Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The self-assembly of three crystallographically distinct fumar­ate ions, two unique cobalt(II) ions and two unique o-phen­;anthroline mol­ecules results in a two-dimensional polymeric structure with the formula [Co2(C4H2O4)2(C12H8N2)2]n, namely di-[mu]-fumatato-bis(o-phenanthroline)­dicobalt(II). The Co atoms are at the nodes of a two-dimensional array linked by coordinated fumarate ligands. Each Co atom is coordinated in a distorted octahedral manner to four fumarate O atoms and two N atoms from the chelating phenanthroline ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103012101/ta1410sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103012101/ta1410Isup2.hkl
Contains datablock I

CCDC reference: 219546

Comment top

The coordination chemistry of polycarboxylic acids has been studied widely (Rochon & Massarweh, 2001). Polycarboxylic acids such as fumaric and maleic acid are capable of forming one-, two- or three-dimensional infinite connections between cations and anions (Young et al., 1998; Ma et al., 1993), thereby forming chain structures, layered compounds or three-dimensional frameworks. The reported metal–fumarate complexes indicate that there may be a wide variety of structural and chemical properties depending on the nature of cations employed. To our knowledge, only a few metal–fumarate complexes with other neutral ligands have been reported (for example, Mukherjee et al., 2001; Devereux et al., 2000; Charpin et al., 1987). The incorporation of a second organic ligand into metal–fumarate phases provides a powerful method for structural modification and synthesis of novel organic–inorganic hybrid materials. Organic components have been used as structure-directing reagents in a wide range of materials, including zeolites and mesoporous materials of the MCM-41 class (Zapf et al., 1997). We report here the preparation and crystal structure of a new cobalt(II)–fumarate (fum) complex with o-phenanthroline (phen), namely poly[Co2(fum)2(phen)2], (I).

The structure contains three crystallographically distinct fumarate ions (F, F' and F''), two unique cobalt(II) ions and two unique o-phenanthroline molecules (Fig. 1). Ions F and F' and the two cobalt(II) ions are linked into chains, with the sequence (···FCo2F'Co2···), parallel to a. The bridging carboxylate groups give rise to eight-membered rings (Figs. 2 and 3). These chains are cross-linked by the third fumarate ion (F''), which forms four-membered chelate rings with a CoII atom at each end, thus completing a two-dimensional polymeric arrangement containing both eight- and 28-membered rings. The trans-ring Co···Co distance is 4.430 (2) Å in the eight-membered ring, while the Co···Co edge lengths are 7.918 (2) and 8.728 (2) Å for the 28-membered ring. One o-phenantholine chelating ligand completes a distorted octahedral coordination environment about each unique CoII atom. The o-phenanthroline ligands fill the space formed by the 28-membered rings and contribute some additional stability to the net via ππ interactions (interplanar distances are 3.40 and 3.59 Å). The average Co—N distance of 2.130 Å is similar to that of other cobalt(II) complexes with o-phenanthroline (Yin & Jiang, 2001), and the Co—O (fumarate) distances range from 2.023 to 2.184 Å (Table 1).

The cobalt(II) cations are thus bridged by fumarate anions to form an infinite two-dimensional polymeric structure. Many two-dimensional coordination polymers have been reported, but examples containing two kinds of circuits are rarely seen (Dai et al., 2002). The structure of (I) is clearly different from that of the cobalt(II)–fumarate complex reported by Gupta & Sinha (1978), in which the CoII atom is six-coordinated by four water molecules and two carboxylate O atoms from the fumarate anion. It can be seen that the incorporation of an o-phenanthroline ligand into cobalt(II)–fumarate phases provides a powerful method for structural modification and synthesis of novel structures. Interpenetration often occurs in compounds with two-dimensional polymeric structures (Ma et al., 2000), but in (I), interpenetration does not occur. We believe that the o-phenanthroline molecules prevent self-interpenetration by occupying the large voids in network structures.

We conclude that the incorporation of an o-phenanthroline ligand into cobalt(II)–fumarate phases provides a powerful method for the structural modification and synthesis of novel architectures.

Experimental top

A mixture of fumaric acid (0.116 g, 1 mmol) and NaOH (0.080 g, 2 mmol) in water (10 ml) was added with constant stirring to a solution of CoCl2·6H2O (0.237 g, 1 mmol) in water (10 ml). o-Phenanthroline (0.198 g, 1 mmol) was added to the solution with stirring. Purple crystals of (I) were obtained from the solution after it had stood at room temperature for several days (68% yield based on Co). Analysis calculated for C32H20N4O8Co2: C 54.36, H 2.83, N 7.93; found: C 54.53, H 2.68, N 8.03%. IR (cm−1, KBr): 3439(versus), 3063(w), 2171(w), 1600(versus), 1555(s), 1515(m), 1454(m), 1426(s), 1375(m), 1199(w), 1146(w), 1107(w), 985(w), 856(w), 801(w), 729(m), 696(m), 679(w).

Refinement top

All H atoms attached to C atoms were positioned geometrically and refined as riding atoms, with C—H distance of 0.93 Å and Uiso(H) values of 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO; cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the CoII atoms, with the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (A) x, 1 − y, −0.5 + z.]
[Figure 2] Fig. 2. The larger 28-membered ring and smaller eight-membered ring in (I). The o-phenanthroline molecule has been omitted for clarity. [Symmetry codes: (A) x, 1 − y, −0.5 + z; (B) x, 1 − y, 0.5 + z; (C) 1 − x, 1 − y, 1 − z; (D) 1 − x, y, 1.5 − z; (E) 1 − x, 1 − y, 2 − z.]
[Figure 3] Fig. 3. A two-dimensional sheet in complex (I), viewed along b.
di-µ-fumatato-bis(o-phenanthroline)dicobalt(II) top
Crystal data top
[Co2(C4H2O4)2(C12H8N2)2]F(000) = 1432
Mr = 706.38Dx = 1.683 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 24016 reflections
a = 12.264 (3) Åθ = 1.7–27.5°
b = 10.111 (2) ŵ = 1.25 mm1
c = 22.650 (5) ÅT = 293 K
β = 96.89 (3)°Block, purple
V = 2788.2 (11) Å30.44 × 0.37 × 0.24 mm
Z = 4
Data collection top
Rigaku RAXIS-RAPID
diffractometer
6376 independent reflections
Radiation source: rotor-target5500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.7°
ω scanh = 015
Absorption correction: multi-scan
Higashi (1995)
k = 013
Tmin = 0.549, Tmax = 0.744l = 2929
24016 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0564P)2]
where P = (Fo2 + 2Fc2)/3
6376 reflections(Δ/σ)max = 0.003
415 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Co2(C4H2O4)2(C12H8N2)2]V = 2788.2 (11) Å3
Mr = 706.38Z = 4
Monoclinic, P2/cMo Kα radiation
a = 12.264 (3) ŵ = 1.25 mm1
b = 10.111 (2) ÅT = 293 K
c = 22.650 (5) Å0.44 × 0.37 × 0.24 mm
β = 96.89 (3)°
Data collection top
Rigaku RAXIS-RAPID
diffractometer
6376 independent reflections
Absorption correction: multi-scan
Higashi (1995)
5500 reflections with I > 2σ(I)
Tmin = 0.549, Tmax = 0.744Rint = 0.034
24016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.07Δρmax = 0.58 e Å3
6376 reflectionsΔρmin = 0.58 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.78426 (13)0.43497 (16)0.67346 (7)0.0149 (3)
C20.76938 (14)0.53392 (16)0.72081 (7)0.0185 (3)
H20.81040.61150.72220.022*
C30.70058 (14)0.51650 (16)0.76093 (7)0.0178 (3)
H30.65810.44010.75920.021*
C40.68880 (13)0.61492 (16)0.80881 (7)0.0141 (3)
C50.88864 (13)0.63208 (16)0.97498 (7)0.0135 (3)
C60.97230 (13)0.52378 (16)0.97524 (7)0.0146 (3)
H60.98610.48820.93900.018*
C70.60453 (13)0.64443 (16)1.00341 (7)0.0145 (3)
C80.51762 (13)0.54595 (17)0.98244 (7)0.0167 (3)
H80.48670.54910.94290.020*
C1010.66938 (14)0.01467 (17)0.55520 (7)0.0163 (3)
H1010.61420.06850.53650.020*
C1020.65370 (15)0.12319 (18)0.55331 (7)0.0200 (4)
H1020.58860.15880.53470.024*
C1030.73530 (15)0.20485 (17)0.57919 (8)0.0201 (4)
H1030.72690.29620.57740.024*
C1040.83213 (14)0.14824 (17)0.60860 (7)0.0168 (3)
C1050.83947 (13)0.00902 (16)0.60964 (7)0.0128 (3)
C1060.92195 (16)0.22544 (17)0.63677 (9)0.0212 (4)
H1060.91870.31720.63440.025*
C1071.01089 (15)0.16713 (18)0.66659 (8)0.0217 (4)
H1071.06750.21930.68500.026*
C1081.01956 (14)0.02520 (17)0.67040 (7)0.0167 (3)
C1090.93503 (13)0.05296 (16)0.64097 (7)0.0135 (3)
C1101.10878 (14)0.04141 (19)0.70208 (8)0.0214 (4)
H1101.16630.00650.72230.026*
C1111.11090 (14)0.17744 (19)0.70315 (7)0.0206 (4)
H1111.16880.22250.72460.025*
C1121.02364 (14)0.24713 (17)0.67100 (8)0.0174 (3)
H1121.02600.33910.67110.021*
C2010.46772 (14)0.83281 (17)0.82226 (7)0.0162 (3)
H2010.45750.74220.81720.019*
C2020.38576 (14)0.91871 (19)0.79549 (7)0.0201 (4)
H2020.32350.88530.77290.024*
C2030.39937 (14)1.05284 (18)0.80336 (7)0.0196 (4)
H2030.34581.11120.78660.024*
C2040.49575 (14)1.10142 (17)0.83724 (7)0.0163 (3)
C2050.57327 (13)1.00775 (15)0.86112 (7)0.0127 (3)
C2060.51798 (16)1.23929 (17)0.84749 (8)0.0221 (4)
H2060.46641.30170.83230.026*
C2070.61298 (16)1.27995 (17)0.87891 (8)0.0226 (4)
H2070.62531.36990.88510.027*
C2080.69516 (14)1.18649 (17)0.90284 (7)0.0169 (3)
C2090.67479 (13)1.05033 (16)0.89431 (7)0.0127 (3)
C2100.79664 (16)1.22348 (18)0.93420 (8)0.0217 (4)
H2100.81381.31240.94050.026*
C2110.87007 (14)1.12743 (18)0.95542 (7)0.0208 (4)
H2110.93761.15060.97600.025*
C2120.84218 (14)0.99361 (18)0.94577 (7)0.0172 (3)
H2120.89200.92930.96100.021*
N10.93849 (11)0.18762 (13)0.64073 (6)0.0134 (3)
N20.75940 (11)0.07160 (13)0.58248 (6)0.0131 (3)
N30.55857 (11)0.87480 (13)0.85426 (6)0.0131 (3)
N40.74773 (11)0.95512 (13)0.91587 (6)0.0128 (3)
O10.84044 (10)0.46731 (12)0.63247 (5)0.0192 (3)
O20.74096 (10)0.32169 (11)0.67522 (5)0.0157 (2)
O30.73935 (10)0.72436 (11)0.80923 (5)0.0155 (2)
O40.63002 (10)0.58483 (12)0.84911 (5)0.0182 (3)
O50.82484 (10)0.64344 (13)0.92737 (5)0.0225 (3)
O60.88844 (10)0.70520 (12)1.02024 (5)0.0152 (2)
O70.61330 (10)0.74478 (11)0.97060 (5)0.0157 (2)
O80.66130 (10)0.62482 (13)1.05234 (5)0.0221 (3)
Co10.798748 (17)0.27685 (2)0.590143 (9)0.01125 (7)
Co20.691125 (18)0.76042 (2)0.897057 (9)0.01112 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0159 (8)0.0154 (7)0.0129 (7)0.0024 (6)0.0002 (6)0.0024 (6)
C20.0243 (9)0.0137 (8)0.0178 (8)0.0014 (6)0.0033 (7)0.0036 (6)
C30.0224 (9)0.0135 (8)0.0174 (8)0.0006 (6)0.0022 (7)0.0044 (6)
C40.0154 (8)0.0144 (7)0.0120 (7)0.0042 (6)0.0005 (6)0.0009 (6)
C50.0129 (7)0.0127 (7)0.0147 (7)0.0007 (6)0.0013 (6)0.0023 (6)
C60.0157 (8)0.0145 (7)0.0137 (7)0.0026 (6)0.0019 (6)0.0015 (6)
C70.0146 (8)0.0159 (8)0.0133 (7)0.0021 (6)0.0023 (6)0.0009 (6)
C80.0179 (8)0.0184 (8)0.0130 (7)0.0039 (7)0.0014 (6)0.0004 (6)
C1010.0161 (8)0.0190 (8)0.0140 (7)0.0037 (6)0.0021 (6)0.0007 (6)
C1020.0216 (9)0.0206 (9)0.0178 (8)0.0083 (7)0.0025 (7)0.0025 (7)
C1030.0263 (10)0.0134 (8)0.0217 (8)0.0045 (7)0.0073 (7)0.0020 (7)
C1040.0204 (8)0.0138 (8)0.0170 (8)0.0007 (6)0.0060 (7)0.0012 (6)
C1050.0143 (8)0.0132 (8)0.0117 (7)0.0014 (6)0.0044 (6)0.0009 (6)
C1060.0257 (10)0.0129 (8)0.0267 (9)0.0046 (7)0.0103 (8)0.0040 (7)
C1070.0208 (9)0.0195 (9)0.0255 (9)0.0088 (7)0.0053 (7)0.0084 (7)
C1080.0153 (8)0.0203 (8)0.0152 (8)0.0050 (6)0.0045 (6)0.0041 (6)
C1090.0143 (8)0.0154 (7)0.0113 (7)0.0009 (6)0.0038 (6)0.0010 (6)
C1100.0158 (8)0.0289 (10)0.0191 (8)0.0055 (7)0.0008 (7)0.0044 (7)
C1110.0141 (8)0.0296 (10)0.0170 (8)0.0019 (7)0.0028 (6)0.0002 (7)
C1120.0163 (8)0.0187 (8)0.0169 (8)0.0002 (6)0.0011 (7)0.0019 (6)
C2010.0164 (8)0.0169 (8)0.0152 (7)0.0016 (6)0.0009 (6)0.0025 (6)
C2020.0165 (8)0.0265 (9)0.0166 (8)0.0022 (7)0.0014 (7)0.0024 (7)
C2030.0165 (8)0.0256 (9)0.0163 (8)0.0085 (7)0.0002 (6)0.0021 (7)
C2040.0180 (8)0.0160 (8)0.0153 (7)0.0039 (6)0.0038 (6)0.0026 (6)
C2050.0148 (8)0.0122 (7)0.0116 (7)0.0016 (6)0.0044 (6)0.0009 (6)
C2060.0267 (10)0.0141 (8)0.0259 (10)0.0076 (7)0.0052 (8)0.0048 (7)
C2070.0307 (11)0.0102 (8)0.0279 (9)0.0021 (7)0.0081 (8)0.0012 (7)
C2080.0200 (9)0.0135 (8)0.0181 (8)0.0018 (6)0.0053 (7)0.0003 (6)
C2090.0149 (8)0.0117 (7)0.0122 (7)0.0003 (6)0.0047 (6)0.0008 (6)
C2100.0263 (10)0.0160 (8)0.0236 (9)0.0086 (7)0.0071 (8)0.0042 (7)
C2110.0180 (8)0.0259 (9)0.0184 (8)0.0090 (7)0.0019 (7)0.0035 (7)
C2120.0153 (8)0.0216 (8)0.0146 (7)0.0014 (6)0.0008 (6)0.0000 (6)
N10.0143 (7)0.0150 (7)0.0110 (6)0.0007 (5)0.0013 (5)0.0002 (5)
N20.0144 (7)0.0140 (6)0.0110 (6)0.0018 (5)0.0019 (5)0.0006 (5)
N30.0146 (7)0.0132 (6)0.0117 (6)0.0008 (5)0.0018 (5)0.0007 (5)
N40.0129 (6)0.0139 (6)0.0120 (6)0.0003 (5)0.0024 (5)0.0004 (5)
O10.0263 (7)0.0152 (6)0.0172 (6)0.0031 (5)0.0074 (5)0.0032 (5)
O20.0188 (6)0.0126 (5)0.0159 (6)0.0005 (4)0.0027 (5)0.0026 (4)
O30.0189 (6)0.0136 (6)0.0138 (5)0.0006 (4)0.0015 (5)0.0015 (4)
O40.0249 (6)0.0138 (6)0.0167 (6)0.0002 (5)0.0065 (5)0.0016 (5)
O50.0254 (7)0.0246 (7)0.0154 (6)0.0135 (5)0.0060 (5)0.0024 (5)
O60.0170 (6)0.0151 (5)0.0138 (5)0.0011 (4)0.0026 (4)0.0016 (4)
O70.0197 (6)0.0135 (5)0.0145 (5)0.0011 (4)0.0043 (5)0.0010 (4)
O80.0228 (6)0.0244 (7)0.0170 (6)0.0122 (5)0.0068 (5)0.0052 (5)
Co10.01303 (12)0.01011 (12)0.01023 (11)0.00141 (7)0.00012 (8)0.00075 (7)
Co20.01319 (12)0.00988 (12)0.00997 (11)0.00183 (7)0.00015 (8)0.00022 (7)
Geometric parameters (Å, º) top
C1—O11.264 (2)C112—N11.323 (2)
C1—O21.265 (2)C112—H1120.9300
C1—C21.494 (2)C201—N31.324 (2)
C2—C31.324 (3)C201—C2021.409 (2)
C2—H20.9300C201—H2010.9300
C3—C41.491 (2)C202—C2031.375 (3)
C3—H30.9300C202—H2020.9300
C4—O41.266 (2)C203—C2041.418 (2)
C4—O31.268 (2)C203—H2030.9300
C5—O51.2593 (19)C204—C2051.404 (2)
C5—O61.2641 (19)C204—C2061.434 (2)
C5—C61.500 (2)C205—N31.363 (2)
C6—C6i1.330 (3)C205—C2091.441 (2)
C6—H60.9300C206—C2071.354 (3)
C7—O81.2519 (19)C206—H2060.9300
C7—O71.270 (2)C207—C2081.439 (2)
C7—C81.494 (2)C207—H2070.9300
C8—C8ii1.329 (3)C208—C2101.408 (2)
C8—H80.9300C208—C2091.408 (2)
C101—N21.330 (2)C209—N41.364 (2)
C101—C1021.407 (2)C210—C2111.372 (3)
C101—H1010.9300C210—H2100.9300
C102—C1031.373 (3)C211—C2121.406 (3)
C102—H1020.9300C211—H2110.9300
C103—C1041.411 (2)C212—N41.328 (2)
C103—H1030.9300C212—H2120.9300
C104—C1051.410 (2)N1—Co12.1432 (15)
C104—C1061.436 (2)N2—Co12.1329 (14)
C105—N21.365 (2)N3—Co22.1312 (14)
C105—C1091.439 (2)N4—Co22.1136 (14)
C106—C1071.348 (3)O1—Co12.1843 (12)
C106—H1060.9300O2—Co12.1792 (12)
C107—C1081.441 (2)O3—Co22.1731 (13)
C107—H1070.9300O4—Co22.1674 (12)
C108—C1101.406 (3)O5—Co22.0712 (12)
C108—C1091.406 (2)O6—Co1iii2.0415 (13)
C109—N11.362 (2)O7—Co22.0228 (13)
C110—C1111.376 (3)O8—Co1iii2.0535 (12)
C110—H1100.9300Co1—O6iv2.0415 (13)
C111—C1121.409 (2)Co1—O8iv2.0535 (12)
C111—H1110.9300
O1—C1—O2121.70 (15)N3—C205—C209116.65 (14)
O1—C1—C2118.59 (15)C204—C205—C209120.16 (15)
O2—C1—C2119.71 (15)C207—C206—C204121.00 (16)
C3—C2—C1123.13 (16)C207—C206—H206119.5
C3—C2—H2118.4C204—C206—H206119.5
C1—C2—H2118.4C206—C207—C208121.20 (16)
C2—C3—C4122.38 (16)C206—C207—H207119.4
C2—C3—H3118.8C208—C207—H207119.4
C4—C3—H3118.8C210—C208—C209117.42 (16)
O4—C4—O3121.63 (14)C210—C208—C207123.53 (17)
O4—C4—C3118.49 (15)C209—C208—C207119.04 (16)
O3—C4—C3119.86 (15)N4—C209—C208122.88 (15)
O5—C5—O6125.42 (15)N4—C209—C205117.67 (15)
O5—C5—C6115.11 (14)C208—C209—C205119.45 (15)
O6—C5—C6119.44 (14)C211—C210—C208119.50 (16)
C6i—C6—C5123.19 (19)C211—C210—H210120.3
C6i—C6—H6118.4C208—C210—H210120.3
C5—C6—H6118.4C210—C211—C212119.31 (16)
O8—C7—O7124.58 (15)C210—C211—H211120.3
O8—C7—C8118.40 (15)C212—C211—H211120.3
O7—C7—C8116.99 (14)N4—C212—C211122.84 (16)
C8ii—C8—C7123.15 (19)N4—C212—H212118.6
C8ii—C8—H8118.4C211—C212—H212118.6
C7—C8—H8118.4C112—N1—C109118.39 (15)
N2—C101—C102123.08 (16)C112—N1—Co1128.06 (12)
N2—C101—H101118.5C109—N1—Co1113.55 (11)
C102—C101—H101118.5C101—N2—C105117.61 (15)
C103—C102—C101119.51 (16)C101—N2—Co1128.76 (11)
C103—C102—H102120.2C105—N2—Co1113.64 (11)
C101—C102—H102120.2C201—N3—C205118.03 (14)
C102—C103—C104119.11 (16)C201—N3—Co2128.38 (12)
C102—C103—H103120.4C205—N3—Co2113.58 (11)
C104—C103—H103120.4C212—N4—C209118.05 (15)
C105—C104—C103117.46 (16)C212—N4—Co2128.39 (12)
C105—C104—C106119.41 (16)C209—N4—Co2113.56 (11)
C103—C104—C106123.13 (16)C1—O1—Co188.55 (9)
N2—C105—C104123.19 (16)C1—O2—Co188.75 (10)
N2—C105—C109117.50 (15)C4—O3—Co288.10 (9)
C104—C105—C109119.31 (15)C4—O4—Co288.39 (10)
C107—C106—C104121.10 (16)C5—O5—Co2136.21 (11)
C107—C106—H106119.4C5—O6—Co1iii137.27 (11)
C104—C106—H106119.4C7—O7—Co2128.74 (11)
C106—C107—C108121.01 (16)C7—O8—Co1iii129.35 (11)
C106—C107—H107119.5O6iv—Co1—O8iv97.19 (5)
C108—C107—H107119.5O6iv—Co1—N299.27 (5)
C110—C108—C109117.20 (16)O8iv—Co1—N2105.71 (5)
C110—C108—C107123.70 (16)O6iv—Co1—N188.94 (5)
C109—C108—C107119.10 (16)O8iv—Co1—N1172.12 (5)
N1—C109—C108122.81 (16)N2—Co1—N178.03 (5)
N1—C109—C105117.22 (15)O6iv—Co1—O2158.43 (5)
C108—C109—C105119.97 (15)O8iv—Co1—O286.00 (5)
C111—C110—C108119.97 (16)N2—Co1—O2100.37 (5)
C111—C110—H110120.0N1—Co1—O286.49 (5)
C108—C110—H110120.0O6iv—Co1—O198.19 (5)
C110—C111—C112118.64 (16)O8iv—Co1—O183.88 (5)
C110—C111—H111120.7N2—Co1—O1158.78 (5)
C112—C111—H111120.7N1—Co1—O190.36 (5)
N1—C112—C111122.94 (16)O2—Co1—O160.81 (4)
N1—C112—H112118.5O7—Co2—O596.62 (5)
C111—C112—H112118.5O7—Co2—N494.75 (5)
N3—C201—C202123.22 (16)O5—Co2—N4103.72 (5)
N3—C201—H201118.4O7—Co2—N390.43 (5)
C202—C201—H201118.4O5—Co2—N3172.37 (5)
C203—C202—C201118.86 (16)N4—Co2—N378.49 (5)
C203—C202—H202120.6O7—Co2—O4100.35 (5)
C201—C202—H202120.6O5—Co2—O484.88 (5)
C202—C203—C204119.48 (16)N4—Co2—O4161.68 (5)
C202—C203—H203120.3N3—Co2—O491.00 (5)
C204—C203—H203120.3O7—Co2—O3161.40 (5)
C205—C204—C203117.20 (16)O5—Co2—O385.19 (5)
C205—C204—C206119.12 (16)N4—Co2—O3102.82 (5)
C203—C204—C206123.67 (16)N3—Co2—O387.20 (5)
N3—C205—C204123.19 (15)O4—Co2—O361.29 (4)
O1—C1—C2—C3170.72 (16)C8—C7—O7—Co281.35 (18)
O2—C1—C2—C39.4 (3)O7—C7—O8—Co1iii10.8 (3)
C1—C2—C3—C4178.48 (14)C8—C7—O8—Co1iii171.29 (11)
C2—C3—C4—O4172.67 (16)C101—N2—Co1—O6iv95.35 (14)
C2—C3—C4—O35.6 (2)C105—N2—Co1—O6iv84.46 (11)
O5—C5—C6—C6i163.1 (2)C101—N2—Co1—O8iv4.89 (15)
O6—C5—C6—C6i18.5 (3)C105—N2—Co1—O8iv175.31 (10)
O8—C7—C8—C8ii14.0 (3)C101—N2—Co1—N1177.74 (15)
O7—C7—C8—C8ii164.1 (2)C105—N2—Co1—N12.45 (10)
N2—C101—C102—C1031.8 (3)C101—N2—Co1—O293.62 (14)
C101—C102—C103—C1041.7 (3)C105—N2—Co1—O286.57 (11)
C102—C103—C104—C1050.0 (2)C101—N2—Co1—O1119.64 (16)
C102—C103—C104—C106179.79 (17)C105—N2—Co1—O160.56 (19)
C103—C104—C105—N21.8 (2)C101—N2—Co1—C198.92 (15)
C106—C104—C105—N2177.98 (15)C105—N2—Co1—C181.27 (12)
C103—C104—C105—C109177.77 (14)C112—N1—Co1—O6iv83.28 (15)
C106—C104—C105—C1092.5 (2)C109—N1—Co1—O6iv97.48 (11)
C105—C104—C106—C1073.2 (3)C112—N1—Co1—N2177.02 (15)
C103—C104—C106—C107177.08 (17)C109—N1—Co1—N22.23 (11)
C104—C106—C107—C1081.0 (3)C112—N1—Co1—O275.63 (14)
C106—C107—C108—C110178.29 (17)C109—N1—Co1—O2103.61 (11)
C106—C107—C108—C1091.9 (3)C112—N1—Co1—O114.91 (15)
C110—C108—C109—N12.0 (2)C109—N1—Co1—O1164.33 (11)
C107—C108—C109—N1177.83 (16)C112—N1—Co1—C145.31 (15)
C110—C108—C109—C105177.64 (15)C109—N1—Co1—C1133.94 (12)
C107—C108—C109—C1052.5 (2)C1—O2—Co1—O6iv16.76 (17)
N2—C105—C109—N10.4 (2)C1—O2—Co1—O8iv82.72 (10)
C104—C105—C109—N1179.97 (15)C1—O2—Co1—N2172.02 (9)
N2—C105—C109—C108179.24 (14)C1—O2—Co1—N194.88 (10)
C104—C105—C109—C1080.3 (2)C1—O2—Co1—O12.50 (9)
C109—C108—C110—C1110.2 (3)C1—O1—Co1—O6iv177.25 (9)
C107—C108—C110—C111179.61 (17)C1—O1—Co1—O8iv86.33 (10)
C108—C110—C111—C1121.4 (3)C1—O1—Co1—N232.12 (19)
C110—C111—C112—N11.4 (3)C1—O1—Co1—N188.28 (10)
N3—C201—C202—C2030.9 (3)C1—O1—Co1—O22.50 (9)
C201—C202—C203—C2041.0 (3)O1—C1—Co1—O6iv3.48 (12)
C202—C203—C204—C2050.1 (2)O2—C1—Co1—O6iv172.21 (8)
C202—C203—C204—C206179.38 (17)O1—C1—Co1—O8iv90.06 (10)
C203—C204—C205—N31.5 (2)O2—C1—Co1—O8iv94.26 (9)
C206—C204—C205—N3179.21 (16)O1—C1—Co1—N2165.35 (9)
C203—C204—C205—C209177.89 (14)O2—C1—Co1—N210.33 (12)
C206—C204—C205—C2091.4 (2)O1—C1—Co1—N191.67 (10)
C205—C204—C206—C2071.0 (3)O2—C1—Co1—N184.02 (9)
C203—C204—C206—C207178.19 (17)O1—C1—Co1—O2175.69 (15)
C204—C206—C207—C2080.3 (3)O2—C1—Co1—O1175.69 (15)
C206—C207—C208—C210177.95 (17)C7—O7—Co2—O538.86 (14)
C206—C207—C208—C2091.4 (3)C7—O7—Co2—N4143.29 (14)
C210—C208—C209—N41.2 (2)C7—O7—Co2—N3138.22 (14)
C207—C208—C209—N4179.46 (15)C7—O7—Co2—O447.12 (14)
C210—C208—C209—C205178.37 (14)C7—O7—Co2—O355.7 (2)
C207—C208—C209—C2051.0 (2)C7—O7—Co2—C446.26 (16)
N3—C205—C209—N40.2 (2)C5—O5—Co2—O744.59 (18)
C204—C205—C209—N4179.19 (14)C5—O5—Co2—N451.96 (18)
N3—C205—C209—C208179.81 (14)C5—O5—Co2—O4144.45 (18)
C204—C205—C209—C2080.4 (2)C5—O5—Co2—O3154.01 (18)
C209—C208—C210—C2110.7 (3)C5—O5—Co2—C4175.22 (18)
C207—C208—C210—C211179.99 (17)C212—N4—Co2—O791.49 (14)
C208—C210—C211—C2120.4 (3)C209—N4—Co2—O787.68 (11)
C210—C211—C212—N41.2 (3)C212—N4—Co2—O56.52 (15)
C111—C112—N1—C1090.3 (3)C209—N4—Co2—O5174.31 (10)
C111—C112—N1—Co1179.53 (12)C212—N4—Co2—N3179.04 (15)
C108—C109—N1—C1122.1 (2)C209—N4—Co2—N31.80 (10)
C105—C109—N1—C112177.61 (15)C212—N4—Co2—O4122.96 (17)
C108—C109—N1—Co1178.61 (12)C209—N4—Co2—O457.9 (2)
C105—C109—N1—Co11.72 (18)C212—N4—Co2—O394.63 (14)
C102—C101—N2—C1050.0 (2)C209—N4—Co2—O386.20 (11)
C102—C101—N2—Co1179.84 (12)C212—N4—Co2—C498.43 (15)
C104—C105—N2—C1011.8 (2)C209—N4—Co2—C482.40 (12)
C109—C105—N2—C101177.79 (14)C201—N3—Co2—O787.94 (14)
C104—C105—N2—Co1178.05 (13)C205—N3—Co2—O793.08 (11)
C109—C105—N2—Co12.38 (17)C201—N3—Co2—N4177.30 (15)
C202—C201—N3—C2050.4 (2)C205—N3—Co2—N41.68 (11)
C202—C201—N3—Co2179.37 (12)C201—N3—Co2—O412.42 (14)
C204—C205—N3—C2011.7 (2)C205—N3—Co2—O4166.56 (11)
C209—C205—N3—C201177.76 (14)C201—N3—Co2—O373.61 (14)
C204—C205—N3—Co2179.25 (12)C205—N3—Co2—O3105.37 (11)
C209—C205—N3—Co21.33 (17)C201—N3—Co2—C443.12 (14)
C211—C212—N4—C2090.7 (2)C205—N3—Co2—C4135.86 (11)
C211—C212—N4—Co2179.81 (12)C4—O4—Co2—O7178.73 (9)
C208—C209—N4—C2120.5 (2)C4—O4—Co2—O582.91 (10)
C205—C209—N4—C212179.04 (14)C4—O4—Co2—N436.2 (2)
C208—C209—N4—Co2178.75 (12)C4—O4—Co2—N390.65 (9)
C205—C209—N4—Co21.70 (17)C4—O4—Co2—O34.40 (8)
O2—C1—O1—Co14.43 (15)C4—O3—Co2—O714.07 (19)
C2—C1—O1—Co1175.67 (13)C4—O3—Co2—O582.40 (9)
O1—C1—O2—Co14.44 (15)C4—O3—Co2—N4174.60 (9)
C2—C1—O2—Co1175.66 (13)C4—O3—Co2—N397.07 (9)
O4—C4—O3—Co27.76 (15)C4—O3—Co2—O44.39 (8)
C3—C4—O3—Co2170.44 (13)O4—C4—Co2—O71.66 (12)
O3—C4—O4—Co27.78 (15)O4—C4—Co2—O593.48 (10)
C3—C4—O4—Co2170.44 (13)O3—C4—Co2—O594.07 (9)
O6—C5—O5—Co24.6 (3)O4—C4—Co2—N4165.19 (9)
C6—C5—O5—Co2177.10 (12)O3—C4—Co2—N47.26 (12)
O5—C5—O6—Co1iii78.8 (2)O4—C4—Co2—N389.95 (9)
C6—C5—O6—Co1iii102.97 (18)O3—C4—Co2—N382.49 (9)
O8—C7—O7—Co2100.68 (18)O4—C4—Co2—O3172.44 (14)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x, y+1, z+1/2; (iv) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Co2(C4H2O4)2(C12H8N2)2]
Mr706.38
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)12.264 (3), 10.111 (2), 22.650 (5)
β (°) 96.89 (3)
V3)2788.2 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.44 × 0.37 × 0.24
Data collection
DiffractometerRigaku RAXIS-RAPID
diffractometer
Absorption correctionMulti-scan
Higashi (1995)
Tmin, Tmax0.549, 0.744
No. of measured, independent and
observed [I > 2σ(I)] reflections
24016, 6376, 5500
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.086, 1.07
No. of reflections6376
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.58

Computer programs: PROCESS-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

Selected geometric parameters (Å, º) top
N1—Co12.1432 (15)O3—Co22.1731 (13)
N2—Co12.1329 (14)O4—Co22.1674 (12)
N3—Co22.1312 (14)O5—Co22.0712 (12)
N4—Co22.1136 (14)O6—Co1i2.0415 (13)
O1—Co12.1843 (12)O7—Co22.0228 (13)
O2—Co12.1792 (12)O8—Co1i2.0535 (12)
O6ii—Co1—O8ii97.19 (5)O7—Co2—O596.62 (5)
O6ii—Co1—N299.27 (5)O7—Co2—N494.75 (5)
O8ii—Co1—N2105.71 (5)O5—Co2—N4103.72 (5)
O6ii—Co1—N188.94 (5)O7—Co2—N390.43 (5)
O8ii—Co1—N1172.12 (5)O5—Co2—N3172.37 (5)
N2—Co1—N178.03 (5)N4—Co2—N378.49 (5)
O6ii—Co1—O2158.43 (5)O7—Co2—O4100.35 (5)
O8ii—Co1—O286.00 (5)O5—Co2—O484.88 (5)
N2—Co1—O2100.37 (5)N4—Co2—O4161.68 (5)
N1—Co1—O286.49 (5)N3—Co2—O491.00 (5)
O6ii—Co1—O198.19 (5)O7—Co2—O3161.40 (5)
O8ii—Co1—O183.88 (5)O5—Co2—O385.19 (5)
N2—Co1—O1158.78 (5)N4—Co2—O3102.82 (5)
N1—Co1—O190.36 (5)N3—Co2—O387.20 (5)
O2—Co1—O160.81 (4)O4—Co2—O361.29 (4)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds