Download citation
Download citation
link to html
The structures of cis- and trans-2-(4-tert-butyl­cyclo­hexyl­oxy)-1,3,5-tri­nitro­benzene, C16H21N3O7, (I) and (II), respectively, were determined at low temperature in order to obtain accurate structural parameters for comparison purposes. The Calkyl-Oether bond distances are 1.497 (2) and 1.491 (2) Å for (I) and (II), respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101019400/ta1354sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101019400/ta1354Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101019400/ta1354IIsup3.hkl
Contains datablock II

CCDC references: 182029; 182030

Comment top

This report forms part of our structural studies on cyclohexanes substituted with ester and ether derivatives of varying electron demand (White & Robertson, 1992; White et al., 1996, 2000). Previous work reported by Kirby and coworkers (Kirby & Allen, 1984; Briggs et al., 1984) has shown that Csp3—O bond distances are sensitive both to the donor ability of bonds which are antiperiplanar to the oxygen substituent, and also to the electron demand of the oxygen substituent itself. The Csp3—O bond distance was found to be linearly related to the electron demand of the oxygen substituent, and the slope of the plot was sensitive to the donor ability of bonds which were antiperiplanar to the C—O bond, and therefore able to donate electron density into the C—O antibonding orbital. This structural method for detecting electronic interactions in the ground state was referred to as the `variable oxygen probe' (Kirby et al., 1992).

The present low-temperature structural study is part of our efforts to apply the variable oxygen probe to the important question, Which is the better donor, a C—H bond or a C—C bond? Thus, we have embarked on a series of structural studies on ester and ether derivatives of cyclohexane, in which the oxygen substituent is constrained to occupy both axial and equatorial positions. An axial oxygen substituent has two antiperiplanar C—H bonds which can donate electron density into the C—O antibonding orbital (Scheme 2), whereas an equatorial oxygen substituent has two ring C—C bonds which can donate electron density into the C—O antibonding orbital. It is hoped that a comparison of the plots obtained for a range of oxygen substituents of varying electron demand will allow the distinction of the donor abilities of C—H and C—C bonds. The results for the title compounds, (I) and (II), are presented here. \sch

The structures of (I) and (II) were determined at 130 K to minimize the unwanted effects of thermal motion. Selected structural parameters for (I) and (II) are summarized in Tables 1 and 2, respectively.

The picrate (1,3,5-trinitrobenzene) moiety in both structures adopts the same conformation with respect to both the nitro substituents and the O-alkyl substituent. In both structures, the para nitro substituent is essentially coplanar with the aromatic ring, and one of the ortho nitro substituents is twisted slightly from the plane of the aromatic ring (ca 30°), while the second ortho nitro substituent is close to orthogonal. The conformation of the ortho nitro substituents presumably represents a compromise between the electron preference of the nitro group to be coplanar with the aromatic ring and the need to minimize steric interactions with the neighbouring oxygen substituent.

The conformation of the O-alkyl substituent, as defined by the dihedral angles C1—O1—C11—C12 and C1—O1—C11—C16, is essentially identical in each structure. While this conformation does not allow effective delocalization of an oxygen lone pair into the electron-deficient aromatic ring, a coplanar conformation would suffer from severe steric interaction between atom C1 and one of the ortho nitro substituents.

An examination of the bond angles O1—C1—C2 and O1—C1—C6 suggests that there is no significant strain associated with the axial substituent. This is consistent with the findings of Steiner (Steiner & Saenger, 1998), who examined a number of oxo-substituted cyclohexanes.

The C1—O1 distances in (I) and (II) are 1.497 (2) and 1.491 (2) Å, respectively. Although the axial picrate appears to have a slightly longer C—O bond than the corresponding equatorial picrate, this is barely significant. The C—C bond distances within the cyclohexane rings of both structures follow similar patterns, having the C1—C2 and C1—C6 bonds both shorter than the C2—C3 and C5—C6 bonds, and the C3—C4 and C4—C5 bonds, reflecting the expected effects of the strongly electron-withdrawing picryl substituent.

There are no significant differences in the C2—C3 and C5—C6 bond distances between the two structures. Thus, there are no observable structural effects of hyperconjugation of the antiperiplanar C—C bonds with the C1—O1 antibonding orbital in (II).

Experimental top

Compounds (I) and (II) were prepared by reaction of cis- and trans-cyclohexanol with 2,4,6-trinitrofluorobenzene in diethylether in the presence of an equivalent of pyridine. cis-4-tert-Butylcyclohexanol in pyridine/diethyl ether was treated with picryl fluoride to afford (I). Brown needles (m.p. 382–385 K) were grown from methanol. trans-4-tert-Butylcyclohexanol was treated in the same manner to prepare (II); recrystallization from pentane gave dark brown slabs (m.p. 381–383 K).

Refinement top

H atoms were placed in geometrical positions and treated as riding, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C). Are these the correct restraints?

Computing details top

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: Please provide missing details; data reduction: PROCESS_DATA (Gable et al., 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1994).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the molecule of (II). Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.
(I) cis-2-(4-tert-butylcyclohexyloxy)-1,3,5-trinitrobenzene top
Crystal data top
C16H21N3O7Dx = 1.344 Mg m3
Mr = 367.36Melting point = 382–385 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 15.257 (3) ÅCell parameters from 25 reflections
b = 8.954 (2) Åθ = 10–15°
c = 13.623 (2) ŵ = 0.11 mm1
β = 102.71 (2)°T = 130 K
V = 1815.5 (6) Å3Needle, brown
Z = 40.6 × 0.1 × 0.1 mm
F(000) = 776
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.071
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.7°
Graphite monochromatorh = 1817
θ/2θ scansk = 100
3341 measured reflectionsl = 016
3191 independent reflections3 standard reflections every 160 min
2589 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.7679P]
where P = (Fo2 + 2Fc2)/3
3191 reflections(Δ/σ)max = 0.001
232 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H21N3O7V = 1815.5 (6) Å3
Mr = 367.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.257 (3) ŵ = 0.11 mm1
b = 8.954 (2) ÅT = 130 K
c = 13.623 (2) Å0.6 × 0.1 × 0.1 mm
β = 102.71 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.071
3341 measured reflections3 standard reflections every 160 min
3191 independent reflections intensity decay: 2%
2589 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
3191 reflectionsΔρmin = 0.21 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.35406 (7)0.10294 (13)0.38706 (8)0.0283 (3)
O20.42741 (9)0.11097 (14)0.27609 (9)0.0399 (3)
O30.52807 (8)0.01119 (14)0.20653 (8)0.0373 (3)
O40.76546 (9)0.2442 (2)0.44099 (13)0.0684 (5)
O50.74124 (9)0.32672 (17)0.58197 (11)0.0499 (4)
O60.38102 (12)0.20593 (17)0.60027 (12)0.0608 (5)
O70.38321 (9)0.41883 (14)0.53021 (10)0.0418 (3)
N10.48488 (9)0.01663 (16)0.27262 (10)0.0285 (3)
N20.71656 (10)0.26895 (19)0.49872 (13)0.0415 (4)
N30.40736 (9)0.29034 (15)0.54415 (9)0.0258 (3)
C10.29548 (11)0.1294 (2)0.28506 (11)0.0289 (4)
H10.33020.11100.23190.035*
C20.26267 (12)0.2886 (2)0.27957 (13)0.0334 (4)
H2A0.23250.31150.20910.040*
H2B0.31520.35590.29850.040*
C30.19776 (12)0.3215 (2)0.34719 (13)0.0333 (4)
H3A0.17270.42300.33230.040*
H3B0.23110.31980.41830.040*
C40.12040 (11)0.2088 (2)0.33325 (12)0.0298 (4)
H40.08760.21530.26120.036*
C50.16018 (11)0.0509 (2)0.34915 (12)0.0309 (4)
H5A0.19570.04130.41900.037*
H5B0.11080.02310.33960.037*
C60.22027 (11)0.0175 (2)0.27564 (13)0.0324 (4)
H6A0.24600.08390.28890.039*
H6B0.18360.01930.20600.039*
C70.05095 (12)0.2445 (2)0.39792 (14)0.0391 (5)
C80.03041 (15)0.1422 (3)0.3667 (2)0.0672 (7)
H8A0.01130.03790.37760.101*
H8B0.05780.15790.29540.101*
H8C0.07440.16530.40720.101*
C90.01795 (11)0.4061 (2)0.37967 (11)0.0538 (6)
H9A0.06890.47450.39910.081*
H9B0.02640.42720.42000.081*
H9C0.00970.41980.30820.081*
C100.09208 (11)0.2259 (2)0.51114 (11)0.0554 (6)
H10A0.14430.29190.53060.083*
H10B0.11100.12200.52500.083*
H10C0.04720.25200.54980.083*
C110.44102 (10)0.14076 (17)0.40586 (11)0.0225 (3)
C120.50619 (11)0.09297 (17)0.35444 (11)0.0237 (3)
C130.59502 (11)0.13768 (18)0.38259 (12)0.0271 (4)
H130.63730.10720.34480.033*
C140.62135 (11)0.22707 (19)0.46628 (12)0.0284 (4)
C150.56138 (11)0.27694 (18)0.52143 (12)0.0273 (4)
H150.58010.33810.57920.033*
C160.47322 (11)0.23401 (17)0.48883 (11)0.0231 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0250 (6)0.0421 (7)0.0184 (5)0.0019 (5)0.0063 (4)0.0028 (5)
O20.0542 (8)0.0341 (7)0.0348 (7)0.0094 (6)0.0168 (6)0.0092 (5)
O30.0471 (7)0.0456 (8)0.0247 (6)0.0085 (6)0.0198 (5)0.0000 (5)
O40.0320 (8)0.1101 (15)0.0696 (11)0.0101 (9)0.0251 (8)0.0115 (10)
O50.0396 (8)0.0525 (9)0.0531 (9)0.0117 (7)0.0004 (6)0.0077 (7)
O60.0869 (12)0.0511 (9)0.0646 (10)0.0316 (8)0.0606 (9)0.0297 (8)
O70.0448 (8)0.0261 (7)0.0593 (9)0.0072 (6)0.0221 (6)0.0016 (6)
N10.0356 (8)0.0295 (8)0.0223 (7)0.0068 (7)0.0103 (6)0.0016 (6)
N20.0289 (8)0.0471 (10)0.0481 (10)0.0042 (7)0.0077 (7)0.0042 (8)
N30.0297 (7)0.0281 (8)0.0196 (7)0.0033 (6)0.0053 (5)0.0008 (6)
C10.0268 (8)0.0438 (10)0.0156 (7)0.0012 (8)0.0039 (6)0.0017 (7)
C20.0306 (9)0.0398 (10)0.0280 (9)0.0058 (8)0.0022 (7)0.0066 (8)
C30.0326 (9)0.0332 (9)0.0317 (9)0.0002 (8)0.0020 (7)0.0001 (8)
C40.0266 (8)0.0409 (10)0.0206 (8)0.0006 (8)0.0024 (6)0.0003 (7)
C50.0293 (9)0.0360 (10)0.0278 (8)0.0064 (7)0.0071 (7)0.0010 (7)
C60.0330 (9)0.0369 (10)0.0265 (8)0.0029 (8)0.0050 (7)0.0050 (7)
C70.0340 (10)0.0545 (12)0.0303 (9)0.0051 (9)0.0105 (8)0.0008 (8)
C80.0391 (12)0.094 (2)0.0784 (17)0.0083 (12)0.0346 (12)0.0186 (15)
C90.0496 (12)0.0722 (16)0.0396 (11)0.0260 (11)0.0098 (9)0.0002 (10)
C100.0614 (14)0.0788 (16)0.0308 (10)0.0217 (12)0.0203 (10)0.0088 (10)
C110.0260 (8)0.0230 (8)0.0189 (7)0.0018 (6)0.0063 (6)0.0056 (6)
C120.0308 (8)0.0223 (8)0.0192 (7)0.0025 (7)0.0081 (6)0.0033 (6)
C130.0302 (9)0.0276 (9)0.0267 (8)0.0067 (7)0.0129 (7)0.0077 (7)
C140.0254 (8)0.0301 (9)0.0305 (9)0.0011 (7)0.0080 (7)0.0064 (7)
C150.0334 (9)0.0246 (8)0.0236 (8)0.0017 (7)0.0058 (7)0.0016 (6)
C160.0291 (8)0.0218 (8)0.0203 (8)0.0039 (7)0.0100 (6)0.0042 (6)
Geometric parameters (Å, º) top
O1—C111.3383 (19)C5—H5A0.9900
O1—C11.4964 (18)C5—H5B0.9900
O2—N11.2259 (18)C6—H6A0.9900
O3—N11.2281 (17)C6—H6B0.9900
O4—N21.217 (2)C7—C81.526 (3)
O5—N21.228 (2)C7—C91.534 (3)
O6—N31.2052 (19)C7—C101.541 (2)
O7—N31.2103 (18)C8—H8A0.9800
N1—C121.467 (2)C8—H8B0.9800
N2—C141.471 (2)C8—H8C0.9800
N3—C161.471 (2)C9—H9A0.9800
C1—C61.507 (2)C9—H9B0.9800
C1—C21.508 (3)C9—H9C0.9800
C1—H11.0000C10—H10A0.9800
C2—C31.522 (2)C10—H10B0.9800
C2—H2A0.9900C10—H10C0.9800
C2—H2B0.9900C11—C121.403 (2)
C3—C41.532 (2)C11—C161.404 (2)
C3—H3A0.9900C12—C131.384 (2)
C3—H3B0.9900C13—C141.378 (2)
C4—C51.535 (3)C13—H130.9500
C4—C71.553 (2)C14—C151.380 (2)
C4—H41.0000C15—C161.375 (2)
C5—C61.529 (2)C15—H150.9500
C11—O1—C1120.13 (11)C5—C6—H6B109.3
O2—N1—O3124.01 (14)H6A—C6—H6B107.9
O2—N1—C12118.20 (13)C8—C7—C9107.64 (17)
O3—N1—C12117.74 (14)C8—C7—C10109.94 (17)
O4—N2—O5124.49 (16)C9—C7—C10108.13 (15)
O4—N2—C14117.69 (16)C8—C7—C4109.47 (16)
O5—N2—C14117.83 (15)C9—C7—C4110.04 (15)
O6—N3—O7124.27 (14)C10—C7—C4111.54 (14)
O6—N3—C16118.07 (13)C7—C8—H8A109.5
O7—N3—C16117.66 (13)C7—C8—H8B109.5
O1—C1—C6105.18 (13)H8A—C8—H8B109.5
O1—C1—C2108.65 (13)C7—C8—H8C109.5
C6—C1—C2112.71 (14)H8A—C8—H8C109.5
O1—C1—H1110.1H8B—C8—H8C109.5
C6—C1—H1110.1C7—C9—H9A109.5
C2—C1—H1110.1C7—C9—H9B109.5
C1—C2—C3113.94 (14)H9A—C9—H9B109.5
C1—C2—H2A108.8C7—C9—H9C109.5
C3—C2—H2A108.8H9A—C9—H9C109.5
C1—C2—H2B108.8H9B—C9—H9C109.5
C3—C2—H2B108.8C7—C10—H10A109.5
H2A—C2—H2B107.7C7—C10—H10B109.5
C2—C3—C4112.56 (14)H10A—C10—H10B109.5
C2—C3—H3A109.1C7—C10—H10C109.5
C4—C3—H3A109.1H10A—C10—H10C109.5
C2—C3—H3B109.1H10B—C10—H10C109.5
C4—C3—H3B109.1O1—C11—C12127.51 (14)
H3A—C3—H3B107.8O1—C11—C16117.45 (13)
C3—C4—C5108.62 (14)C12—C11—C16114.98 (14)
C3—C4—C7113.40 (15)C13—C12—C11122.12 (14)
C5—C4—C7114.04 (14)C13—C12—N1116.36 (14)
C3—C4—H4106.8C11—C12—N1121.36 (14)
C5—C4—H4106.8C14—C13—C12119.12 (15)
C7—C4—H4106.8C14—C13—H13120.4
C6—C5—C4111.29 (14)C12—C13—H13120.4
C6—C5—H5A109.4C13—C14—C15122.06 (15)
C4—C5—H5A109.4C13—C14—N2119.03 (15)
C6—C5—H5B109.4C15—C14—N2118.90 (15)
C4—C5—H5B109.4C16—C15—C14116.89 (15)
H5A—C5—H5B108.0C16—C15—H15121.6
C1—C6—C5111.69 (14)C14—C15—H15121.6
C1—C6—H6A109.3C15—C16—C11124.77 (14)
C5—C6—H6A109.3C15—C16—N3117.93 (14)
C1—C6—H6B109.3C11—C16—N3117.30 (13)
C11—O1—C1—C6155.11 (14)O2—N1—C12—C13144.63 (15)
C11—O1—C1—C283.98 (17)O3—N1—C12—C1332.9 (2)
O1—C1—C2—C367.89 (17)O2—N1—C12—C1130.8 (2)
C6—C1—C2—C348.26 (19)O3—N1—C12—C11151.64 (14)
C1—C2—C3—C450.75 (19)C11—C12—C13—C142.7 (2)
C2—C3—C4—C554.79 (18)N1—C12—C13—C14172.67 (14)
C2—C3—C4—C7177.32 (14)C12—C13—C14—C151.8 (2)
C3—C4—C5—C658.41 (17)C12—C13—C14—N2177.30 (14)
C7—C4—C5—C6174.06 (14)O4—N2—C14—C1312.2 (3)
O1—C1—C6—C566.86 (17)O5—N2—C14—C13167.98 (16)
C2—C1—C6—C551.34 (18)O4—N2—C14—C15168.67 (17)
C4—C5—C6—C157.57 (18)O5—N2—C14—C1511.2 (2)
C3—C4—C7—C8170.95 (18)C13—C14—C15—C160.3 (2)
C5—C4—C7—C864.0 (2)N2—C14—C15—C16179.46 (14)
C3—C4—C7—C952.85 (18)C14—C15—C16—C111.8 (2)
C5—C4—C7—C9177.87 (14)C14—C15—C16—N3177.76 (14)
C3—C4—C7—C1067.1 (2)O1—C11—C16—C15176.52 (14)
C5—C4—C7—C1057.9 (2)C12—C11—C16—C150.9 (2)
C1—O1—C11—C1256.7 (2)O1—C11—C16—N33.9 (2)
C1—O1—C11—C16126.24 (15)C12—C11—C16—N3178.61 (13)
O1—C11—C12—C13178.53 (15)O6—N3—C16—C15104.03 (19)
C16—C11—C12—C131.4 (2)O7—N3—C16—C1575.94 (18)
O1—C11—C12—N13.4 (2)O6—N3—C16—C1176.4 (2)
C16—C11—C12—N1173.79 (13)O7—N3—C16—C11103.64 (17)
(II) trans-2-(4-tert-butylcyclohexyloxy)-1,3,5-trinitrobenzene top
Crystal data top
C16H21N3O7Dx = 1.375 Mg m3
Mr = 367.37Melting point = 381–383 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 14.950 (3) ÅCell parameters from 25 reflections
b = 8.349 (1) Åθ = 10–15°
c = 14.292 (5) ŵ = 0.11 mm1
β = 94.22 (3)°T = 130 K
V = 1779.1 (7) Å3Slab, dark brown
Z = 40.50 × 0.25 × 0.10 mm
F(000) = 776
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.015
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.7°
Graphite monochromatorh = 1717
θ/2θ scansk = 90
3248 measured reflectionsl = 016
3108 independent reflections3 standard reflections every 160 min
2092 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.7612P]
where P = (Fo2 + 2Fc2)/3
3104 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H21N3O7V = 1779.1 (7) Å3
Mr = 367.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.950 (3) ŵ = 0.11 mm1
b = 8.349 (1) ÅT = 130 K
c = 14.292 (5) Å0.50 × 0.25 × 0.10 mm
β = 94.22 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.015
3248 measured reflections3 standard reflections every 160 min
3108 independent reflections intensity decay: 2%
2092 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
3104 reflectionsΔρmin = 0.19 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84872 (10)0.1190 (2)0.40551 (11)0.0253 (4)
O20.85703 (12)0.4082 (2)0.52717 (13)0.0402 (5)
O30.90399 (12)0.2361 (2)0.63250 (12)0.0359 (5)
O41.23900 (12)0.3059 (2)0.55036 (14)0.0438 (5)
O51.26771 (13)0.2012 (3)0.41659 (16)0.0602 (7)
O61.02665 (12)0.0020 (2)0.20675 (11)0.0369 (5)
O70.91774 (12)0.1046 (2)0.27963 (12)0.0339 (5)
N10.90506 (13)0.2977 (2)0.55517 (14)0.0244 (5)
N21.21651 (14)0.2425 (3)0.47530 (17)0.0361 (6)
N30.97976 (14)0.0092 (3)0.27382 (14)0.0282 (5)
C10.79426 (16)0.1531 (3)0.31599 (16)0.0257 (6)
H10.83380.14640.26260.017 (6)*
C20.75570 (16)0.3191 (3)0.31971 (17)0.0280 (6)
H2A0.80480.39870.32640.035 (7)*
H2B0.71940.32900.37460.034 (7)*
C30.69676 (16)0.3517 (3)0.22938 (18)0.0316 (6)
H3A0.73500.35390.17570.034 (7)*
H3B0.66840.45830.23380.035 (7)*
C40.62307 (16)0.2244 (3)0.21108 (17)0.0289 (6)
H40.58510.22870.26580.033 (7)*
C50.66574 (16)0.0585 (3)0.21249 (17)0.0305 (6)
H5A0.70380.04880.15900.043 (8)*
H5B0.61790.02340.20470.037 (7)*
C60.72289 (16)0.0265 (3)0.30392 (17)0.0293 (6)
H6A0.68470.02900.35760.033 (7)*
H6B0.75090.08070.30160.037 (7)*
C70.55888 (17)0.2578 (4)0.12176 (17)0.0345 (7)
C80.6077 (2)0.2401 (4)0.03194 (18)0.0443 (8)
H8A0.63010.13030.02730.055 (9)*
H8B0.65820.31520.03350.049 (9)*
H8C0.56610.26350.02260.051 (9)*
C90.4801 (2)0.1405 (5)0.1184 (2)0.0572 (10)
H9A0.50200.03170.10840.065 (11)*
H9B0.43630.16980.06690.055 (9)*
H9C0.45150.14490.17790.050 (9)*
C100.5215 (2)0.4271 (4)0.12585 (19)0.0485 (9)
H10A0.49640.44410.18650.054 (9)*
H10B0.47430.44170.07530.045 (8)*
H10C0.56970.50460.11840.065 (11)*
C110.93706 (16)0.1490 (3)0.41285 (16)0.0228 (5)
C120.97072 (15)0.2353 (3)0.49202 (15)0.0221 (5)
C131.05979 (16)0.2654 (3)0.51559 (16)0.0251 (6)
H131.07910.31950.57190.025 (6)*
C141.12021 (16)0.2127 (3)0.45307 (17)0.0258 (6)
C151.09264 (16)0.1314 (3)0.37222 (17)0.0265 (6)
H151.13490.09930.32950.027 (7)*
C161.00252 (15)0.0973 (3)0.35411 (16)0.0231 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0223 (9)0.0320 (10)0.0219 (9)0.0007 (7)0.0036 (7)0.0037 (7)
O20.0448 (12)0.0381 (11)0.0387 (11)0.0200 (10)0.0082 (9)0.0031 (9)
O30.0447 (11)0.0382 (11)0.0264 (10)0.0069 (9)0.0141 (8)0.0058 (9)
O40.0310 (11)0.0466 (13)0.0521 (13)0.0016 (9)0.0083 (9)0.0001 (10)
O50.0288 (11)0.0772 (17)0.0767 (16)0.0004 (11)0.0184 (11)0.0211 (13)
O60.0464 (12)0.0420 (12)0.0239 (10)0.0104 (9)0.0132 (8)0.0007 (8)
O70.0341 (10)0.0330 (11)0.0348 (11)0.0008 (9)0.0027 (8)0.0064 (8)
N10.0251 (11)0.0231 (11)0.0252 (12)0.0005 (9)0.0035 (9)0.0019 (9)
N20.0284 (12)0.0324 (13)0.0473 (15)0.0024 (11)0.0017 (11)0.0038 (12)
N30.0304 (12)0.0296 (13)0.0248 (12)0.0080 (10)0.0028 (9)0.0008 (9)
C10.0258 (13)0.0323 (15)0.0188 (13)0.0007 (11)0.0012 (10)0.0044 (11)
C20.0279 (14)0.0288 (14)0.0279 (14)0.0001 (12)0.0059 (11)0.0028 (11)
C30.0278 (14)0.0357 (16)0.0320 (15)0.0063 (12)0.0056 (11)0.0069 (12)
C40.0224 (12)0.0431 (16)0.0222 (13)0.0043 (12)0.0072 (10)0.0060 (12)
C50.0261 (14)0.0366 (16)0.0285 (14)0.0015 (12)0.0001 (11)0.0017 (12)
C60.0293 (14)0.0295 (15)0.0285 (14)0.0025 (12)0.0012 (11)0.0028 (12)
C70.0301 (14)0.0503 (18)0.0235 (13)0.0086 (13)0.0042 (11)0.0067 (13)
C80.0487 (18)0.060 (2)0.0245 (14)0.0151 (17)0.0027 (13)0.0029 (14)
C90.0393 (18)0.088 (3)0.0419 (19)0.0043 (19)0.0125 (15)0.0149 (18)
C100.0417 (18)0.075 (2)0.0289 (16)0.0276 (18)0.0029 (13)0.0072 (16)
C110.0275 (13)0.0182 (13)0.0229 (13)0.0003 (10)0.0026 (10)0.0057 (10)
C120.0276 (13)0.0193 (13)0.0199 (12)0.0020 (11)0.0060 (10)0.0045 (10)
C130.0310 (14)0.0218 (13)0.0224 (13)0.0014 (11)0.0007 (11)0.0030 (11)
C140.0224 (13)0.0224 (13)0.0329 (14)0.0016 (11)0.0033 (11)0.0082 (12)
C150.0293 (14)0.0237 (14)0.0274 (14)0.0063 (11)0.0094 (11)0.0059 (11)
C160.0295 (13)0.0201 (13)0.0196 (12)0.0030 (11)0.0014 (10)0.0027 (10)
Geometric parameters (Å, º) top
O1—C111.341 (3)C5—H5A0.9900
O1—C11.492 (3)C5—H5B0.9900
O2—N11.218 (3)C6—H6A0.9900
O3—N11.220 (2)C6—H6B0.9900
O4—N21.221 (3)C7—C101.523 (4)
O5—N21.226 (3)C7—C91.530 (4)
O6—N31.230 (2)C7—C81.530 (3)
O7—N31.230 (3)C8—H8A0.9800
N1—C121.476 (3)C8—H8B0.9800
N2—C141.472 (3)C8—H8C0.9800
N3—C161.472 (3)C9—H9A0.9800
C1—C61.503 (3)C9—H9B0.9800
C1—C21.504 (3)C9—H9C0.9800
C1—H11.0000C10—H10A0.9800
C2—C31.533 (3)C10—H10B0.9800
C2—H2A0.9900C10—H10C0.9800
C2—H2B0.9900C11—C121.403 (3)
C3—C41.539 (4)C11—C161.403 (3)
C3—H3A0.9900C12—C131.372 (3)
C3—H3B0.9900C13—C141.388 (3)
C4—C51.525 (4)C13—H130.9500
C4—C71.565 (3)C14—C151.377 (3)
C4—H41.0000C15—C161.383 (3)
C5—C61.531 (3)C15—H150.9500
C11—O1—C1120.24 (17)C5—C6—H6B109.9
O2—N1—O3124.7 (2)H6A—C6—H6B108.3
O2—N1—C12117.9 (2)C10—C7—C9108.2 (2)
O3—N1—C12117.30 (19)C10—C7—C8108.7 (2)
O4—N2—O5125.3 (2)C9—C7—C8109.0 (2)
O4—N2—C14117.7 (2)C10—C7—C4109.8 (2)
O5—N2—C14117.0 (2)C9—C7—C4109.6 (2)
O7—N3—O6124.1 (2)C8—C7—C4111.4 (2)
O7—N3—C16118.09 (19)C7—C8—H8A109.5
O6—N3—C16117.7 (2)C7—C8—H8B109.5
O1—C1—C6107.60 (19)H8A—C8—H8B109.5
O1—C1—C2109.37 (19)C7—C8—H8C109.5
C6—C1—C2112.4 (2)H8A—C8—H8C109.5
O1—C1—H1109.1H8B—C8—H8C109.5
C6—C1—H1109.1C7—C9—H9A109.5
C2—C1—H1109.1C7—C9—H9B109.5
C1—C2—C3109.4 (2)H9A—C9—H9B109.5
C1—C2—H2A109.8C7—C9—H9C109.5
C3—C2—H2A109.8H9A—C9—H9C109.5
C1—C2—H2B109.8H9B—C9—H9C109.5
C3—C2—H2B109.8C7—C10—H10A109.5
H2A—C2—H2B108.2C7—C10—H10B109.5
C2—C3—C4112.4 (2)H10A—C10—H10B109.5
C2—C3—H3A109.1C7—C10—H10C109.5
C4—C3—H3A109.1H10A—C10—H10C109.5
C2—C3—H3B109.1H10B—C10—H10C109.5
C4—C3—H3B109.1O1—C11—C12116.9 (2)
H3A—C3—H3B107.9O1—C11—C16128.5 (2)
C5—C4—C3109.35 (19)C12—C11—C16114.6 (2)
C5—C4—C7113.8 (2)C13—C12—C11125.1 (2)
C3—C4—C7113.8 (2)C13—C12—N1117.5 (2)
C5—C4—H4106.4C11—C12—N1117.3 (2)
C3—C4—H4106.4C12—C13—C14116.7 (2)
C7—C4—H4106.4C12—C13—H13121.6
C4—C5—C6112.1 (2)C14—C13—H13121.6
C4—C5—H5A109.2C15—C14—C13121.8 (2)
C6—C5—H5A109.2C15—C14—N2119.5 (2)
C4—C5—H5B109.2C13—C14—N2118.7 (2)
C6—C5—H5B109.2C14—C15—C16119.1 (2)
H5A—C5—H5B107.9C14—C15—H15120.5
C1—C6—C5108.8 (2)C16—C15—H15120.5
C1—C6—H6A109.9C15—C16—C11122.5 (2)
C5—C6—H6A109.9C15—C16—N3115.9 (2)
C1—C6—H6B109.9C11—C16—N3121.4 (2)
C11—O1—C1—C6145.1 (2)O2—N1—C12—C13109.7 (2)
C11—O1—C1—C292.5 (2)O3—N1—C12—C1369.2 (3)
O1—C1—C2—C3177.80 (18)O2—N1—C12—C1170.7 (3)
C6—C1—C2—C358.3 (3)O3—N1—C12—C11110.4 (2)
C1—C2—C3—C455.3 (3)C11—C12—C13—C143.5 (4)
C2—C3—C4—C554.0 (3)N1—C12—C13—C14176.9 (2)
C2—C3—C4—C7177.5 (2)C12—C13—C14—C151.3 (4)
C3—C4—C5—C655.4 (3)C12—C13—C14—N2179.9 (2)
C7—C4—C5—C6176.1 (2)O4—N2—C14—C15175.5 (2)
O1—C1—C6—C5179.92 (19)O5—N2—C14—C154.5 (3)
C2—C1—C6—C559.4 (3)O4—N2—C14—C133.4 (3)
C4—C5—C6—C157.9 (3)O5—N2—C14—C13176.7 (2)
C5—C4—C7—C10178.7 (2)C13—C14—C15—C161.9 (4)
C3—C4—C7—C1052.5 (3)N2—C14—C15—C16176.9 (2)
C5—C4—C7—C962.6 (3)C14—C15—C16—C113.1 (4)
C3—C4—C7—C9171.2 (2)C14—C15—C16—N3171.6 (2)
C5—C4—C7—C858.2 (3)O1—C11—C16—C15177.1 (2)
C3—C4—C7—C868.0 (3)C12—C11—C16—C151.1 (3)
C1—O1—C11—C12131.1 (2)O1—C11—C16—N32.7 (4)
C1—O1—C11—C1653.0 (3)C12—C11—C16—N3173.3 (2)
O1—C11—C12—C13174.1 (2)O7—N3—C16—C15144.3 (2)
C16—C11—C12—C132.4 (3)O6—N3—C16—C1532.6 (3)
O1—C11—C12—N15.4 (3)O7—N3—C16—C1130.5 (3)
C16—C11—C12—N1178.1 (2)O6—N3—C16—C11152.6 (2)

Experimental details

(I)(II)
Crystal data
Chemical formulaC16H21N3O7C16H21N3O7
Mr367.36367.37
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)130130
a, b, c (Å)15.257 (3), 8.954 (2), 13.623 (2)14.950 (3), 8.349 (1), 14.292 (5)
β (°) 102.71 (2) 94.22 (3)
V3)1815.5 (6)1779.1 (7)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.110.11
Crystal size (mm)0.6 × 0.1 × 0.10.50 × 0.25 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3341, 3191, 2589 3248, 3108, 2092
Rint0.0710.015
(sin θ/λ)max1)0.5950.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.01 0.047, 0.112, 1.04
No. of reflections31913104
No. of parameters232256
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.210.22, 0.19

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), Please provide missing details, PROCESS_DATA (Gable et al., 1994), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1994).

Selected geometric parameters (Å, º) for (I) top
O1—C111.3383 (19)C2—C31.522 (2)
O1—C11.4964 (18)C3—C41.532 (2)
O2—N11.2259 (18)C4—C51.535 (3)
O3—N11.2281 (17)C4—C71.553 (2)
O4—N21.217 (2)C5—C61.529 (2)
O5—N21.228 (2)C7—C81.526 (3)
O6—N31.2052 (19)C7—C91.534 (3)
O7—N31.2103 (18)C7—C101.541 (2)
N1—C121.467 (2)C11—C121.403 (2)
N2—C141.471 (2)C11—C161.404 (2)
N3—C161.471 (2)C12—C131.384 (2)
C1—C61.507 (2)C13—C141.378 (2)
C1—C21.508 (3)
C11—O1—C1120.13 (11)C3—C4—C5108.62 (14)
O1—C1—C6105.18 (13)C3—C4—C7113.40 (15)
O1—C1—C2108.65 (13)C5—C4—C7114.04 (14)
C1—C2—C3113.94 (14)C6—C5—C4111.29 (14)
C2—C3—C4112.56 (14)C1—C6—C5111.69 (14)
C11—O1—C1—C6155.11 (14)O3—N1—C12—C11151.64 (14)
C11—O1—C1—C283.98 (17)O4—N2—C14—C1312.2 (3)
O1—C1—C2—C367.89 (17)O5—N2—C14—C13167.98 (16)
O1—C1—C6—C566.86 (17)O4—N2—C14—C15168.67 (17)
C1—O1—C11—C1256.7 (2)O5—N2—C14—C1511.2 (2)
C1—O1—C11—C16126.24 (15)O6—N3—C16—C15104.03 (19)
O2—N1—C12—C13144.63 (15)O7—N3—C16—C1575.94 (18)
O3—N1—C12—C1332.9 (2)O6—N3—C16—C1176.4 (2)
O2—N1—C12—C1130.8 (2)O7—N3—C16—C11103.64 (17)
Selected geometric parameters (Å, º) for (II) top
O1—C11.492 (3)C3—C41.539 (4)
O2—N11.218 (3)C4—C51.525 (4)
O3—N11.220 (2)C4—C71.565 (3)
O4—N21.221 (3)C5—C61.531 (3)
O5—N21.226 (3)C7—C101.523 (4)
O6—N31.230 (2)C7—C91.530 (4)
O7—N31.230 (3)C7—C81.530 (3)
N1—C121.476 (3)C11—C121.403 (3)
N2—C141.472 (3)C11—C161.403 (3)
N3—C161.472 (3)C12—C131.372 (3)
C1—C61.503 (3)C13—C141.388 (3)
C1—C21.504 (3)C14—C151.377 (3)
C2—C31.533 (3)C15—C161.383 (3)
C11—O1—C1120.24 (17)C5—C4—C3109.35 (19)
O1—C1—C6107.60 (19)C5—C4—C7113.8 (2)
O1—C1—C2109.37 (19)C3—C4—C7113.8 (2)
C1—C2—C3109.4 (2)C4—C5—C6112.1 (2)
C2—C3—C4112.4 (2)C1—C6—C5108.8 (2)
O1—C1—C2—C3177.80 (18)O4—N2—C14—C15175.5 (2)
O1—C1—C6—C5179.92 (19)O5—N2—C14—C154.5 (3)
C1—O1—C11—C12131.1 (2)O4—N2—C14—C133.4 (3)
C1—O1—C11—C1653.0 (3)O5—N2—C14—C13176.7 (2)
O2—N1—C12—C13109.7 (2)O7—N3—C16—C15144.3 (2)
O3—N1—C12—C1369.2 (3)O6—N3—C16—C1532.6 (3)
O2—N1—C12—C1170.7 (3)O7—N3—C16—C1130.5 (3)
O3—N1—C12—C11110.4 (2)O6—N3—C16—C11152.6 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds