.1–23.8°
b = 9.018 (4) ŵ = 1.88 mm1
c = 16.974 (3) ÅT = 298 K
β = 125.23 (2)°Block, colourless
V = 3448 (2) Å30.35 × 0.33 × 0.32 mm
Z = 4
Data collection top
Enraf-Nonius CAD4
diffractometer
2964 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.014
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
2θ/ω scansh = 3135
Absorption correction: gaussian
(ABSORB in Xtal3.5; Hall et al., 1995)
k = 110
Tmin = 0.58, Tmax = 0.63l = 224
5196 measured reflections8 standard reflections every 60 min
3955 independent reflections intensity decay: none
Refinement top
Refinement on FSecondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040All H-atom parameters refined
wR(F2) = 0.052 w = 1/[σ2(Fo)]
where σ(I) = [σ(I)meas + 0.0004(Inet)2]1/2
S = 1.12(Δ/σ)max = 0.049
2964 reflectionsΔρmax = 1.06 e Å3
260 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: Zachariasen (1967), Eq. 22, p. 292 Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
0 constraintsExtinction coefficient: 35 (4) × 103
Primary atom site location: structure-invariant direct methods
Crystal data top
[Mg(C10H8N2)(H2O)4]I2·2C10H8N2V = 3448 (2) Å3
Mr = 818.75Z = 4
Monoclinic, C2/cMo Kα radiation
a = 27.574 (7) ŵ = 1.88 mm1
b = 9.018 (4) ÅT = 298 K
c = 16.974 (3) Å0.35 × 0.33 × 0.32 mm
β = 125.23 (2)°
Data collection top
Enraf-Nonius CAD4
diffractometer
2964 reflections with I > 2σ(I)
Absorption correction: gaussian
(ABSORB in Xtal3.5; Hall et al., 1995)
Rint = 0.014
Tmin = 0.58, Tmax = 0.638 standard reflections every 60 min
5196 measured reflections intensity decay: none
3955 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.052All H-atom parameters refined
S = 1.12Δρmax = 1.06 e Å3
2964 reflectionsΔρmin = 0.50 e Å3
260 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.348074 (13)0.25991 (3)0.18221 (2)0.0720 (2)
Mg0.500000.93393 (16)0.250000.0319 (6)
O10.50749 (14)1.0905 (3)0.1695 (2)0.0507 (12)
O20.59105 (11)0.9392 (3)0.33903 (19)0.0429 (12)
N110.50337 (14)0.7565 (3)0.3442 (2)0.0389 (13)
C120.54224 (17)0.7632 (4)0.4405 (3)0.0419 (16)
C130.54253 (16)0.6666 (4)0.5031 (2)0.0423 (16)
C140.50118 (15)0.5527 (4)0.4679 (2)0.0368 (14)
C150.46123 (19)0.5447 (4)0.3679 (3)0.0494 (15)
C160.46372 (18)0.6460 (4)0.3104 (3)0.0478 (15)
N210.81720 (15)0.6904 (5)0.4969 (3)0.0591 (17)
C220.79385 (19)0.8247 (6)0.4673 (3)0.0586 (18)
C230.74719 (17)0.8558 (5)0.3731 (3)0.0518 (16)
C240.72406 (16)0.7438 (4)0.3051 (3)0.0482 (16)
C250.7476 (2)0.6022 (5)0.3357 (3)0.0601 (15)
C260.7934 (2)0.5833 (6)0.4325 (3)0.066 (3)
N21'0.58234 (15)0.8219 (5)0.0100 (2)0.0577 (17)
C22'0.58681 (18)0.8943 (5)0.0811 (3)0.056 (2)
C23'0.63167 (17)0.8751 (5)0.1773 (3)0.051 (2)
C24'0.67539 (16)0.7715 (4)0.2026 (3)0.0465 (16)
C25'0.6709 (2)0.6945 (6)0.1287 (3)0.066 (3)
C26'0.6246 (2)0.7237 (6)0.0342 (4)0.072 (3)
H1A0.482 (2)1.128 (5)0.122 (3)0.061 (14)*
H1B0.533 (2)1.144 (5)0.194 (3)0.055 (14)*
H2A0.604 (2)1.009 (6)0.333 (3)0.074 (17)*
H2B0.619 (2)0.881 (5)0.384 (3)0.059 (12)*
H120.5701 (15)0.841 (4)0.462 (2)0.034 (9)*
H130.5711 (17)0.675 (5)0.571 (3)0.053 (11)*
H150.431 (2)0.474 (5)0.337 (3)0.062 (12)*
H160.4340 (19)0.647 (5)0.241 (3)0.069 (13)*
H220.8077 (18)0.899 (5)0.509 (3)0.056 (13)*
H230.7314 (15)0.957 (4)0.358 (3)0.040 (10)*
H250.7301 (16)0.519 (4)0.293 (3)0.047 (11)*
H260.8071 (18)0.490 (5)0.453 (3)0.065 (13)*
H22'0.5610 (18)0.968 (5)0.066 (3)0.055 (12)*
H23'0.6330 (17)0.932 (4)0.223 (3)0.046 (11)*
H25'0.699 (2)0.630 (6)0.138 (4)0.096 (18)*
H26'0.621 (2)0.666 (6)0.020 (4)0.086 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.0525 (2)0.0580 (2)0.0736 (3)0.00823 (13)0.01793 (17)0.01955 (15)
Mg0.0313 (7)0.0347 (8)0.0217 (7)0.000000.0106 (6)0.00000
O10.0409 (15)0.0555 (16)0.0314 (14)0.0050 (14)0.0068 (13)0.0153 (13)
O20.0303 (12)0.0501 (15)0.0332 (14)0.0005 (11)0.0096 (11)0.0128 (12)
N110.0441 (16)0.0393 (15)0.0311 (15)0.0025 (12)0.0205 (13)0.0020 (12)
C120.0444 (19)0.046 (2)0.0322 (18)0.0106 (16)0.0203 (16)0.0028 (15)
C130.0417 (19)0.049 (2)0.0251 (17)0.0075 (16)0.0129 (15)0.0006 (15)
C140.0433 (18)0.0353 (16)0.0310 (17)0.0025 (14)0.0209 (15)0.0011 (13)
C150.060 (2)0.046 (2)0.0312 (18)0.0175 (18)0.0200 (18)0.0053 (16)
C160.055 (2)0.052 (2)0.0251 (17)0.0125 (18)0.0166 (17)0.0017 (16)
N210.0374 (17)0.077 (2)0.042 (2)0.0060 (17)0.0109 (15)0.0200 (19)
C220.043 (2)0.065 (3)0.047 (2)0.002 (2)0.014 (2)0.011 (2)
C230.041 (2)0.058 (2)0.044 (2)0.0024 (18)0.0173 (18)0.012 (2)
C240.0321 (17)0.061 (2)0.042 (2)0.0072 (16)0.0159 (16)0.0172 (18)
C250.053 (2)0.058 (2)0.047 (2)0.011 (2)0.016 (2)0.010 (2)
C260.053 (3)0.067 (3)0.053 (3)0.019 (2)0.016 (2)0.023 (2)
N21'0.046 (2)0.079 (2)0.0324 (17)0.0043 (18)0.0136 (15)0.0157 (17)
C22'0.040 (2)0.071 (3)0.044 (2)0.013 (2)0.0165 (18)0.023 (2)
C23'0.042 (2)0.066 (3)0.040 (2)0.0130 (18)0.0211 (18)0.014 (2)
C24'0.0358 (18)0.060 (2)0.038 (2)0.0088 (16)0.0180 (16)0.0145 (17)
C25'0.056 (3)0.082 (3)0.048 (3)0.025 (2)0.023 (2)0.007 (2)
C26'0.068 (3)0.090 (4)0.042 (2)0.009 (3)0.022 (2)0.007 (2)
Geometric parameters (Å, º) top
Mg—O12.056 (4)N21—C221.327 (7)
Mg—O22.052 (3)N21—C261.316 (6)
Mg—N112.226 (4)C22—C231.385 (5)
Mg—O12.056 (4)C22—H220.89 (4)
Mg—O22.052 (3)C23—C241.382 (6)
Mg—N112.226 (4)C23—H230.98 (4)
O1—H1A0.78 (4)C24—C251.390 (6)
O1—H1B0.75 (4)C24—C24'1.482 (5)
O2—H2A0.76 (6)C25—C261.389 (5)
O2—H2B0.88 (4)C25—H250.96 (4)
N11—C121.343 (5)C26—H260.91 (4)
N11—C161.339 (5)N21'—C22'1.314 (7)
C12—C131.370 (6)N21'—C26'1.326 (7)
C12—H120.94 (4)C22'—C23'1.377 (5)
C13—C141.388 (5)C22'—H22'0.90 (5)
C13—H130.95 (4)C23'—C24'1.383 (6)
C14—C151.394 (5)C23'—H23'0.91 (5)
C14—C141.475 (6)C24'—C25'1.375 (8)
C15—C161.367 (7)C25'—C26'1.382 (6)
C15—H150.93 (4)C25'—H25'0.91 (6)
C16—H160.97 (4)C26'—H26'1.01 (7)
O1—Mg—O285.66 (12)N11—C16—C15123.8 (3)
O1—Mg—N11172.90 (14)N11—C16—H16115 (3)
O1—Mg—O193.28 (15)C15—C16—H16121 (3)
O1—Mg—O292.52 (13)C22—N21—C26117.1 (4)
O1—Mg—N1189.70 (13)N21—C22—C23123.1 (4)
O2—Mg—N1187.78 (12)N21—C22—H22120 (3)
O2—Mg—O192.52 (13)C23—C22—H22117 (3)
O2—Mg—O2177.35 (14)C22—C23—C24119.4 (4)
O2—Mg—N1194.13 (13)C22—C23—H23118 (2)
N11—Mg—O189.70 (13)C24—C23—H23123 (2)
N11—Mg—O294.13 (13)C23—C24—C25117.9 (3)
N11—Mg—N1188.08 (14)C23—C24—C24'121.8 (3)
O1—Mg—O285.66 (13)C25—C24—C24'120.3 (3)
O1—Mg—N11172.90 (14)C24—C25—C26117.7 (4)
O2—Mg—N1187.78 (12)C24—C25—H25121 (2)
Mg—O1—H1A128 (4)C26—C25—H25121 (2)
Mg—O1—H1B120 (4)N21—C26—C25124.8 (5)
H1A—O1—H1B107 (5)N21—C26—H26118 (2)
Mg—O2—H2A113 (3)C25—C26—H26117 (2)
Mg—O2—H2B135 (3)C22'—N21'—C26'116.6 (4)
H2A—O2—H2B112 (5)N21'—C22'—C23'124.8 (4)
Mg—N11—C12121.0 (3)N21'—C22'—H22'118 (3)
Mg—N11—C16122.8 (2)C23'—C22'—H22'117 (3)
C12—N11—C16115.9 (4)C22'—C23'—C24'118.6 (5)
N11—C12—C13124.0 (3)C22'—C23'—H23'120 (2)
N11—C12—H12114 (2)C24'—C23'—H23'121 (2)
C13—C12—H12122 (2)C24—C24'—C23'121.0 (5)
C12—C13—C14120.1 (3)C24—C24'—C25'122.0 (4)
C12—C13—H13121 (3)C23'—C24'—C25'117.0 (4)
C14—C13—H13119 (3)C24'—C25'—C26'120.0 (5)
C13—C14—C15116.0 (4)C24'—C25'—H25'123 (4)
C13—C14—C14122.3 (3)C26'—C25'—H25'117 (4)
C15—C14—C14121.7 (3)N21'—C26'—C25'123.0 (6)
C14—C15—C16120.3 (4)N21'—C26'—H26'117 (2)
C14—C15—H15123 (3)C25'—C26'—H26'120 (3)
C16—C15—H15117 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···Ii0.76 (5)2.88 (4)3.601 (3)161 (4)
O2—H2A···Ii0.75 (6)2.71 (6)3.466 (3)178 (5)
Symmetry code: (i) x+1, y+1, z+1/2.
(II) catena-poly[[[[µ-4,4'-bipyridine-bis[diiodobis(propan-1-ol)strontium(I)]]- di-µ-4,4'-bipyridine-κ4N:N'] bis(4,4'-bipyridine) solvate] [Sr2I4(C10H8N2)3(C3H8O)4]·2C10H8N2 top
Crystal data top
[Sr2I4(C10H8N2)3(C3H8O)4]·2C10H8N2F(000) = 1668
Mr = 1704.2Dx = 1.612 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 8 reflections
a = 15.365 (2) Åθ = 16.7–18.5°
b = 12.392 (2) ŵ = 3.33 mm1
c = 20.979 (2) ÅT = 298 K
β = 118.493 (8)°Prism, colourless
V = 3510.6 (8) Å30.53 × 0.40 × 0.18 mm
Z = 2
Data collection top
Enraf-Nonius CAD4 with CCD area-detector
diffractometer
6161 independent reflections
Radiation source: sealed tube4203 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
2θ/ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: gaussian
(ABSORB in Xtal3.5; Hall et al., 1995)
h = 1818
Tmin = 0.33, Tmax = 0.56k = 140
11868 measured reflectionsl = 2421
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.05H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo)]
where σ(I) = [σ(I)meas + 0.0004(Inet)2]1/2
4203 reflections(Δ/σ)max = 0.005
388 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.55 e Å3
0 constraints
Crystal data top
[Sr2I4(C10H8N2)3(C3H8O)4]·2C10H8N2V = 3510.6 (8) Å3
Mr = 1704.2Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.365 (2) ŵ = 3.33 mm1
b = 12.392 (2) ÅT = 298 K
c = 20.979 (2) Å0.53 × 0.40 × 0.18 mm
β = 118.493 (8)°
Data collection top
Enraf-Nonius CAD4 with CCD area-detector
diffractometer
6161 independent reflections
Absorption correction: gaussian
(ABSORB in Xtal3.5; Hall et al., 1995)
4203 reflections with I > 2σ(I)
Tmin = 0.33, Tmax = 0.56Rint = 0.025
11868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.05H-atom parameters constrained
S = 1.16Δρmax = 0.87 e Å3
4203 reflectionsΔρmin = 0.55 e Å3
388 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sr0.25574 (4)0.71094 (4)0.22114 (3)0.0322 (3)
I10.08983 (4)0.70739 (4)0.27557 (3)0.0572 (3)
I20.43301 (4)0.72360 (4)0.17645 (3)0.0670 (3)
O1A0.3664 (4)0.5844 (4)0.3238 (3)0.063 (3)
C1A0.4693 (15)0.5601 (17)0.3459 (9)0.050 (9)0.50000
C1A'0.466 (2)0.592 (2)0.386 (3)0.12 (2)0.50000
C2A0.516 (2)0.545 (2)0.4318 (10)0.065 (11)0.50000
C2A'0.5318 (18)0.521 (2)0.397 (2)0.117 (18)0.50000
C3A0.6272 (8)0.5221 (12)0.4597 (6)0.136 (9)
O1B0.1329 (4)0.7077 (4)0.0833 (3)0.065 (3)
C1B0.0794 (8)0.7947 (8)0.0349 (6)0.098 (6)
C2B0.1317 (11)0.8404 (9)0.0006 (6)0.130 (9)
C3B0.0923 (9)0.9478 (10)0.0357 (6)0.130 (8)
N110.2080 (4)0.5016 (4)0.1783 (3)0.052 (3)
C120.2825 (6)0.4417 (5)0.1812 (4)0.060 (4)
C130.2852 (5)0.3317 (5)0.1831 (4)0.056 (4)
C140.2060 (5)0.2747 (5)0.1799 (4)0.044 (3)
C150.1254 (5)0.3348 (5)0.1741 (4)0.048 (3)
C160.1308 (5)0.4468 (5)0.1742 (4)0.049 (4)
N11'0.2155 (5)0.0713 (4)0.1952 (3)0.054 (3)
C12'0.2691 (6)0.0164 (6)0.1724 (5)0.065 (4)
C13'0.2678 (6)0.0945 (5)0.1667 (4)0.061 (4)
C14'0.2064 (5)0.1550 (5)0.1844 (4)0.044 (3)
C15'0.1513 (5)0.0981 (5)0.2080 (4)0.056 (4)
C16'0.1560 (5)0.0134 (5)0.2124 (4)0.054 (4)
N210.3767 (5)0.8314 (5)0.3449 (3)0.061 (3)
C220.4382 (7)0.9094 (7)0.3487 (4)0.078 (5)
C230.4865 (6)0.9767 (6)0.4074 (4)0.068 (5)
C240.4752 (5)0.9636 (5)0.4676 (4)0.050 (4)
C250.4137 (6)0.8801 (6)0.4655 (4)0.065 (4)
C260.3681 (6)0.8175 (6)0.4046 (4)0.069 (5)
N310.2884 (5)0.8975 (5)0.1497 (3)0.060 (3)
C320.2033 (6)0.9039 (6)0.1471 (4)0.059 (4)
C330.1659 (5)0.8204 (6)0.1243 (4)0.051 (4)
C340.2161 (5)0.7234 (5)0.1022 (4)0.050 (4)
C350.3019 (6)0.7164 (5)0.1077 (5)0.066 (4)
C360.3354 (6)0.8037 (7)0.1310 (5)0.067 (5)
N31'0.1235 (5)0.4614 (5)0.0145 (4)0.072 (4)
C32'0.1065 (7)0.5611 (7)0.0077 (5)0.080 (6)
C33'0.1337 (7)0.6479 (6)0.0358 (5)0.074 (5)
C34'0.1815 (5)0.6332 (6)0.0748 (4)0.052 (4)
C35'0.1941 (8)0.5261 (7)0.0882 (6)0.097 (6)
C36'0.1624 (9)0.4454 (7)0.0574 (6)0.102 (7)
H1OA0.325360.525180.316570.07300*
H1AA0.501450.620760.335150.05600*0.50000
H1AB0.477390.498590.322140.05600*0.50000
H2AA0.484320.483430.443260.07300*0.50000
H2AB0.506190.606020.456090.07300*0.50000
H3AA0.656430.510100.509860.18200*0.50000
H3AB0.651570.582380.447860.18200*0.50000
H3AC0.629700.459790.435030.18200*0.50000
H1A'A0.463630.591640.432720.13700*0.50000
H1A'B0.499590.658470.387190.13700*0.50000
H2A'A0.544560.525020.355130.14500*0.50000
H2A'B0.504080.450370.394330.14500*0.50000
H3A'A0.662880.462630.459540.18200*0.50000
H3A'B0.614530.519150.500820.18200*0.50000
H3A'C0.655350.587500.458980.18200*0.50000
H1OB0.164840.682470.058080.08000*
H1BA0.069520.849740.062180.11400*
H1BB0.017900.768100.001000.11400*
H2BA0.128910.790510.036000.13900*
H2BB0.200400.848930.035450.13900*
H3BA0.129680.973300.057560.15300*
H3BB0.096480.997660.000150.15300*
H3BC0.024990.939240.071300.15300*
H120.338150.478370.182090.07500*
H130.341660.294000.186590.06700*
H150.067980.299410.169940.05900*
H160.076530.486890.171380.05900*
H12'0.311270.055950.158890.07600*
H13'0.309600.129610.151160.07200*
H15'0.109530.136040.222250.06700*
H16'0.115750.050280.228670.06100*
H220.450220.918930.308710.09200*
H230.528341.033110.406420.08000*
H250.402940.867220.506080.07500*
H260.326930.759990.404580.09100*
H320.167580.969300.161810.06800*
H330.105150.828640.123790.06400*
H350.339020.650510.095370.07600*
H360.395810.796130.133490.08200*
H32'0.072650.576700.019140.09600*
H33'0.119070.719440.027300.09100*
H35'0.222910.508530.118670.11500*
H36'0.172390.372790.067470.11800*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr0.0416 (3)0.0160 (3)0.0442 (3)0.0020 (2)0.0246 (3)0.0019 (2)
I10.0597 (3)0.0462 (3)0.0834 (4)0.0015 (2)0.0484 (3)0.0033 (3)
I20.0749 (4)0.0499 (3)0.1055 (5)0.0035 (3)0.0666 (4)0.0065 (3)
O1A0.058 (3)0.044 (3)0.075 (4)0.005 (2)0.023 (3)0.012 (3)
C1A0.031 (10)0.068 (12)0.042 (11)0.001 (8)0.011 (9)0.005 (9)
C1A'0.10 (2)0.11 (2)0.13 (3)0.032 (17)0.05 (2)0.03 (2)
C2A0.084 (16)0.076 (13)0.047 (12)0.022 (11)0.042 (12)0.001 (10)
C2A'0.057 (16)0.15 (2)0.13 (3)0.007 (15)0.04 (2)0.03 (2)
C3A0.081 (8)0.227 (15)0.088 (8)0.031 (9)0.029 (7)0.020 (9)
O1B0.092 (4)0.043 (3)0.062 (3)0.012 (3)0.038 (3)0.000 (3)
C1B0.130 (9)0.069 (6)0.084 (7)0.008 (6)0.042 (7)0.009 (6)
C2B0.225 (14)0.072 (7)0.111 (9)0.022 (8)0.096 (10)0.014 (7)
C3B0.158 (11)0.099 (9)0.123 (10)0.004 (8)0.059 (9)0.031 (7)
N110.066 (4)0.025 (3)0.067 (4)0.002 (3)0.033 (3)0.002 (3)
C120.070 (5)0.033 (4)0.089 (6)0.007 (4)0.049 (5)0.001 (4)
C130.065 (5)0.025 (3)0.091 (6)0.003 (3)0.046 (5)0.002 (4)
C140.052 (4)0.023 (3)0.057 (4)0.006 (3)0.026 (4)0.002 (3)
C150.053 (4)0.024 (3)0.064 (5)0.008 (3)0.027 (4)0.008 (3)
C160.057 (5)0.032 (4)0.059 (5)0.004 (3)0.028 (4)0.004 (3)
N11'0.071 (4)0.027 (3)0.065 (4)0.001 (3)0.035 (3)0.004 (3)
C12'0.083 (6)0.034 (4)0.099 (6)0.002 (4)0.061 (5)0.006 (4)
C13'0.084 (6)0.029 (4)0.093 (6)0.001 (4)0.060 (5)0.001 (4)
C14'0.051 (4)0.028 (3)0.053 (4)0.000 (3)0.025 (4)0.002 (3)
C15'0.067 (5)0.030 (4)0.082 (6)0.002 (3)0.046 (4)0.004 (4)
C16'0.071 (5)0.028 (4)0.076 (5)0.010 (3)0.045 (4)0.000 (3)
N210.076 (4)0.046 (4)0.052 (4)0.012 (3)0.024 (3)0.006 (3)
C220.122 (8)0.062 (5)0.057 (5)0.035 (5)0.047 (5)0.008 (4)
C230.093 (6)0.051 (5)0.063 (5)0.029 (4)0.039 (5)0.006 (4)
C240.050 (4)0.038 (4)0.054 (5)0.004 (3)0.019 (4)0.002 (3)
C250.079 (6)0.059 (5)0.060 (5)0.031 (4)0.035 (4)0.022 (4)
C260.085 (6)0.057 (5)0.067 (6)0.031 (4)0.038 (5)0.016 (4)
N310.067 (4)0.048 (4)0.072 (4)0.002 (3)0.039 (4)0.015 (3)
C320.072 (5)0.045 (4)0.062 (5)0.006 (4)0.033 (4)0.012 (4)
C330.055 (4)0.043 (4)0.062 (5)0.003 (3)0.033 (4)0.009 (3)
C340.056 (4)0.037 (4)0.067 (5)0.001 (3)0.036 (4)0.004 (3)
C350.083 (6)0.035 (4)0.091 (6)0.010 (4)0.051 (5)0.018 (4)
C360.069 (5)0.064 (5)0.087 (6)0.010 (4)0.053 (5)0.018 (5)
N31'0.099 (5)0.047 (4)0.097 (5)0.006 (4)0.069 (5)0.014 (4)
C32'0.113 (7)0.062 (6)0.100 (7)0.006 (5)0.080 (6)0.015 (5)
C33'0.106 (7)0.047 (5)0.093 (6)0.011 (5)0.068 (6)0.012 (4)
C34'0.064 (5)0.045 (4)0.062 (5)0.010 (4)0.041 (4)0.010 (4)
C35'0.155 (9)0.049 (5)0.147 (9)0.004 (6)0.120 (8)0.002 (5)
C36'0.163 (10)0.046 (5)0.150 (10)0.003 (6)0.117 (9)0.001 (6)
Geometric parameters (Å, º) top
Sr—I13.2530 (11)C14—C14'1.485 (8)
Sr—I23.2801 (11)C15—C161.389 (9)
Sr—O1A2.549 (4)C15—H150.952
Sr—O1B2.592 (4)C16—H160.948
Sr—N112.729 (5)N11'—C12'1.321 (13)
Sr—N212.797 (5)N11'—C16'1.339 (12)
Sr—N11'2.764 (5)C12'—C13'1.378 (10)
O1A—C1A1.45 (2)C12'—H12'0.958
O1A—C1A'1.46 (3)C13'—C14'1.388 (13)
O1A—H1OA0.931C13'—H13'0.953
C1A—C2A1.60 (3)C14'—C15'1.364 (13)
C1A—H1AA0.98C15'—C16'1.385 (9)
C1A—H1AB0.95C15'—H15'0.951
C1A'—C2A'1.28 (5)C16'—H16'0.954
C1A'—H1A'A0.99N21—C221.328 (12)
C1A'—H1A'B0.97N21—C261.331 (13)
C2A—C3A1.55 (3)C22—C231.375 (11)
C2A—H2AA1.00C22—H220.949
C2A—H2AB0.96C23—C241.363 (14)
C2A'—C3A1.43 (3)C23—H230.956
C2A'—H2A'A0.98C24—C251.388 (11)
C2A'—H2A'B0.96C24—C241.503 (9)
C3A—H3AA0.938C25—C261.369 (11)
C3A—H3AB0.922C25—H250.955
C3A—H3AC0.941C26—H260.953
C3A—H3A'A0.920N31—C321.336 (13)
C3A—H3A'B0.970N31—C361.324 (10)
C3A—H3A'C0.922C32—C331.376 (12)
O1B—C1B1.440 (10)C32—H320.945
O1B—H1OB0.930C33—C341.384 (9)
C1B—C2B1.45 (2)C33—H330.944
C1B—H1BA0.948C34—C351.380 (14)
C1B—H1BB0.943C34—C34'1.467 (11)
C2B—C3B1.501 (16)C35—C361.383 (13)
C2B—H2BA0.951C35—H350.958
C2B—H2BB0.967C36—H360.959
C3B—H3BA0.945N31'—C32'1.286 (11)
C3B—H3BB0.952N31'—C36'1.311 (18)
C3B—H3BC0.949C32'—C33'1.384 (14)
N11—C121.341 (11)C32'—H32'0.950
N11—C161.333 (10)C33'—C34'1.348 (16)
C12—C131.364 (9)C33'—H33'0.952
C12—H120.961C34'—C35'1.390 (12)
C13—C141.381 (11)C35'—C36'1.398 (17)
C13—H130.958C35'—H35'0.960
C14—C151.399 (11)C36'—H36'0.954
I1—Sr—I2176.07 (2)N11—C12—C13124.5 (8)
I1—Sr—O1A90.77 (16)N11—C12—H12118.2
I1—Sr—O1B96.68 (16)C13—C12—H12117.3
I1—Sr—N1188.27 (17)C12—C13—C14119.8 (8)
I1—Sr—N2188.06 (17)C12—C13—H13120.2
I1—Sr—N11'86.74 (17)C14—C13—H13120.0
I2—Sr—O1A87.76 (15)C13—C14—C15117.0 (6)
I2—Sr—O1B86.76 (16)C13—C14—C14'122.0 (7)
I2—Sr—N1194.66 (17)C15—C14—C14'121.0 (7)
I2—Sr—N2188.01 (17)C14—C15—C16118.8 (7)
I2—Sr—N11'92.03 (17)C14—C15—H15120.3
O1A—Sr—O1B140.38 (15)C16—C15—H15120.8
O1A—Sr—N1170.08 (15)N11—C16—C15124.0 (7)
O1A—Sr—N2170.34 (16)N11—C16—H16117.7
O1A—Sr—N11'139.79 (15)C15—C16—H16118.3
O1B—Sr—N1171.32 (15)C12'—N11'—C16'116.4 (6)
O1B—Sr—N21148.43 (16)C12'—N11'—Sr117.0 (5)
O1B—Sr—N11'79.64 (15)C16'—N11'—Sr126.0 (5)
N11—Sr—N21140.18 (16)N11'—C12'—C13'124.0 (9)
N11—Sr—N11'149.72 (15)N11'—C12'—H12'118.1
N21—Sr—N11'69.46 (16)C13'—C12'—H12'117.9
Sr—O1A—C1A125.7 (9)C12'—C13'—C14'119.9 (9)
Sr—O1A—C1A'135.0 (14)C12'—C13'—H13'120.1
Sr—O1A—H1OA102.7C14'—C13'—H13'120.0
C1A—O1A—H1OA116.0C14—C14'—C13'120.4 (8)
C1A'—O1A—H1OA122.1C14—C14'—C15'123.7 (8)
O1A—C1A—C2A102.6 (19)C13'—C14'—C15'115.9 (6)
O1A—C1A—H1AA111.0C14'—C15'—C16'121.2 (9)
O1A—C1A—H1AB113.2C14'—C15'—H15'119.2
C2A—C1A—H1AA110.0C16'—C15'—H15'119.6
C2A—C1A—H1AB113.3N11'—C16'—C15'122.6 (9)
H1AA—C1A—H1AB107N11'—C16'—H16'118.8
O1A—C1A'—C2A'121 (3)C15'—C16'—H16'118.6
O1A—C1A'—H1A'A112Sr—N21—C22125.7 (6)
O1A—C1A'—H1A'B113Sr—N21—C26119.0 (5)
C2A'—C1A'—H1A'A103C22—N21—C26115.2 (7)
C2A'—C1A'—H1A'B102N21—C22—C23124.1 (10)
H1A'A—C1A'—H1A'B104N21—C22—H22118.1
C1A—C2A—C3A106 (2)C23—C22—H22117.9
C1A—C2A—H2AA110.7C22—C23—C24120.3 (8)
C1A—C2A—H2AB114.0C22—C23—H23120.3
C3A—C2A—H2AA110.2C24—C23—H23119.4
C3A—C2A—H2AB111.6C23—C24—C25116.5 (7)
H2AA—C2A—H2AB105C23—C24—C24122.2 (7)
C1A'—C2A'—H2A'A107C25—C24—C24121.3 (8)
C1A'—C2A'—H2A'B108C24—C25—C26119.3 (9)
H2A'A—C2A'—H2A'B106C24—C25—H25120.2
C2A—C3A—H3AA107.9C26—C25—H25120.6
C2A—C3A—H3AB105.5N21—C26—C25124.7 (8)
C2A—C3A—H3AC105.7N21—C26—H26117.4
C2A'—C3A—H3A'A109.7C25—C26—H26117.9
C2A'—C3A—H3A'B106C32—N31—C36116.5 (8)
C2A'—C3A—H3A'C106.0N31—C32—C33123.3 (7)
H3AA—C3A—H3AB11313N31—C32—H32117.8
H3AA—C3A—H3AC111.3C33—C32—H32118.9
H3AB—C3A—H3AC112.8C32—C33—C34120.7 (8)
H3A'A—C3A—H3A'B110.2C32—C33—H33120.2
H3A'A—C3A—H3A'C114.7C34—C33—H33119.1
H3A'B—C3A—H3A'C110.1C33—C34—C35115.4 (7)
Sr—O1B—C1B129.9 (5)C33—C34—C34'123.0 (8)
Sr—O1B—H1OB109.8C35—C34—C34'121.6 (6)
C1B—O1B—H1OB97.4C34—C35—C36120.7 (7)
O1B—C1B—C2B112.7 (10)C34—C35—H35119.9
O1B—C1B—H1BA108.3C36—C35—H35119.3
O1B—C1B—H1BB108.6N31—C36—C35123.3 (9)
C2B—C1B—H1BA108.5N31—C36—H36118.4
C2B—C1B—H1BB108.5C35—C36—H36118.3
H1BA—C1B—H1BB110.2C32'—N31'—C36'113.9 (9)
C1B—C2B—C3B113.9 (13)N31'—C32'—C33'125.5 (12)
C1B—C2B—H2BA108.5N31'—C32'—H32'117.3
C1B—C2B—H2BB107.8C33'—C32'—H32'117.2
C3B—C2B—H2BA109.7C32'—C33'—C34'121.1 (8)
C3B—C2B—H2BB108.8C32'—C33'—H33'119.8
H2BA—C2B—H2BB108.0C34'—C33'—H33'119.1
C2B—C3B—H3BA109.7C34—C34'—C33'122.7 (7)
C2B—C3B—H3BB109.2C34—C34'—C35'122.5 (10)
C2B—C3B—H3BC108.7C33'—C34'—C35'114.9 (9)
H3BA—C3B—H3BB109.8C34'—C35'—C36'118.5 (12)
H3BA—C3B—H3BC110.0C34'—C35'—H35'120.3
H3BB—C3B—H3BC109.4C36'—C35'—H35'121.2
Sr—N11—C12114.9 (4)N31'—C36'—C35'125.7 (9)
Sr—N11—C16126.7 (5)N31'—C36'—H36'117.9
C12—N11—C16115.8 (6)C35'—C36'—H36'116.4

Experimental details

(I)(II)
Crystal data
Chemical formula[Mg(C10H8N2)(H2O)4]I2·2C10H8N2[Sr2I4(C10H8N2)3(C3H8O)4]·2C10H8N2
Mr818.751704.2
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/c
Temperature (K)298298
a, b, c (Å)27.574 (7), 9.018 (4), 16.974 (3)15.365 (2), 12.392 (2), 20.979 (2)
β (°) 125.23 (2) 118.493 (8)
V3)3448 (2)3510.6 (8)
Z42
Radiation typeMo KαMo Kα
µ (mm1)1.883.33
Crystal size (mm)0.35 × 0.33 × 0.320.53 × 0.40 × 0.18
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Enraf-Nonius CAD4 with CCD area-detector
diffractometer
Absorption correctionGaussian
(ABSORB in Xtal3.5; Hall et al., 1995)
Gaussian
(ABSORB in Xtal3.5; Hall et al., 1995)
Tmin, Tmax0.58, 0.630.33, 0.56
No. of measured, independent and
observed [I > 2σ(I)] reflections
5196, 3955, 2964 11868, 6161, 4203
Rint0.0140.025
(sin θ/λ)max1)0.6500.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.052, 1.12 0.044, 0.05, 1.16
No. of reflections29644203
No. of parameters260388
H-atom treatmentAll H-atom parameters refinedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.06, 0.500.87, 0.55

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, Xtal3.5 (Hall et al., 1995), CRYLSQ in Xtal3.5, BONDLA and CIFIO in Xtal3.5.

Selected geometric parameters (Å, º) for (I) top
Mg—O12.056 (4)Mg—O12.056 (4)
Mg—O22.052 (3)Mg—O22.052 (3)
Mg—N112.226 (4)Mg—N112.226 (4)
O1—Mg—O285.66 (12)N11—Mg—O189.70 (13)
O1—Mg—N11172.90 (14)N11—Mg—O294.13 (13)
O1—Mg—O193.28 (15)N11—Mg—N1188.08 (14)
O1—Mg—O292.52 (13)O1—Mg—O285.66 (13)
O1—Mg—N1189.70 (13)O1—Mg—N11172.90 (14)
O2—Mg—N1187.78 (12)O2—Mg—N1187.78 (12)
O2—Mg—O192.52 (13)Mg—N11—C12121.0 (3)
O2—Mg—O2177.35 (14)Mg—N11—C16122.8 (2)
O2—Mg—N1194.13 (13)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···Ii0.76 (5)2.88 (4)3.601 (3)161 (4)
O2—H2A···Ii0.75 (6)2.71 (6)3.466 (3)178 (5)
Symmetry code: (i) x+1, y+1, z+1/2.
Selected geometric parameters (Å, º) for (II) top
Sr—I13.2530 (11)Sr—N112.729 (5)
Sr—I23.2801 (11)Sr—N212.797 (5)
Sr—O1A2.549 (4)Sr—N11'2.764 (5)
Sr—O1B2.592 (4)
I1—Sr—I2176.07 (2)O1A—Sr—O1B140.38 (15)
I1—Sr—O1A90.77 (16)O1A—Sr—N1170.08 (15)
I1—Sr—O1B96.68 (16)O1A—Sr—N2170.34 (16)
I1—Sr—N1188.27 (17)O1A—Sr—N11'139.79 (15)
I1—Sr—N2188.06 (17)O1B—Sr—N1171.32 (15)
I1—Sr—N11'86.74 (17)O1B—Sr—N21148.43 (16)
I2—Sr—O1A87.76 (15)O1B—Sr—N11'79.64 (15)
I2—Sr—O1B86.76 (16)N11—Sr—N21140.18 (16)
I2—Sr—N1194.66 (17)N11—Sr—N11'149.72 (15)
I2—Sr—N2188.01 (17)N21—Sr—N11'69.46 (16)
I2—Sr—N11'92.03 (17)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds