Download citation
Download citation
link to html
The title complex [systematic name: penta­chloro-1[kappa]3Cl,2[kappa]2Cl-tris(diethylphenylphosphino)-1[kappa]P,2[kappa]2P-dirhenium(II,III)(Re-Re)], 1,3,6-Re2Cl5(PEt2Ph)3 or [Re2Cl5(C10H15P)3], consists of dirhenium mol­ecules with eclipsed structures similar to those of previously characterized 1,3,6-Re2Cl5(PR3)3 compounds. The Re-Re bond distance is 2.2262 (3) Å and the metal-metal bond order is 3.5.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102005644/ta1365sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102005644/ta1365Isup2.hkl
Contains datablock I

CCDC reference: 187913

Comment top

Although many dirhenium compounds with multiple metal–metal bonds and tertiary phosphine ligands (PR3) of the type Re2Cl5(PR3)3 are known (Cotton & Walton, 1993), none containing diethylphenylphosphine ligands have been reported previously. Structures have been determined for 1,2,7- and 1,3,6-Re2Cl5(trimethylphosphine)3 and 1,3,6-Re2Cl5(triethylphosphine)3 (Cotton et al., 1990), 1,2,7- and 1,3,6-Re2Cl5(dimethylphenylphosphine)3 (Cotton et al., 1998), and 1,3,6-Re2Cl5(tri-n-propylphosphine)3 (Cotton et al., 1999) and 1,3,6-Re2Cl5(dicyclohexylphosphine)3 (Angaridis et al., 2002). The title compound, (I), was prepared from the quadruply bonded [Re2Cl8]2- ion in a solvent mixture containing a room-temperature ionic liquid.

As expected, the molecular structure of (I) is similar to that of the five previously characterized 1,3,6-Re2Cl5(PR3)3 compounds. In each molecule, one Re atom is bound to two trans-phosphine ligands, while the other Re atom is bound to one phosphine ligand. The two Re atoms are also bound to one another, with a metal–metal bond order of 3.5. The rotational conformation is essentially eclipsed, as opposed to the somewhat staggered conformations adopted by 1,3,6-Re2Cl5(dicyclohexylphosphine)3 and the two known 1,2,7-Re2Cl5(PR3)3 complexes. The Re—Re bond distance of 2.2262 (3) Å is slightly longer than those found in the other 1,3,6-Re2Cl5(PR3)3 compounds. This is presumably due to some additional steric crowding introduced by the larger PEt2Ph ligands. Average Re—P and Re—Cl bond lengths [2.459 (6) and 2.345 (4) Å, respectively] are well within the ranges [2.425 (4)–2.478 (5) Å for Re—P and 2.313 (4)–2.416 (8) Å for Re—Cl] observed before in these complexes. A threefold disordering of the dirhenium unit is a common feature of multiply-bonded dirhenium complexes of the types Re2Cl4(PR3)3 and Re2Cl5(PR3)3 (Cotton et al., 1999), but no such disorder exists in 1,3,6-Re2Cl5(PEt2Ph)3.

Experimental top

Tetra-n-butylammonium octachlorodirhenate(III) (508 mg, 0.445 mmol) was combined with 1-butyl-3-methylimidazolium hexafluorophosphate (7 ml) and ethanol (7 ml) in a round-bottomed flask under a nitrogen atmosphere. Two drops of concentrated hydrochloric acid were added followed by diethylphenylphosphine (1.00 g, 6.02 mmol). The mixture was stirred for 30 min at 298 K. Tetrahydrofuran (15 ml) was added and the mixture was stirred for 1 h. Diethyl ether (60 ml) was added next and the mixture was stirred for 2 h, then allowed to sit for 14 h. This resulted in two distinct liquid layers, i.e. a larger brown–green top layer and a small dark-brown bottom layer. The layers were separated in air using a separatory funnel and the top layer was placed in a large Schlenk flask. Dark crystals of the title compound formed as this solution was allowed to slowly evaporate.

Refinement top

H atoms were placed in calculated positions and refined as rifing with C—H distances in the range 0.94–0.98 Å, and Uiso values of 1.2Ueq of the parent atom or 1.5Ueq of the parent atom for methyl groups. The highest peak in the final difference map is located 1.03 Å from atom Re2.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound drawn with 50% displacement ellipsoids. H atoms have been omitted for clarity.
Pentachloro-1κ3Cl,2κ2Cl-tris(diethylphenylphosphino)-1κP,2κ2P- dirhenium(II,III)(Re—Re) top
Crystal data top
[Re2Cl5(C10H15P)3]Dx = 1.927 Mg m3
Mr = 1048.22Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 4402 reflections
a = 15.5374 (7) Åθ = 2.4–27.4°
b = 20.7751 (9) ŵ = 7.22 mm1
c = 22.3924 (10) ÅT = 213 K
V = 7228.1 (6) Å3Plate, red
Z = 80.12 × 0.11 × 0.08 mm
F(000) = 4040
Data collection top
Bruker SMART
diffractometer
8235 independent reflections
Radiation source: normal-focus sealed tube5875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 27.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 2018
Tmin = 0.410, Tmax = 0.561k = 2127
34336 measured reflectionsl = 2428
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.01P)2]
where P = (Fo2 + 2Fc2)/3
8235 reflections(Δ/σ)max = 0.009
367 parametersΔρmax = 1.64 e Å3
0 restraintsΔρmin = 1.11 e Å3
Crystal data top
[Re2Cl5(C10H15P)3]V = 7228.1 (6) Å3
Mr = 1048.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.5374 (7) ŵ = 7.22 mm1
b = 20.7751 (9) ÅT = 213 K
c = 22.3924 (10) Å0.12 × 0.11 × 0.08 mm
Data collection top
Bruker SMART
diffractometer
8235 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
5875 reflections with I > 2σ(I)
Tmin = 0.410, Tmax = 0.561Rint = 0.053
34336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.01Δρmax = 1.64 e Å3
8235 reflectionsΔρmin = 1.11 e Å3
367 parameters
Special details top

Experimental. Data were collected as 0.3deg omega-scans for three different positions of phi. The center of the detector was positioned 50 mm from the crystal at a 2-theta swing angle of -28deg, allowing the collection of a complete and highly redundant data set to at least 55deg 2-theta. Diffraction spots were integrated using an ellisoid-mask profile-fitting routine.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.060261 (12)0.164476 (10)0.309358 (8)0.02178 (5)
Re20.034854 (12)0.267171 (10)0.331621 (8)0.02161 (5)
Cl10.20442 (8)0.13431 (7)0.32603 (6)0.0332 (3)
Cl20.07278 (8)0.12664 (6)0.27447 (5)0.0314 (3)
Cl30.01176 (8)0.27246 (7)0.43046 (5)0.0332 (3)
Cl40.10976 (8)0.28271 (7)0.30502 (6)0.0378 (3)
Cl50.06926 (8)0.33197 (7)0.24935 (5)0.0322 (3)
P10.02328 (9)0.10440 (7)0.40104 (6)0.0274 (3)
P20.09768 (8)0.16714 (7)0.20299 (5)0.0255 (3)
P30.17498 (8)0.29998 (7)0.37212 (6)0.0259 (3)
C10.0810 (3)0.1164 (2)0.4717 (2)0.0269 (12)
C20.0414 (4)0.1425 (3)0.5208 (2)0.0368 (14)
H2A0.01610.15610.51800.044*
C30.0853 (4)0.1492 (3)0.5747 (2)0.0451 (16)
H3A0.05710.16650.60820.054*
C40.1698 (4)0.1305 (3)0.5786 (3)0.0471 (17)
H4A0.19990.13520.61480.056*
C50.2100 (4)0.1052 (3)0.5303 (2)0.0422 (15)
H5A0.26800.09270.53320.051*
C60.1669 (4)0.0974 (3)0.4770 (2)0.0369 (14)
H6A0.19540.07920.44400.044*
C70.0469 (4)0.0189 (2)0.3859 (2)0.0417 (15)
H7A0.10940.01450.38170.050*
H7B0.03000.00590.42120.050*
C80.0057 (4)0.0119 (3)0.3324 (3)0.0592 (19)
H8A0.05620.00640.33460.089*
H8B0.01950.05740.33180.089*
H8C0.02730.00830.29630.089*
C90.0907 (3)0.1078 (3)0.4198 (2)0.0347 (14)
H9A0.10260.15020.43700.042*
H9B0.12370.10450.38260.042*
C100.1245 (4)0.0569 (3)0.4629 (2)0.0534 (18)
H10A0.11010.01440.44800.080*
H10B0.18650.06090.46630.080*
H10C0.09830.06310.50180.080*
C110.1188 (3)0.0832 (3)0.1850 (2)0.0317 (13)
C120.0530 (4)0.0411 (3)0.1695 (2)0.0397 (14)
H12A0.00340.05700.16570.048*
C130.0680 (4)0.0226 (3)0.1596 (3)0.0570 (18)
H13A0.02230.04990.14910.068*
C140.1498 (4)0.0468 (3)0.1648 (3)0.0587 (19)
H14A0.16020.09080.15820.070*
C150.2165 (4)0.0062 (3)0.1799 (3)0.0555 (18)
H15A0.27270.02250.18340.067*
C160.2011 (4)0.0580 (3)0.1899 (2)0.0402 (14)
H16A0.24710.08530.20030.048*
C170.1949 (3)0.2098 (3)0.1818 (2)0.0305 (13)
H17A0.18620.25560.19010.037*
H17B0.24180.19490.20760.037*
C180.2241 (3)0.2030 (3)0.1167 (2)0.0387 (15)
H18A0.22400.15790.10550.058*
H18B0.28180.22030.11240.058*
H18C0.18500.22660.09100.058*
C190.0104 (3)0.1932 (3)0.1544 (2)0.0348 (14)
H19A0.04320.17540.17050.042*
H19B0.00620.24020.15770.042*
C200.0133 (4)0.1768 (3)0.0881 (2)0.0476 (17)
H20A0.05240.20600.06790.071*
H20B0.04380.18110.07120.071*
H20C0.03330.13300.08310.071*
C210.1606 (3)0.3832 (3)0.3959 (2)0.0289 (12)
C220.1721 (3)0.4331 (3)0.3562 (3)0.0401 (15)
H22A0.18800.42410.31660.048*
C230.1604 (4)0.4964 (3)0.3738 (3)0.0547 (18)
H23A0.16890.52980.34620.066*
C240.1368 (4)0.5104 (3)0.4307 (4)0.061 (2)
H24A0.12880.55340.44250.073*
C250.1247 (4)0.4617 (3)0.4707 (3)0.0566 (19)
H25A0.10820.47160.51000.068*
C260.1364 (3)0.3982 (3)0.4543 (3)0.0424 (15)
H26A0.12810.36510.48240.051*
C270.2658 (3)0.3022 (3)0.3203 (2)0.0336 (13)
H27A0.28570.25790.31430.040*
H27B0.24460.31790.28180.040*
C280.3437 (3)0.3430 (3)0.3379 (2)0.0512 (17)
H28A0.32570.38720.34400.077*
H28B0.38630.34140.30620.077*
H28C0.36860.32640.37450.077*
C290.2088 (3)0.2553 (3)0.4376 (2)0.0327 (13)
H29A0.16300.25880.46750.039*
H29B0.21270.20980.42630.039*
C300.2923 (3)0.2734 (3)0.4675 (2)0.0546 (19)
H30A0.33980.26550.44030.082*
H30B0.29990.24770.50330.082*
H30C0.29110.31870.47810.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.02020 (10)0.02311 (10)0.02205 (9)0.00098 (9)0.00060 (8)0.00143 (9)
Re20.01974 (10)0.02304 (10)0.02207 (9)0.00016 (9)0.00047 (8)0.00132 (9)
Cl10.0243 (7)0.0403 (8)0.0349 (7)0.0084 (6)0.0016 (6)0.0014 (7)
Cl20.0247 (7)0.0370 (8)0.0326 (7)0.0065 (6)0.0011 (6)0.0000 (6)
Cl30.0328 (8)0.0388 (8)0.0278 (6)0.0001 (6)0.0079 (5)0.0010 (6)
Cl40.0241 (8)0.0388 (8)0.0505 (8)0.0033 (6)0.0076 (6)0.0037 (7)
Cl50.0368 (8)0.0313 (7)0.0284 (6)0.0018 (6)0.0017 (6)0.0055 (6)
P10.0285 (8)0.0269 (7)0.0268 (7)0.0021 (6)0.0001 (6)0.0059 (6)
P20.0250 (7)0.0281 (7)0.0233 (7)0.0013 (6)0.0021 (5)0.0014 (6)
P30.0221 (8)0.0301 (8)0.0256 (7)0.0026 (6)0.0001 (6)0.0003 (6)
C10.035 (3)0.021 (3)0.025 (3)0.003 (2)0.002 (2)0.008 (2)
C20.036 (3)0.036 (3)0.038 (3)0.008 (3)0.001 (3)0.004 (3)
C30.067 (5)0.034 (4)0.033 (3)0.013 (3)0.003 (3)0.002 (3)
C40.065 (5)0.041 (4)0.035 (3)0.006 (3)0.021 (3)0.001 (3)
C50.041 (4)0.045 (4)0.041 (3)0.007 (3)0.009 (3)0.002 (3)
C60.042 (4)0.039 (3)0.030 (3)0.006 (3)0.001 (3)0.006 (3)
C70.057 (4)0.026 (3)0.042 (3)0.003 (3)0.007 (3)0.008 (3)
C80.093 (5)0.029 (3)0.055 (4)0.008 (3)0.010 (4)0.002 (3)
C90.023 (3)0.048 (4)0.033 (3)0.006 (3)0.002 (2)0.014 (3)
C100.046 (4)0.060 (5)0.054 (4)0.015 (3)0.008 (3)0.018 (4)
C110.034 (3)0.034 (3)0.027 (3)0.001 (2)0.005 (2)0.006 (3)
C120.035 (3)0.035 (3)0.049 (3)0.001 (3)0.001 (3)0.009 (3)
C130.043 (4)0.040 (4)0.089 (5)0.009 (3)0.015 (4)0.017 (4)
C140.063 (5)0.029 (4)0.084 (5)0.001 (3)0.029 (4)0.008 (4)
C150.042 (4)0.041 (4)0.083 (5)0.011 (3)0.015 (4)0.006 (4)
C160.037 (4)0.038 (4)0.046 (3)0.000 (3)0.007 (3)0.003 (3)
C170.029 (3)0.033 (3)0.029 (3)0.004 (2)0.006 (2)0.000 (2)
C180.034 (3)0.048 (4)0.034 (3)0.001 (3)0.011 (3)0.004 (3)
C190.031 (3)0.045 (3)0.028 (3)0.002 (3)0.003 (2)0.001 (3)
C200.054 (4)0.055 (4)0.034 (3)0.001 (3)0.011 (3)0.001 (3)
C210.018 (3)0.031 (3)0.038 (3)0.004 (2)0.003 (2)0.002 (3)
C220.033 (4)0.038 (4)0.049 (4)0.008 (3)0.003 (3)0.002 (3)
C230.043 (4)0.040 (4)0.082 (5)0.008 (3)0.018 (4)0.015 (4)
C240.040 (4)0.037 (4)0.105 (6)0.003 (3)0.019 (4)0.023 (5)
C250.048 (4)0.055 (5)0.067 (5)0.005 (4)0.005 (4)0.027 (4)
C260.041 (4)0.039 (4)0.047 (4)0.002 (3)0.000 (3)0.013 (3)
C270.023 (3)0.042 (3)0.036 (3)0.001 (2)0.004 (2)0.006 (3)
C280.031 (3)0.073 (5)0.049 (4)0.015 (3)0.005 (3)0.013 (4)
C290.034 (3)0.033 (3)0.031 (3)0.000 (3)0.007 (2)0.001 (3)
C300.037 (4)0.085 (6)0.041 (3)0.004 (4)0.012 (3)0.004 (4)
Geometric parameters (Å, º) top
Re1—Re22.2262 (3)C12—H12A0.9400
Re1—Cl22.3453 (12)C13—C141.372 (8)
Re1—Cl12.3556 (12)C13—H13A0.9400
Re1—P22.4525 (12)C14—C151.378 (8)
Re1—P12.4703 (13)C14—H14A0.9400
Re2—Cl32.3314 (12)C15—C161.375 (8)
Re2—Cl52.3436 (12)C15—H15A0.9400
Re2—Cl42.3469 (13)C16—H16A0.9400
Re2—P32.4551 (13)C17—C181.534 (6)
P1—C91.821 (5)C17—H17A0.9800
P1—C11.835 (5)C17—H17B0.9800
P1—C71.845 (5)C18—H18A0.9700
P2—C171.814 (5)C18—H18B0.9700
P2—C111.819 (5)C18—H18C0.9700
P2—C191.822 (5)C19—C201.523 (6)
P3—C291.813 (5)C19—H19A0.9800
P3—C211.822 (5)C19—H19B0.9800
P3—C271.827 (5)C20—H20A0.9700
C1—C21.371 (6)C20—H20B0.9700
C1—C61.397 (7)C20—H20C0.9700
C2—C31.393 (7)C21—C221.377 (7)
C2—H2A0.9400C21—C261.396 (7)
C3—C41.374 (7)C22—C231.383 (8)
C3—H3A0.9400C22—H22A0.9400
C4—C51.355 (7)C23—C241.357 (8)
C4—H4A0.9400C23—H23A0.9400
C5—C61.378 (7)C24—C251.363 (8)
C5—H5A0.9400C24—H24A0.9400
C6—H6A0.9400C25—C261.383 (8)
C7—C81.502 (7)C25—H25A0.9400
C7—H7A0.9800C26—H26A0.9400
C7—H7B0.9800C27—C281.530 (7)
C8—H8A0.9700C27—H27A0.9800
C8—H8B0.9700C27—H27B0.9800
C8—H8C0.9700C28—H28A0.9700
C9—C101.524 (7)C28—H28B0.9700
C9—H9A0.9800C28—H28C0.9700
C9—H9B0.9800C29—C301.508 (6)
C10—H10A0.9700C29—H29A0.9800
C10—H10B0.9700C29—H29B0.9800
C10—H10C0.9700C30—H30A0.9700
C11—C161.386 (7)C30—H30B0.9700
C11—C121.390 (7)C30—H30C0.9700
C12—C131.362 (7)
Re2—Re1—Cl2103.86 (3)C12—C11—P2121.7 (4)
Re2—Re1—Cl1112.83 (3)C13—C12—C11121.7 (5)
Cl2—Re1—Cl1143.29 (5)C13—C12—H12A119.1
Re2—Re1—P2103.76 (4)C11—C12—H12A119.1
Cl2—Re1—P283.86 (4)C12—C13—C14120.1 (6)
Cl1—Re1—P286.25 (4)C12—C13—H13A119.9
Re2—Re1—P1104.88 (3)C14—C13—H13A119.9
Cl2—Re1—P184.40 (4)C13—C14—C15119.5 (6)
Cl1—Re1—P187.42 (4)C13—C14—H14A120.3
P2—Re1—P1150.89 (5)C15—C14—H14A120.3
Re1—Re2—Cl3108.23 (4)C16—C15—C14120.2 (6)
Re1—Re2—Cl5109.51 (3)C16—C15—H15A119.9
Cl3—Re2—Cl5142.19 (5)C14—C15—H15A119.9
Re1—Re2—Cl4104.17 (3)C15—C16—C11121.0 (6)
Cl3—Re2—Cl486.39 (5)C15—C16—H16A119.5
Cl5—Re2—Cl486.55 (5)C11—C16—H16A119.5
Re1—Re2—P3101.04 (3)C18—C17—P2116.8 (4)
Cl3—Re2—P384.93 (4)C18—C17—H17A108.1
Cl5—Re2—P385.91 (4)P2—C17—H17A108.1
Cl4—Re2—P3154.77 (5)C18—C17—H17B108.1
C9—P1—C1105.7 (2)P2—C17—H17B108.1
C9—P1—C7105.8 (3)H17A—C17—H17B107.3
C1—P1—C7101.0 (2)C17—C18—H18A109.5
C9—P1—Re1113.50 (17)C17—C18—H18B109.5
C1—P1—Re1122.29 (16)H18A—C18—H18B109.5
C7—P1—Re1106.70 (18)C17—C18—H18C109.5
C17—P2—C11105.1 (2)H18A—C18—H18C109.5
C17—P2—C19108.6 (2)H18B—C18—H18C109.5
C11—P2—C19106.7 (2)C20—C19—P2119.6 (4)
C17—P2—Re1117.53 (16)C20—C19—H19A107.4
C11—P2—Re1103.65 (17)P2—C19—H19A107.4
C19—P2—Re1114.24 (16)C20—C19—H19B107.4
C29—P3—C21106.6 (2)P2—C19—H19B107.4
C29—P3—C27107.5 (2)H19A—C19—H19B107.0
C21—P3—C27104.8 (2)C19—C20—H20A109.5
C29—P3—Re2114.44 (17)C19—C20—H20B109.5
C21—P3—Re2105.23 (16)H20A—C20—H20B109.5
C27—P3—Re2117.23 (16)C19—C20—H20C109.5
C2—C1—C6118.1 (5)H20A—C20—H20C109.5
C2—C1—P1121.7 (4)H20B—C20—H20C109.5
C6—C1—P1120.1 (4)C22—C21—C26118.1 (5)
C1—C2—C3121.0 (5)C22—C21—P3120.7 (4)
C1—C2—H2A119.5C26—C21—P3121.2 (4)
C3—C2—H2A119.5C21—C22—C23121.0 (6)
C4—C3—C2119.7 (5)C21—C22—H22A119.5
C4—C3—H3A120.2C23—C22—H22A119.5
C2—C3—H3A120.2C24—C23—C22120.4 (7)
C5—C4—C3120.0 (5)C24—C23—H23A119.8
C5—C4—H4A120.0C22—C23—H23A119.8
C3—C4—H4A120.0C23—C24—C25119.6 (6)
C4—C5—C6120.9 (6)C23—C24—H24A120.2
C4—C5—H5A119.5C25—C24—H24A120.2
C6—C5—H5A119.5C24—C25—C26121.0 (6)
C5—C6—C1120.3 (5)C24—C25—H25A119.5
C5—C6—H6A119.9C26—C25—H25A119.5
C1—C6—H6A119.9C25—C26—C21119.8 (6)
C8—C7—P1118.1 (4)C25—C26—H26A120.1
C8—C7—H7A107.8C21—C26—H26A120.1
P1—C7—H7A107.8C28—C27—P3117.5 (4)
C8—C7—H7B107.8C28—C27—H27A107.9
P1—C7—H7B107.8P3—C27—H27A107.9
H7A—C7—H7B107.1C28—C27—H27B107.9
C7—C8—H8A109.5P3—C27—H27B107.9
C7—C8—H8B109.5H27A—C27—H27B107.2
H8A—C8—H8B109.5C27—C28—H28A109.5
C7—C8—H8C109.5C27—C28—H28B109.5
H8A—C8—H8C109.5H28A—C28—H28B109.5
H8B—C8—H8C109.5C27—C28—H28C109.5
C10—C9—P1117.0 (4)H28A—C28—H28C109.5
C10—C9—H9A108.0H28B—C28—H28C109.5
P1—C9—H9A108.0C30—C29—P3118.7 (4)
C10—C9—H9B108.0C30—C29—H29A107.6
P1—C9—H9B108.0P3—C29—H29A107.6
H9A—C9—H9B107.3C30—C29—H29B107.6
C9—C10—H10A109.5P3—C29—H29B107.6
C9—C10—H10B109.5H29A—C29—H29B107.1
H10A—C10—H10B109.5C29—C30—H30A109.5
C9—C10—H10C109.5C29—C30—H30B109.5
H10A—C10—H10C109.5H30A—C30—H30B109.5
H10B—C10—H10C109.5C29—C30—H30C109.5
C16—C11—C12117.4 (5)H30A—C30—H30C109.5
C16—C11—P2120.7 (4)H30B—C30—H30C109.5
Cl1—Re1—Re2—P34.10 (5)Cl2—Re1—Re2—Cl41.88 (5)
P2—Re1—Re2—Cl56.28 (5)P1—Re1—Re2—Cl31.16 (5)

Experimental details

Crystal data
Chemical formula[Re2Cl5(C10H15P)3]
Mr1048.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)213
a, b, c (Å)15.5374 (7), 20.7751 (9), 22.3924 (10)
V3)7228.1 (6)
Z8
Radiation typeMo Kα
µ (mm1)7.22
Crystal size (mm)0.12 × 0.11 × 0.08
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995)
Tmin, Tmax0.410, 0.561
No. of measured, independent and
observed [I > 2σ(I)] reflections
34336, 8235, 5875
Rint0.053
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.048, 1.01
No. of reflections8235
No. of parameters367
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.64, 1.11

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXL97.

Selected geometric parameters (Å, º) top
Re1—Re22.2262 (3)Re2—Cl32.3314 (12)
Re1—Cl22.3453 (12)Re2—Cl52.3436 (12)
Re1—Cl12.3556 (12)Re2—Cl42.3469 (13)
Re1—P22.4525 (12)Re2—P32.4551 (13)
Re1—P12.4703 (13)
Re2—Re1—Cl2103.86 (3)Re1—Re2—Cl3108.23 (4)
Re2—Re1—Cl1112.83 (3)Re1—Re2—Cl5109.51 (3)
Cl2—Re1—Cl1143.29 (5)Cl3—Re2—Cl5142.19 (5)
Re2—Re1—P2103.76 (4)Re1—Re2—Cl4104.17 (3)
Cl2—Re1—P283.86 (4)Cl3—Re2—Cl486.39 (5)
Cl1—Re1—P286.25 (4)Cl5—Re2—Cl486.55 (5)
Re2—Re1—P1104.88 (3)Re1—Re2—P3101.04 (3)
Cl2—Re1—P184.40 (4)Cl3—Re2—P384.93 (4)
Cl1—Re1—P187.42 (4)Cl5—Re2—P385.91 (4)
P2—Re1—P1150.89 (5)Cl4—Re2—P3154.77 (5)
Cl1—Re1—Re2—P34.10 (5)Cl2—Re1—Re2—Cl41.88 (5)
P2—Re1—Re2—Cl56.28 (5)P1—Re1—Re2—Cl31.16 (5)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds