Download citation
Download citation
link to html
The X-ray crystallographic analysis of the title complex, chloro­[3,10,13,20-tetraethyl-4,9,14,19-tetra­methyl­penta­cyclo[16.2.1.12,5.18,11.112,15]­tetracosa-2,4,6,8(23),9,12,14,16,18(21),19-decaene]­iron(III) chloro­form solvate, [Fe(C33H37N4)Cl]·CHCl3, reveals a twisted macrocyclic framework with a slightly distorted rectangular pyramidal core, where the deviation of the central FeIII atom from the least-squares plane of the C20N4 core is 0.594 (1) Å. Some important bond distances are as follows: Fe-N 2.019 (3), 2.026 (3), 2.028 (3) and 2.034 (3) Å; Fe-Cl 2.232 (1) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101009842/ta1328sup1.cif
Contains datablocks I, [Fe(EtioPc)Cl]

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101009842/ta1328Isup2.hkl
Contains datablock I

CCDC reference: 173354

Comment top

Porphycene, known as the first porphyrin isomer (Vogel et al., 1986), has attracted much attention because of its possible use as a sensitizer for photodynamic therapy (PDT). Elucidation of the structural features of iron–porphycene complexes is quite important, not only for reconsidering the role of the Fe atom in natural porphyrins from a distinctly structural viewpoint, but for explaining their novel physicochemical properties. Among the complexes containing the porphycenatoiron unit, only a few examples, such as σ-bonded aryliron porphycenes and µ-oxo-iron porphycene dimers have been crystallographically analyzed (Kadish et al., 1998; Lausmann et al., 1994). In this paper, we describe the first example of an X-ray crystallographic analysis of a chloroiron(III) porphycene complex, (I), which is necessary for structural comparison with widely used chloroiron(III) porphyrin complexes.

The porphycene ring (Fig. 1) exhibits a slightly twisted structure where the shifts of the peripheral 24 atoms from the least-squares plane of the C20N4 porphycenato core range from 0.011 to 0.391 (4) Å. The deformation pattern looks like a hybrid of the ruffled and saddled structures frequently observed in porphyrin complexes (Ma et al., 1998). The C atoms showing a large deviation from the C20N4 plane are C3, C9, C13, and C19, the deviations being 0.347 (4), -0.301 (4), 0.391 (4) and 0.234 (4) Å, respectively. The axial Fe—Cl bond distance is 2.232 (1) Å, which is not significantly different to that reported for the similarly β-substituted porphyrin complex [Fe(OEP)Cl] [OEP is the dianion of 2,3,7,8,12,13,17,18-octaethylporphyrin; Senge, M. O. (1997), data taken from the Cambridge Structural Database (Allen & Kennard, 1993)], 2.23 Å. The peripheral ethyl groups take an αβαβ conformation to avoid steric repulsion at the directly linked pyrrole rings. While the average Fe—N bond distance in [Fe(OEP)Cl] is 2.07 Å, those of (I) are much shorter, with values of 2.019 (3), 2.026 (3), 2.028 (3) and 2.034 (3) Å. The central N4 cavity has a rectangular geometry, with a long side of 2.944 (4) Å and a short side of 2.579 (4) Å. Thus, the surface area within the N4-coordination core, 7.593 Å2, is much smaller than the corresponding area of [Fe(OEP)Cl], 8.123 Å2. Because of the smaller surface area in (I), the deviation of the central FeIII atom from the C20N4 plane of 0.594 (1) Å is significantly larger than in [Fe(OEP)Cl] (0.495 Å)·The larger deviation should affect the electronic state of the Fe atom. In fact, complex (I) is determined to be the spin-admixed S = 5/2, 3/2 complex on the basis of the SQUID measurement in our preliminary work; µeff = 5.23 µB at 300 K (Ohgo et al., 2001). This result is in sharp contrast to the case in [Fe(OEP)Cl], which displays a quite pure high-spin S = 5/2 state. In conclusion, the present study has revealed that the unique cavity geometry of porphycene stabilizes the admixed intermediate spin state even in a chloroiron(III) complex.

Experimental top

3,6,13,16-Tetraethyl-2,7,12,17-tetramethylporphycene was synthesized according to the literature method of Vogel et al. (1993) from ethyl 4-ethyl-3,5-dimethylpyrrole-2-carboxylate as starting material. This porphycene is a positional isomer of etioporphycene reported by Vogel et al. (1993). Insertion of iron was carried out according to Adler et al. (1970) to afford the title chloroiron(III) complex.

Refinement top

There is disorder in the solvent CHCl3 molecule. The site-occupation factors for the disordered groups (A and B) are 0.50 each. H atoms were refined using a riding model. The positional parameters of the H atoms were constrained to have C—H distances of 0.96 Å for primary, 0.97 Å for secondary, and 0.93 Å for aromatic H atoms. H-atom Ueq values were constrained to 1.2 times the Uiso of the atoms to which they were attached (1.5 for methyl groups).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992a); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: MSC/AFC Diffractometer Control Software. Data Reduction: TEXSAN (Molecular Structure Corporation, 1992b); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SV (Nemoto & Ohashi, 1993); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure (ORTEP; Johnson, 1965) of the title compound with the atomic numbering. Displacement ellipsoids are shown at the 30% probability level and H atoms have been omitted for clarity.
Chloro[(3,6,13,16-tetraethyl-2,7,12,17-tetramethylporphycenato)iron(III)] chloroform solvate top
Crystal data top
[Fe(C32H36N4)Cl]·CHCl3F(000) = 1428
Mr = 687.32Dx = 1.381 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 14.722 (1) ÅCell parameters from 20513 reflections
b = 10.225 (1) Åθ = 0.9–27.5°
c = 22.319 (2) ŵ = 0.81 mm1
β = 100.35 (1)°T = 298 K
V = 3305.1 (6) Å3Prismatic, purple
Z = 40.2 × 0.2 × 0.2 mm
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
7514 independent reflections
Radiation source: rotating anode5436 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 1.8°
ω scansh = 1917
Absorption correction: multi-scan
ABSCOR (Higashi, 1995)
k = 1310
Tmin = 0.849, Tmax = 0.851l = 2728
19098 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.205 w = 1/[σ2(Fo2) + (0.1119P)2 + 1.7054P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
7514 reflectionsΔρmax = 0.77 e Å3
415 parametersΔρmin = 0.47 e Å3
6 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (2)
Crystal data top
[Fe(C32H36N4)Cl]·CHCl3V = 3305.1 (6) Å3
Mr = 687.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.722 (1) ŵ = 0.81 mm1
b = 10.225 (1) ÅT = 298 K
c = 22.319 (2) Å0.2 × 0.2 × 0.2 mm
β = 100.35 (1)°
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
7514 independent reflections
Absorption correction: multi-scan
ABSCOR (Higashi, 1995)
5436 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.851Rint = 0.049
19098 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0706 restraints
wR(F2) = 0.205H-atom parameters constrained
S = 1.08Δρmax = 0.77 e Å3
7514 reflectionsΔρmin = 0.47 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.73807 (3)0.11207 (4)0.08403 (2)0.04654 (19)
Cl10.71525 (7)0.20457 (10)0.00802 (4)0.0645 (3)
N10.7147 (2)0.0831 (3)0.07205 (13)0.0526 (7)
N20.8690 (2)0.0422 (3)0.09608 (12)0.0504 (6)
N30.7739 (2)0.2654 (3)0.14085 (12)0.0513 (6)
N40.6195 (2)0.1414 (3)0.11557 (12)0.0519 (6)
C10.6384 (3)0.1639 (4)0.05794 (16)0.0586 (9)
C20.6696 (4)0.2917 (4)0.04374 (18)0.0712 (11)
C30.7638 (3)0.2894 (4)0.05056 (17)0.0663 (10)
C40.7922 (3)0.1570 (3)0.06731 (15)0.0544 (8)
C50.8761 (3)0.0869 (4)0.07807 (15)0.0543 (8)
C60.9713 (3)0.1117 (4)0.07239 (17)0.0646 (10)
C71.0180 (3)0.0025 (5)0.08583 (18)0.0663 (10)
C80.9549 (2)0.0978 (4)0.10120 (16)0.0568 (8)
C90.9820 (3)0.2239 (4)0.12060 (18)0.0661 (10)
H91.04170.24450.11550.079*
C100.9389 (3)0.3246 (4)0.14575 (18)0.0687 (11)
H100.97710.39650.15630.082*
C110.8509 (3)0.3418 (4)0.15865 (16)0.0582 (9)
C120.8266 (4)0.4487 (4)0.19455 (18)0.0732 (12)
C130.7355 (4)0.4381 (4)0.19787 (17)0.0686 (11)
C140.7013 (3)0.3236 (3)0.16214 (14)0.0559 (8)
C150.6159 (3)0.2591 (4)0.14555 (15)0.0541 (8)
C160.5211 (3)0.2861 (4)0.15004 (17)0.0665 (10)
C170.4686 (3)0.1852 (5)0.12207 (18)0.0680 (11)
C180.5306 (3)0.0934 (4)0.10153 (16)0.0585 (9)
C190.5013 (3)0.0261 (5)0.07452 (18)0.0682 (10)
H190.43740.03550.06710.082*
C200.5464 (3)0.1332 (4)0.05652 (18)0.0663 (10)
H200.50640.19930.03970.080*
C210.6063 (5)0.4084 (5)0.0263 (3)0.0993 (18)
H21A0.63980.48770.03770.149*
H21B0.58450.40800.01690.149*
H21C0.55470.40310.04710.149*
C220.8211 (5)0.4087 (4)0.0430 (3)0.0930 (16)
H22A0.79530.48390.06050.112*
H22B0.88340.39570.06510.112*
C230.8241 (6)0.4361 (7)0.0237 (3)0.133 (3)
H23A0.76240.43910.04650.199*
H23B0.85400.51850.02710.199*
H23C0.85800.36790.03950.199*
C241.0160 (4)0.2360 (5)0.0559 (2)0.0873 (14)
H24A1.06240.21470.03160.105*
H24B0.96980.29070.03140.105*
C251.0609 (5)0.3113 (7)0.1123 (3)0.129 (3)
H25A1.10800.25820.13600.194*
H25B1.08810.39010.10030.194*
H25C1.01500.33290.13630.194*
C261.1197 (3)0.0249 (6)0.0868 (2)0.0908 (15)
H26A1.15110.03360.12820.136*
H26B1.12780.10340.06480.136*
H26C1.14480.04800.06810.136*
C270.8937 (5)0.5510 (6)0.2254 (3)0.112 (2)
H27A0.89010.62750.20010.169*
H27B0.95530.51650.23140.169*
H27C0.87820.57360.26400.169*
C280.6867 (4)0.5295 (5)0.2346 (2)0.0866 (14)
H28A0.72710.54810.27300.104*
H28B0.63200.48630.24360.104*
C290.6583 (6)0.6575 (5)0.2022 (3)0.118 (2)
H29A0.71220.70170.19380.177*
H29B0.62790.71170.22760.177*
H29C0.61700.64000.16460.177*
C300.4815 (4)0.4020 (5)0.1795 (2)0.0885 (15)
H30A0.42200.42520.15560.106*
H30B0.52220.47660.17980.106*
C310.4698 (5)0.3717 (6)0.2448 (3)0.116 (2)
H31A0.42590.30210.24450.174*
H31B0.44810.44830.26270.174*
H31C0.52820.34550.26820.174*
C320.3652 (3)0.1678 (7)0.1140 (3)0.0968 (16)
H32A0.33700.24960.12120.145*
H32B0.35120.10370.14240.145*
H32C0.34170.13910.07320.145*
C33A0.3602 (5)0.7589 (7)0.2314 (3)0.177 (4)0.50
H33A0.39850.71310.26540.213*0.50
Cl2A0.3139 (6)0.8792 (13)0.2666 (5)0.295 (8)0.50
Cl3A0.2890 (6)0.6337 (8)0.1959 (9)0.332 (8)0.50
Cl4A0.4327 (5)0.7879 (9)0.1864 (3)0.218 (3)0.50
C33B0.3602 (5)0.7589 (7)0.2314 (3)0.177 (4)0.50
H33B0.42300.73520.25090.213*0.50
Cl2B0.3474 (4)0.7544 (8)0.1561 (2)0.184 (2)0.50
Cl3B0.3412 (15)0.9224 (9)0.2352 (8)0.411 (13)0.50
Cl4B0.2844 (5)0.6731 (14)0.2564 (4)0.262 (7)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0526 (3)0.0418 (3)0.0457 (3)0.00487 (19)0.01047 (19)0.00421 (18)
Cl10.0722 (6)0.0712 (6)0.0494 (5)0.0078 (4)0.0087 (4)0.0084 (4)
N10.0639 (16)0.0453 (15)0.0497 (14)0.0067 (12)0.0131 (13)0.0017 (12)
N20.0559 (15)0.0472 (15)0.0480 (14)0.0014 (12)0.0090 (12)0.0006 (12)
N30.0647 (16)0.0452 (14)0.0435 (13)0.0044 (13)0.0087 (12)0.0036 (11)
N40.0575 (15)0.0559 (16)0.0438 (13)0.0020 (13)0.0136 (12)0.0005 (12)
C10.079 (2)0.0483 (18)0.0484 (17)0.0183 (17)0.0098 (16)0.0009 (15)
C20.108 (3)0.049 (2)0.056 (2)0.022 (2)0.011 (2)0.0052 (16)
C30.103 (3)0.0417 (18)0.0538 (19)0.0020 (19)0.014 (2)0.0012 (15)
C40.075 (2)0.0439 (17)0.0453 (16)0.0022 (16)0.0130 (15)0.0001 (13)
C50.065 (2)0.0530 (19)0.0456 (16)0.0059 (16)0.0116 (15)0.0010 (14)
C60.072 (2)0.072 (3)0.0522 (19)0.017 (2)0.0188 (17)0.0035 (17)
C70.059 (2)0.085 (3)0.056 (2)0.009 (2)0.0133 (17)0.0027 (19)
C80.0558 (19)0.066 (2)0.0486 (17)0.0027 (16)0.0099 (15)0.0019 (16)
C90.060 (2)0.077 (3)0.062 (2)0.0169 (19)0.0125 (17)0.0008 (19)
C100.079 (3)0.066 (2)0.060 (2)0.030 (2)0.0083 (19)0.0080 (19)
C110.079 (2)0.0482 (18)0.0477 (17)0.0160 (17)0.0109 (16)0.0025 (15)
C120.113 (4)0.052 (2)0.056 (2)0.023 (2)0.018 (2)0.0118 (17)
C130.111 (3)0.0493 (19)0.0480 (18)0.004 (2)0.020 (2)0.0072 (16)
C140.079 (2)0.0484 (18)0.0409 (16)0.0017 (17)0.0128 (16)0.0011 (14)
C150.069 (2)0.0538 (19)0.0411 (15)0.0095 (16)0.0142 (14)0.0058 (14)
C160.076 (2)0.076 (3)0.0527 (19)0.020 (2)0.0244 (18)0.0147 (18)
C170.063 (2)0.088 (3)0.054 (2)0.010 (2)0.0148 (17)0.017 (2)
C180.0575 (19)0.071 (2)0.0485 (18)0.0021 (17)0.0134 (15)0.0106 (16)
C190.058 (2)0.088 (3)0.057 (2)0.018 (2)0.0090 (17)0.007 (2)
C200.075 (2)0.067 (2)0.057 (2)0.025 (2)0.0107 (18)0.0022 (17)
C210.151 (5)0.060 (3)0.086 (3)0.044 (3)0.017 (3)0.014 (2)
C220.141 (5)0.047 (2)0.094 (3)0.011 (3)0.029 (3)0.000 (2)
C230.202 (8)0.089 (4)0.117 (5)0.029 (5)0.053 (5)0.038 (4)
C240.107 (4)0.086 (3)0.078 (3)0.031 (3)0.040 (3)0.003 (2)
C250.162 (6)0.122 (5)0.105 (4)0.086 (5)0.031 (4)0.012 (4)
C260.062 (2)0.126 (4)0.088 (3)0.007 (3)0.023 (2)0.001 (3)
C270.150 (5)0.091 (4)0.100 (4)0.054 (4)0.034 (4)0.052 (3)
C280.132 (4)0.075 (3)0.055 (2)0.004 (3)0.025 (2)0.019 (2)
C290.198 (7)0.061 (3)0.101 (4)0.023 (4)0.043 (4)0.020 (3)
C300.101 (4)0.086 (3)0.084 (3)0.038 (3)0.030 (3)0.010 (3)
C310.145 (5)0.116 (5)0.106 (4)0.037 (4)0.072 (4)0.002 (3)
C320.060 (2)0.136 (5)0.097 (4)0.015 (3)0.024 (2)0.017 (4)
C33A0.137 (7)0.210 (11)0.178 (9)0.013 (8)0.012 (7)0.028 (8)
Cl2A0.176 (6)0.45 (2)0.257 (10)0.193 (10)0.036 (6)0.051 (11)
Cl3A0.139 (5)0.179 (7)0.64 (3)0.016 (5)0.027 (11)0.027 (12)
Cl4A0.174 (5)0.314 (10)0.176 (5)0.047 (6)0.059 (4)0.059 (6)
C33B0.137 (7)0.210 (11)0.178 (9)0.013 (8)0.012 (7)0.028 (8)
Cl2B0.164 (4)0.279 (8)0.107 (3)0.009 (5)0.020 (3)0.044 (4)
Cl3B0.68 (3)0.181 (8)0.331 (18)0.144 (13)0.030 (16)0.060 (10)
Cl4B0.143 (5)0.456 (18)0.199 (7)0.004 (7)0.061 (5)0.168 (10)
Geometric parameters (Å, º) top
Fe1—N42.019 (3)C19—H190.9300
Fe1—N32.026 (3)C20—H200.9300
Fe1—N22.028 (3)C21—H21A0.9600
Fe1—N12.034 (3)C21—H21B0.9600
Fe1—Cl12.2316 (10)C21—H21C0.9600
N1—C11.384 (5)C22—C231.523 (8)
N1—C41.389 (5)C22—H22A0.9700
N2—C81.373 (5)C22—H22B0.9700
N2—C51.389 (4)C23—H23A0.9600
N3—C111.375 (5)C23—H23B0.9600
N3—C141.381 (5)C23—H23C0.9600
N4—C181.380 (5)C24—C251.523 (8)
N4—C151.382 (5)C24—H24A0.9700
C1—C201.385 (6)C24—H24B0.9700
C1—C21.439 (6)C25—H25A0.9600
C2—C31.368 (7)C25—H25B0.9600
C2—C211.520 (6)C25—H25C0.9600
C3—C41.446 (5)C26—H26A0.9600
C3—C221.510 (6)C26—H26B0.9600
C4—C51.410 (5)C26—H26C0.9600
C5—C61.452 (5)C27—H27A0.9600
C6—C71.362 (6)C27—H27B0.9600
C6—C241.507 (6)C27—H27C0.9600
C7—C81.430 (6)C28—C291.517 (8)
C7—C261.511 (6)C28—H28A0.9700
C8—C91.395 (6)C28—H28B0.9700
C9—C101.380 (6)C29—H29A0.9600
C9—H90.9300C29—H29B0.9600
C10—C111.388 (6)C29—H29C0.9600
C10—H100.9300C30—C311.529 (7)
C11—C121.438 (6)C30—H30A0.9700
C12—C131.360 (7)C30—H30B0.9700
C12—C271.516 (6)C31—H31A0.9600
C13—C141.454 (5)C31—H31B0.9600
C13—C281.508 (6)C31—H31C0.9600
C14—C151.408 (5)C32—H32A0.9600
C15—C161.444 (5)C32—H32B0.9600
C16—C171.370 (6)C32—H32C0.9600
C16—C301.523 (6)C33A—Cl4A1.618 (7)
C17—C181.441 (6)C33A—Cl2A1.670 (8)
C17—C321.511 (6)C33A—Cl3A1.751 (8)
C18—C191.397 (6)C33A—H33A0.9800
C19—C201.377 (6)
N4—Fe1—N379.10 (12)C19—C20—H20113.0
N4—Fe1—N2150.13 (11)C1—C20—H20113.0
N3—Fe1—N293.16 (12)C2—C21—H21A109.5
N4—Fe1—N193.15 (12)C2—C21—H21B109.5
N3—Fe1—N1149.33 (12)H21A—C21—H21B109.5
N2—Fe1—N178.83 (12)C2—C21—H21C109.5
N4—Fe1—Cl1105.15 (9)H21A—C21—H21C109.5
N3—Fe1—Cl1103.16 (8)H21B—C21—H21C109.5
N2—Fe1—Cl1104.71 (8)C3—C22—C23111.9 (5)
N1—Fe1—Cl1107.50 (9)C3—C22—H22A109.2
C1—N1—C4107.6 (3)C23—C22—H22A109.2
C1—N1—Fe1136.7 (3)C3—C22—H22B109.2
C4—N1—Fe1114.9 (2)C23—C22—H22B109.2
C8—N2—C5107.6 (3)H22A—C22—H22B107.9
C8—N2—Fe1134.8 (2)C22—C23—H23A109.5
C5—N2—Fe1114.5 (2)C22—C23—H23B109.5
C11—N3—C14107.7 (3)H23A—C23—H23B109.5
C11—N3—Fe1136.8 (3)C22—C23—H23C109.5
C14—N3—Fe1114.7 (2)H23A—C23—H23C109.5
C18—N4—C15107.6 (3)H23B—C23—H23C109.5
C18—N4—Fe1135.4 (2)C6—C24—C25111.5 (4)
C15—N4—Fe1114.1 (2)C6—C24—H24A109.3
N1—C1—C20128.3 (4)C25—C24—H24A109.3
N1—C1—C2108.4 (4)C6—C24—H24B109.3
C20—C1—C2123.4 (4)C25—C24—H24B109.3
C3—C2—C1108.5 (3)H24A—C24—H24B108.0
C3—C2—C21127.2 (5)C24—C25—H25A109.5
C1—C2—C21124.3 (5)C24—C25—H25B109.5
C2—C3—C4106.6 (4)H25A—C25—H25B109.5
C2—C3—C22123.3 (4)C24—C25—H25C109.5
C4—C3—C22130.1 (5)H25A—C25—H25C109.5
N1—C4—C5114.7 (3)H25B—C25—H25C109.5
N1—C4—C3109.0 (3)C7—C26—H26A109.5
C5—C4—C3136.3 (4)C7—C26—H26B109.5
N2—C5—C4115.0 (3)H26A—C26—H26B109.5
N2—C5—C6108.3 (3)C7—C26—H26C109.5
C4—C5—C6136.5 (3)H26A—C26—H26C109.5
C7—C6—C5106.8 (3)H26B—C26—H26C109.5
C7—C6—C24123.5 (4)C12—C27—H27A109.5
C5—C6—C24129.8 (4)C12—C27—H27B109.5
C6—C7—C8108.3 (3)H27A—C27—H27B109.5
C6—C7—C26126.4 (4)C12—C27—H27C109.5
C8—C7—C26125.3 (4)H27A—C27—H27C109.5
N2—C8—C9128.1 (4)H27B—C27—H27C109.5
N2—C8—C7109.0 (3)C13—C28—C29113.1 (4)
C9—C8—C7122.8 (4)C13—C28—H28A109.0
C10—C9—C8133.5 (4)C29—C28—H28A109.0
C10—C9—H9113.2C13—C28—H28B109.0
C8—C9—H9113.2C29—C28—H28B109.0
C9—C10—C11133.9 (4)H28A—C28—H28B107.8
C9—C10—H10113.1C28—C29—H29A109.5
C11—C10—H10113.1C28—C29—H29B109.5
N3—C11—C10128.3 (3)H29A—C29—H29B109.5
N3—C11—C12108.6 (4)C28—C29—H29C109.5
C10—C11—C12123.1 (4)H29A—C29—H29C109.5
C13—C12—C11108.4 (3)H29B—C29—H29C109.5
C13—C12—C27126.8 (4)C16—C30—C31111.8 (4)
C11—C12—C27124.7 (5)C16—C30—H30A109.3
C12—C13—C14106.4 (4)C31—C30—H30A109.3
C12—C13—C28123.4 (4)C16—C30—H30B109.3
C14—C13—C28130.1 (5)C31—C30—H30B109.3
N3—C14—C15114.6 (3)H30A—C30—H30B107.9
N3—C14—C13108.8 (3)C30—C31—H31A109.5
C15—C14—C13136.6 (4)C30—C31—H31B109.5
N4—C15—C14115.2 (3)H31A—C31—H31B109.5
N4—C15—C16108.7 (3)C30—C31—H31C109.5
C14—C15—C16136.0 (4)H31A—C31—H31C109.5
C17—C16—C15107.3 (4)H31B—C31—H31C109.5
C17—C16—C30123.7 (4)C17—C32—H32A109.5
C15—C16—C30129.0 (4)C17—C32—H32B109.5
C16—C17—C18107.3 (4)H32A—C32—H32B109.5
C16—C17—C32128.1 (4)C17—C32—H32C109.5
C18—C17—C32124.6 (5)H32A—C32—H32C109.5
N4—C18—C19128.1 (4)H32B—C32—H32C109.5
N4—C18—C17109.0 (4)Cl4A—C33A—Cl2A121.8 (8)
C19—C18—C17122.9 (4)Cl4A—C33A—Cl3A105.2 (7)
C20—C19—C18133.9 (4)Cl2A—C33A—Cl3A119.3 (7)
C20—C19—H19113.0Cl4A—C33A—H33A102.4
C18—C19—H19113.0Cl2A—C33A—H33A102.4
C19—C20—C1134.0 (4)Cl3A—C33A—H33A102.4
N4—Fe1—N1—C130.8 (3)Fe1—N2—C8—C924.9 (6)
N3—Fe1—N1—C1104.7 (4)C5—N2—C8—C70.3 (4)
N2—Fe1—N1—C1178.2 (3)Fe1—N2—C8—C7157.9 (3)
Cl1—Fe1—N1—C176.1 (3)C6—C7—C8—N21.1 (4)
N4—Fe1—N1—C4161.5 (2)C26—C7—C8—N2179.0 (4)
N3—Fe1—N1—C487.6 (3)C6—C7—C8—C9176.4 (4)
N2—Fe1—N1—C410.5 (2)C26—C7—C8—C91.6 (6)
Cl1—Fe1—N1—C491.6 (2)N2—C8—C9—C107.8 (7)
N4—Fe1—N2—C8113.3 (3)C7—C8—C9—C10169.1 (5)
N3—Fe1—N2—C839.8 (3)C8—C9—C10—C113.8 (9)
N1—Fe1—N2—C8170.0 (3)C14—N3—C11—C10177.4 (4)
Cl1—Fe1—N2—C864.7 (3)Fe1—N3—C11—C108.2 (6)
N4—Fe1—N2—C589.6 (3)C14—N3—C11—C122.5 (4)
N3—Fe1—N2—C5163.1 (2)Fe1—N3—C11—C12171.7 (3)
N1—Fe1—N2—C512.9 (2)C9—C10—C11—N310.8 (8)
Cl1—Fe1—N2—C592.4 (2)C9—C10—C11—C12169.3 (5)
N4—Fe1—N3—C11179.2 (4)N3—C11—C12—C130.7 (5)
N2—Fe1—N3—C1129.9 (4)C10—C11—C12—C13179.2 (4)
N1—Fe1—N3—C11103.2 (4)N3—C11—C12—C27176.7 (4)
Cl1—Fe1—N3—C1176.0 (3)C10—C11—C12—C273.4 (7)
N4—Fe1—N3—C1410.6 (2)C11—C12—C13—C141.3 (5)
N2—Fe1—N3—C14161.5 (2)C27—C12—C13—C14178.6 (5)
N1—Fe1—N3—C1488.1 (3)C11—C12—C13—C28176.8 (4)
Cl1—Fe1—N3—C1492.6 (2)C27—C12—C13—C280.6 (7)
N3—Fe1—N4—C18171.5 (4)C11—N3—C14—C15177.7 (3)
N2—Fe1—N4—C18111.3 (4)Fe1—N3—C14—C155.9 (4)
N1—Fe1—N4—C1838.4 (3)C11—N3—C14—C133.3 (4)
Cl1—Fe1—N4—C1870.7 (3)Fe1—N3—C14—C13175.2 (2)
N3—Fe1—N4—C1513.6 (2)C12—C13—C14—N32.9 (4)
N2—Fe1—N4—C1590.7 (3)C28—C13—C14—N3175.1 (4)
N1—Fe1—N4—C15163.7 (2)C12—C13—C14—C15178.5 (4)
Cl1—Fe1—N4—C1587.2 (2)C28—C13—C14—C153.6 (7)
C4—N1—C1—C20179.9 (4)C18—N4—C15—C14178.6 (3)
Fe1—N1—C1—C2011.6 (6)Fe1—N4—C15—C1414.7 (4)
C4—N1—C1—C20.3 (4)C18—N4—C15—C160.4 (4)
Fe1—N1—C1—C2168.0 (3)Fe1—N4—C15—C16163.5 (2)
N1—C1—C2—C31.4 (4)N3—C14—C15—N45.8 (4)
C20—C1—C2—C3178.9 (4)C13—C14—C15—N4172.8 (4)
N1—C1—C2—C21179.6 (4)N3—C14—C15—C16171.8 (4)
C20—C1—C2—C210.8 (6)C13—C14—C15—C169.7 (7)
C1—C2—C3—C41.9 (4)N4—C15—C16—C170.7 (4)
C21—C2—C3—C4180.0 (4)C14—C15—C16—C17176.9 (4)
C1—C2—C3—C22176.3 (4)N4—C15—C16—C30179.2 (4)
C21—C2—C3—C221.8 (7)C14—C15—C16—C303.2 (7)
C1—N1—C4—C5177.6 (3)C15—C16—C17—C181.5 (4)
Fe1—N1—C4—C56.5 (4)C30—C16—C17—C18178.4 (4)
C1—N1—C4—C30.9 (4)C15—C16—C17—C32179.4 (4)
Fe1—N1—C4—C3172.1 (2)C30—C16—C17—C320.7 (7)
C2—C3—C4—N11.8 (4)C15—N4—C18—C19175.9 (4)
C22—C3—C4—N1176.3 (4)Fe1—N4—C18—C1925.2 (6)
C2—C3—C4—C5176.3 (4)C15—N4—C18—C171.4 (4)
C22—C3—C4—C55.6 (7)Fe1—N4—C18—C17157.5 (3)
C8—N2—C5—C4176.6 (3)C16—C17—C18—N41.8 (4)
Fe1—N2—C5—C413.5 (4)C32—C17—C18—N4179.1 (4)
C8—N2—C5—C60.5 (4)C16—C17—C18—C19175.6 (3)
Fe1—N2—C5—C6163.7 (2)C32—C17—C18—C193.5 (6)
N1—C4—C5—N24.6 (4)N4—C18—C19—C203.8 (7)
C3—C4—C5—N2177.4 (4)C17—C18—C19—C20173.1 (4)
N1—C4—C5—C6171.5 (4)C18—C19—C20—C10.3 (8)
C3—C4—C5—C66.5 (7)N1—C1—C20—C199.4 (7)
N2—C5—C6—C71.1 (4)C2—C1—C20—C19171.0 (4)
C4—C5—C6—C7175.1 (4)C2—C3—C22—C2381.9 (6)
N2—C5—C6—C24178.2 (4)C4—C3—C22—C23100.3 (6)
C4—C5—C6—C245.5 (7)C7—C6—C24—C2584.2 (6)
C5—C6—C7—C81.3 (4)C5—C6—C24—C2595.1 (6)
C24—C6—C7—C8178.1 (4)C12—C13—C28—C2980.9 (7)
C5—C6—C7—C26179.2 (4)C14—C13—C28—C29101.5 (6)
C24—C6—C7—C260.2 (7)C17—C16—C30—C3184.4 (6)
C5—N2—C8—C9176.9 (4)C15—C16—C30—C3195.5 (6)

Experimental details

Crystal data
Chemical formula[Fe(C32H36N4)Cl]·CHCl3
Mr687.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)14.722 (1), 10.225 (1), 22.319 (2)
β (°) 100.35 (1)
V3)3305.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku R-AXIS RAPID Imaging Plate
diffractometer
Absorption correctionMulti-scan
ABSCOR (Higashi, 1995)
Tmin, Tmax0.849, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
19098, 7514, 5436
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.205, 1.08
No. of reflections7514
No. of parameters415
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.47

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992a), MSC/AFC Diffractometer Control Software. Data Reduction: TEXSAN (Molecular Structure Corporation, 1992b), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), SV (Nemoto & Ohashi, 1993), SHELXL97.

Selected geometric parameters (Å, º) top
Fe1—N42.019 (3)Fe1—N12.034 (3)
Fe1—N32.026 (3)Fe1—Cl12.2316 (10)
Fe1—N22.028 (3)
N4—Fe1—N379.10 (12)N4—Fe1—N193.15 (12)
N4—Fe1—N2150.13 (11)N3—Fe1—N1149.33 (12)
N3—Fe1—N293.16 (12)N2—Fe1—N178.83 (12)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds