Download citation
Download citation
link to html
In the title compound {alternative name: poly­[silver(I)-[mu]-(3-­amino-2-chloro­pyridine)-[mu]-nitr­ato]}, [Ag(NO3)(C5H5ClN2)]n the AgI atom is in an irregular AgN2O3 geometry, surrounded by one pyridyl N atom [Ag-N 2.283 (5) Å], one amine N atom [Ag-N 2.364 (6) Å] and three O atoms from different nitrate ions [Ag-O 2.510 (6)-2.707 (6) Å]. The Ag ions are bridged by the 3-amino-2-chloro­pyridine ligands into helical chains. Adjacent uniform chiral chains are further interlinked through the NO3 bridges into an interesting two-dimensional coordination network in the solid.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102013872/ta1379sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102013872/ta1379Isup2.hkl
Contains datablock I

CCDC reference: 195609

Comment top

The field of metal-organic coordination polymers has recently attracted great interest, because such supramolecular architectures have potential as smart optoelectronic, magnetic or microporous materials (Abrahams et al., 1994; Biradha et al., 1999; Braga et al., 1998; Fujita et al., 1994; Gardner et al., 1995; Kahn, 2000; Russell et al., 1997). The structures of coordination polymers are highly influenced by factors such as the coordination nature of the metal ion, the structural characteristics of the polydentate organic ligand, the metal-ligand ratio and possible counter-ion influence. A subtle alteration in any of these factors can lead to new extended network structures. Thus, a great variety of supramolecular architectures have been ingeniously constructed. These not only have aesthetic appeal, but occasionally exhibit interesting functions. We are interested in the preparation of one-, two- and three-dimensional coordination polymers with potential applications in optoelectronics and adsorption (Tong et al., 1999; Zheng, Tong, Fu et al., 2001; Zheng, Tong, Tan et al., 2001 Is this the correct place to cite both these references?). We report here the preparation and crystal structure of a chiral two-dimensional coordination polymer constructed from an achiral building block, [Ag(µ-2-Clnpy)(µ-NO3)], (I) (2-Clnpy is 3-amino-2-chloropyridine). \sch

The crystal structure of (I) comprises a chiral two-dimensional coordination network. As shown in Fig. 1, each AgI atom is coordinated in an irregular geometry, with one pyridyl N atom and one amine N atom from two different 2-Clnpy ligands and three O atoms from different nitrate ions (Table 1). The Ag—N(pyridyl) distances in (I) are slightly longer than those in bis(3-amino-2-chloropyridine)silver(I) perchlorate [2.179 (4)–2.199 (4) Å; Li et al., 2002] and that in bis(4-aminopyridine)silver(I) nitrate [2.122 (3) Å; Kristiansson, 2000]. The AgI atoms are bridged by µ-2-Clnpy ligands to form polymeric helical motifs along the c axis direction. Adjacent uniform infinite helical motifs are further interlinked through the µ-NO3 bridges into chiral two-dimensional layers (Fig. 2). Within each layer, there are hydrogen-bonding interactions between adjacent NO3- and amine groups (Table 2).

It should be also noted that π···π stacking interactions play a role in consolidating the solid state structure of (I). Adjacent coordination layers are stacked via interlayer pyridyl groups with a face-to-face separation of 3.38–3.58 Å, resulting in a three-dimensional supramolecular architecture (Fig. 3).

Experimental top

To a solution of AgNO3 (1.0 mmol) in MeCN/H2O [10 ml; 1:1 (v/v)], a solution of 2-Clnpy (1.0 mmol) in MeOH (5 ml) was slowly added and stirred for 15 min at 333 K. Colourless polyhedral crystals of (I) were deposited within 2 d (75% yield).

Refinement top

The amino H atoms were located and refined subject to N—H = 0.85 (1) Å and H···H = 1.39 (1) Å, with Uiso(H) = 1.2Ueq(N). The carbon-bound H atoms were generated geometrically, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: XSCANS (Siemens, 1990); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the coordination environment in (I). Displacement ellipsoids are drawn at the 35% probability level and dashed lines indicate weak interactions [symmetry code: (i) 3/2 - x, y - 1/2, -z].
[Figure 2] Fig. 2. A view of the two-dimensional coordination layer of (I). Ag and Cl atoms are shown hatched.
[Figure 3] Fig. 3. The three-dimensional supramolecular architecture of (I) viewed along the c axis.
(I) top
Crystal data top
[Ag(C5H5ClN2)]NO3F(000) = 576
Mr = 298.44Dx = 2.294 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 25 reflections
a = 13.343 (5) Åθ = 7–15°
b = 7.832 (2) ŵ = 2.62 mm1
c = 8.270 (2) ÅT = 298 K
V = 864.2 (4) Å3Polyhedral, colourless
Z = 40.34 × 0.30 × 0.20 mm
Data collection top
Siemens R3m four-circle
diffractometer
1080 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ω scansh = 117
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.427, Tmax = 0.593l = 010
1268 measured reflections2 standard reflections every 150 reflections
1248 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0493P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1248 reflectionsΔρmax = 0.44 e Å3
124 parametersΔρmin = 0.76 e Å3
3 restraintsAbsolute structure: Flack (1983) with 74 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.20 (8)
Crystal data top
[Ag(C5H5ClN2)]NO3V = 864.2 (4) Å3
Mr = 298.44Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 13.343 (5) ŵ = 2.62 mm1
b = 7.832 (2) ÅT = 298 K
c = 8.270 (2) Å0.34 × 0.30 × 0.20 mm
Data collection top
Siemens R3m four-circle
diffractometer
1080 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.018
Tmin = 0.427, Tmax = 0.5932 standard reflections every 150 reflections
1268 measured reflections intensity decay: none
1248 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083Δρmax = 0.44 e Å3
S = 1.07Δρmin = 0.76 e Å3
1248 reflectionsAbsolute structure: Flack (1983) with 74 Friedel pairs
124 parametersAbsolute structure parameter: 0.20 (8)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.76829 (4)0.90000 (6)0.19699 (6)0.04304 (16)
Cl10.75176 (14)0.9794 (3)0.5906 (2)0.0561 (5)
O10.6048 (5)0.8701 (6)0.0330 (7)0.0621 (15)
O20.7137 (4)0.6722 (8)0.0026 (7)0.0710 (18)
O30.5947 (5)0.6321 (8)0.1625 (8)0.077 (2)
N10.6560 (4)1.0693 (6)0.3300 (6)0.0389 (13)
N20.6022 (4)1.2019 (8)0.7496 (7)0.0382 (13)
H2N10.619 (4)1.109 (5)0.797 (7)0.046*
H2N20.552 (3)1.244 (7)0.799 (7)0.046*
N30.6378 (4)0.7258 (8)0.0638 (7)0.0410 (13)
C10.5843 (6)1.1559 (10)0.2502 (9)0.0466 (18)
H10.58231.14800.13800.056*
C20.5134 (6)1.2562 (10)0.3268 (8)0.0513 (19)
H20.46521.31500.26780.062*
C30.5163 (5)1.2667 (10)0.4939 (9)0.0436 (16)
H30.46841.33070.54860.052*
C40.5896 (5)1.1829 (8)0.5793 (8)0.0331 (13)
C50.6575 (4)1.0849 (8)0.4903 (7)0.0330 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.0490 (3)0.0409 (2)0.0393 (2)0.0027 (2)0.0012 (2)0.0025 (2)
Cl10.0584 (11)0.0625 (10)0.0475 (9)0.0315 (10)0.0048 (8)0.0042 (8)
O10.087 (4)0.041 (3)0.059 (3)0.017 (3)0.008 (3)0.011 (3)
O20.057 (3)0.090 (4)0.066 (3)0.031 (3)0.031 (3)0.022 (4)
O30.064 (3)0.074 (4)0.092 (5)0.021 (3)0.043 (3)0.041 (4)
N10.045 (3)0.033 (3)0.039 (3)0.001 (2)0.002 (2)0.009 (2)
N20.040 (3)0.037 (3)0.037 (3)0.007 (3)0.009 (2)0.000 (3)
N30.040 (3)0.045 (3)0.037 (3)0.003 (3)0.004 (2)0.002 (3)
C10.053 (4)0.045 (4)0.042 (3)0.001 (3)0.014 (3)0.006 (3)
C20.047 (4)0.050 (4)0.057 (4)0.010 (4)0.019 (4)0.002 (4)
C30.032 (3)0.040 (4)0.059 (4)0.002 (3)0.002 (3)0.012 (4)
C40.034 (3)0.026 (3)0.038 (3)0.006 (3)0.001 (3)0.000 (3)
C50.029 (3)0.028 (3)0.042 (3)0.003 (3)0.003 (2)0.001 (3)
Geometric parameters (Å, º) top
Ag—N12.283 (5)N2—C41.427 (9)
Ag—N2i2.364 (6)N2—H2N10.86 (5)
Ag—O22.510 (6)N2—H2N20.85 (5)
Ag—O3ii2.594 (6)C1—C21.383 (10)
Cl1—C51.718 (6)C1—H10.9300
O1—N31.240 (7)C2—C31.385 (9)
O2—N31.226 (7)C2—H20.9300
O2—Agiii2.707 (6)C3—C41.373 (10)
O3—N31.239 (8)C3—H30.9300
N1—C51.332 (8)C4—C51.397 (9)
N1—C11.346 (9)
N1—Ag—N2i140.44 (18)O2—N3—O1120.9 (6)
N1—Ag—O2122.09 (18)O2—N3—O3118.4 (6)
N2i—Ag—O282.25 (19)O1—N3—O3120.7 (6)
N1—Ag—O3ii96.2 (2)N1—C1—C2123.2 (6)
N2i—Ag—O3ii88.0 (2)N1—C1—H1118.4
O2—Ag—O3ii129.2 (2)C2—C1—H1118.4
N3—O2—Ag106.5 (5)C3—C2—C1118.2 (7)
N3—O2—Agiii94.0 (4)C3—C2—H2120.9
Ag—O2—Agiii157.6 (2)C1—C2—H2120.9
N3—O3—Agiii99.2 (4)C4—C3—C2120.3 (7)
C5—N1—C1116.9 (6)C4—C3—H3119.9
C5—N1—Ag121.5 (4)C2—C3—H3119.9
C1—N1—Ag121.5 (4)C3—C4—C5117.0 (6)
C4—N2—Agiv109.8 (4)C3—C4—N2122.8 (6)
C4—N2—H2N1113 (5)C5—C4—N2120.1 (6)
Agiv—N2—H2N1107 (5)N1—C5—C4124.4 (6)
C4—N2—H2N2115 (5)N1—C5—Cl1116.6 (5)
Agiv—N2—H2N2103 (5)C4—C5—Cl1119.0 (5)
H2N1—N2—H2N2108 (5)
N1—Ag—O2—N333.8 (5)Agiii—O3—N3—O1168.0 (5)
N2i—Ag—O2—N3179.8 (5)C5—N1—C1—C20.7 (11)
O3ii—Ag—O2—N398.8 (5)Ag—N1—C1—C2178.3 (6)
N1—Ag—O2—Agiii170.8 (7)N1—C1—C2—C30.4 (13)
N2i—Ag—O2—Agiii24.4 (7)C1—C2—C3—C41.8 (13)
O3ii—Ag—O2—Agiii56.6 (8)C2—C3—C4—C51.8 (11)
N2i—Ag—N1—C55.9 (7)C2—C3—C4—N2173.9 (7)
O2—Ag—N1—C5126.5 (5)Agiv—N2—C4—C398.7 (7)
O3ii—Ag—N1—C588.5 (5)Agiv—N2—C4—C576.9 (7)
N2i—Ag—N1—C1173.1 (5)C1—N1—C5—C40.6 (10)
O2—Ag—N1—C152.5 (6)Ag—N1—C5—C4178.4 (5)
O3ii—Ag—N1—C192.5 (5)C1—N1—C5—Cl1178.0 (5)
Ag—O2—N3—O12.2 (8)Ag—N1—C5—Cl13.0 (7)
Agiii—O2—N3—O1168.6 (6)C3—C4—C5—N10.6 (10)
Ag—O2—N3—O3177.7 (5)N2—C4—C5—N1175.2 (6)
Agiii—O2—N3—O311.4 (7)C3—C4—C5—Cl1179.2 (5)
Agiii—O3—N3—O212.1 (7)N2—C4—C5—Cl13.4 (9)
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x+3/2, y+1/2, z; (iii) x+3/2, y1/2, z; (iv) x+3/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N1···O1v0.86 (5)2.35 (5)3.160 (8)159 (5)
N2—H2N2···O3vi0.85 (5)2.20 (4)3.020 (8)160 (6)
Symmetry codes: (v) x, y, z+1; (vi) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ag(C5H5ClN2)]NO3
Mr298.44
Crystal system, space groupOrthorhombic, P21212
Temperature (K)298
a, b, c (Å)13.343 (5), 7.832 (2), 8.270 (2)
V3)864.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.62
Crystal size (mm)0.34 × 0.30 × 0.20
Data collection
DiffractometerSiemens R3m four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.427, 0.593
No. of measured, independent and
observed [I > 2σ(I)] reflections
1268, 1248, 1080
Rint0.018
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.083, 1.07
No. of reflections1248
No. of parameters124
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.76
Absolute structureFlack (1983) with 74 Friedel pairs
Absolute structure parameter0.20 (8)

Computer programs: XSCANS (Siemens, 1990), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Ag—N12.283 (5)Ag—O3ii2.594 (6)
Ag—N2i2.364 (6)O2—Agiii2.707 (6)
Ag—O22.510 (6)
N1—Ag—N2i140.44 (18)N1—Ag—O3ii96.2 (2)
N1—Ag—O2122.09 (18)N2i—Ag—O3ii88.0 (2)
N2i—Ag—O282.25 (19)O2—Ag—O3ii129.2 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x+3/2, y+1/2, z; (iii) x+3/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N1···O1iv0.86 (5)2.35 (5)3.160 (8)159 (5)
N2—H2N2···O3v0.85 (5)2.20 (4)3.020 (8)160 (6)
Symmetry codes: (iv) x, y, z+1; (v) x+1, y+2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds