Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title compound, [mu]-hexavanadato(V)-bis­[bis(2,2'-bi­pyridine)­nickel(II)], [{Ni(C10H8N2)2}2{V6O17}], is composed of vanadium oxide layers intercalated by complex [Ni(bipy)2]2+ cations (bipy is 2,2'-bi­pyridine). The structure is isomorphous with that reported recently for [Zn(bipy)2]2[V6O17] [Zhang, DeBord, O'Connor, Haushalter, Clearfield & Zubieta (1996). Angew. Chem. Int. Ed. Engl. 35, 989-991]. The vanadium oxide layers are built up solely from VO4 tetrahedra by corner sharing and clearly exhibit a sinusoidal ruffling. Two O atoms from a single vanadium oxide layer are coordinated to each Ni atom of the complex cations in a cis fashion, with Ni-O distances of 2.027 (3) and 2.087 (3) Å, thus maintaining the two-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100017339/ta1302sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100017339/ta1302Isup2.hkl
Contains datablock I

CCDC reference: 162543

Comment top

Recently, it has been demonstrated that the hydrothermal technique is an effective approach to the synthesis of vanadium oxides incorporating complex cations, such as [Zn(bipy)2]2[V4O12] and [Zn(bipy)3]2[V4O12].11H2O (bipy is 2,2'-bipyridine; Zhang et al., 1997), [Ni(bipy)3]2[V4O12].11H2O (Yang et al., 1998), [Cu(en)][V2O6] and [Cu(bipy)2]2[V2O6] (en is ethylenediamine; DeBord et al., 1996), [Ni(en)3][V2O6] (Liu et al., 2000), [M(en)2][V6O14] (M is Cu or Zn), [Zn(bipy)2]2[V6O17] and [Cu(en)2]2[V10O25] (Zhang et al., 1996), [N(CH3)4]2[Co(H2O)4V12O28] (Wang et al., 1999) and [Cd(1,2-pn)2][V8O20] (1,2-pn is 1,2-diamopropane; Zhang et al., 1999). The present work reports the crystal structure of a new compound, [Ni(bipy)2]2[V6O17], (I), built from sinusoidal vanadium oxide layers, [V6O17]4-, and complex nickel(II) cations, [Ni(bipy)2]2+. \sch

Compound (I) is isostructural with the recently reported compound [Zn(bipy)2]2[V6O17] (Zhang et al., 1996). The crystal structure of (I) is depicted in Fig. 1. The vanadium oxide layers are constructed solely from VO4 tetrahedra by sharing corners and clearly display a sinusoidal ruffling, with an amplitude of about 6.5 Å and a period of about 14.8 Å. The [Ni(bipy)2]2+ complex cations occupy the interlamellar space and attach to the vanadium oxide layers through Ni—O covalent interactions, with distances of 2.027 (3) and 2.087 (3) Å.

A view perpendicular to the vanadium oxide layers is shown in Fig. 2. Along with one unshared terminal O atom, the other three O atoms of each tetrahedron around V2 and two O atoms of each V1 and V3 unit are shared between neighboring tetrahedra, forming an extended two-dimensional pore network. These pores, consisting of fourteen-membered polyhedral rings, lie alternately in planes approximately parallel to (110) and (110), with a transannular V···V distance of about 10 Å. Atoms O1 from the V1 tetrahedron and O7 from the V3 tetrahedron are coordinated to Ni atoms (Fig. 3). The octahedral geometry of each NiII is defined by four N atoms from two 2,2'-bipyridine ligands and two cis-oxo groups from a vanadium oxide layer. Two {Ni(bipy)2O2} motifs are bonded to each V14 ring, on either side of the 1 site in the centre of the ring. The organic ligands protrude above and below the mean plane of the V14 rings and fill the troughs of the ruffled vanadium oxide layers (Fig. 1).

The vanadium oxide layer structure in [M(bipy)2]2[V6O17] (M is Ni or Zn) is a very rare topology, where the pore size in the Ni compound, defined by the transannular V···V distance along the c axis, is slightly smaller than that in the Zn compound. It is interesting that the coordination of the O atoms from the vanadium oxide layers to the M atoms in these two compounds is different from that in other layered vanadium oxides incorporating six-coordinated interlamellar cations, namely [M(en)2][V6O14] (M is Cu or Zn) and [Cu(en)2][V10O25] (Zhang et al., 1996), and [Ni(en)2][V6O14] (Lin & Liu, 2000). In the structures of the latter compounds, the two oxo groups come from the two neighbouring layers and are covalently connected to each M atom in a trans fashion, forming a three-dimensional framework. In contrast, in (I) the two cis-oxo groups around each Ni atom come from a single vanadium oxide layer, maintaining the two-dimensional network structure.

Related literature top

For related literature, see: DeBord, Zhang, Haushalter, Zubieta & O'Connor (1996); Lin & Liu (2000); Liu et al. (2000); Wang et al. (1999); Yang et al. (1998); Zhang et al. (1996, 1997, 1999).

Experimental top

The hydrothermal synthesis of (I) was carried out in a 17 ml Teflon-lined stainless vessel with a ca 40% fill factor. A mixture of V2O5 (0.092 g), NiO (0.081 g), 2,2'-bipyridine (0.083 g) and H2O in the molar ratio of 1:1.2:1:778 was heated at 448 K for 72 h. Green plate crystals of (I) were formed in 25% yield based on V, contaminated by a small amount of unreacted NiO. The pH of the synthesis increased from 6.7 before heating to 7.5 at the end of reaction. Attempts to prepare (I) as a monophasic material were unsuccessful. Besides a series of characteristic bands of 2,2'-bipyridine in the region of 1100–1600 cm-1, the IR spectrum of (I) exhibits a strong band at 925 cm-1, which is attributed to ν(V—O).

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances of 0.93 Å and with common isotropic displacement parameters (Uiso = 0.08 Å2).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1987); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1987); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL/PC (Sheldrick, 1990b); software used to prepare material for publication: SHELXL93.

Figures top
[Figure 1] Fig. 1. The view of the structure of (I) along the c axis, showing the vanadium oxide layers with sinusoidal ruffle, and the nickel complexes occupying the troughs and covalently bonded to the layers. Large hatched circles denote Ni, small hatched circles denote C and dotted ones N.
[Figure 2] Fig. 2. The view perpendicular to one of the vanadium oxide layers in (I), showing the VO4 tetrahedra linked through corner sharing to form an extended two-dimensional pore network.
[Figure 3] Fig. 3. The asymmetric unit in the structure of (I) with 50% displacement ellipsoids, showing the coordination environment around the metal atoms [symmetry code: (i) x, -y + 3/2, z + 1/2].
µ-hexavanadato(V)-bis[bis(2,2'-bipyridine)nickel(II)] top
Crystal data top
[{Ni(C10H8N2)2}2{V6O17}]F(000) = 1316
Mr = 1319.80Dx = 1.825 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 15.529 (3) ÅCell parameters from 25 reflections
b = 14.770 (3) Åθ = 10–15°
c = 10.477 (2) ŵ = 1.96 mm1
β = 92.02 (3)°T = 294 K
V = 2401.5 (8) Å3Plate, green
Z = 20.60 × 0.40 × 0.15 mm
Data collection top
Rigaku AFC-5R
diffractometer
3558 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
ω/2θ scansh = 1919
Absorption correction: ψ-scan
(North et al., 1968)
k = 180
Tmin = 0.320, Tmax = 0.745l = 012
4798 measured reflections3 standard reflections every 150 reflections
4718 independent reflections intensity decay: 0.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.7027P]
where P = (Fo2 + 2Fc2)/3
4718 reflections(Δ/σ)max = 0.001
331 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
[{Ni(C10H8N2)2}2{V6O17}]V = 2401.5 (8) Å3
Mr = 1319.80Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.529 (3) ŵ = 1.96 mm1
b = 14.770 (3) ÅT = 294 K
c = 10.477 (2) Å0.60 × 0.40 × 0.15 mm
β = 92.02 (3)°
Data collection top
Rigaku AFC-5R
diffractometer
3558 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.034
Tmin = 0.320, Tmax = 0.7453 standard reflections every 150 reflections
4798 measured reflections intensity decay: 0.5%
4718 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.05Δρmax = 0.83 e Å3
4718 reflectionsΔρmin = 0.76 e Å3
331 parameters
Special details top

Experimental. crystal coated in epoxy glue

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factor(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.23327 (3)0.47906 (3)0.20088 (5)0.02628 (15)
V10.31294 (4)0.69860 (4)0.31442 (6)0.0246 (2)
V20.25034 (4)0.64316 (4)0.60422 (6)0.0288 (2)
V30.08534 (4)0.55778 (4)0.42474 (6)0.0271 (2)
O10.2776 (2)0.6022 (2)0.2578 (3)0.0473 (8)
O20.3049 (2)0.7001 (3)0.4861 (3)0.0527 (9)
O30.4132 (2)0.7112 (2)0.2835 (3)0.0464 (8)
O40.2499 (2)0.7895 (2)0.2419 (3)0.0466 (8)
O50.2988 (3)0.5513 (3)0.6370 (4)0.088 (2)
O60.1460 (2)0.6210 (3)0.5473 (3)0.0592 (10)
O70.1473 (2)0.4858 (2)0.3493 (3)0.0372 (7)
O801/21/20.0553 (14)
O90.0463 (2)0.6304 (2)0.3235 (3)0.0535 (9)
N10.3259 (2)0.4165 (2)0.3157 (3)0.0313 (7)
N20.3345 (2)0.4618 (2)0.0717 (3)0.0357 (8)
N30.1778 (2)0.3613 (2)0.1252 (3)0.0337 (7)
N40.1510 (2)0.5317 (2)0.0616 (3)0.0299 (7)
C10.3211 (3)0.4035 (3)0.4415 (4)0.0433 (10)
H10.26990.41650.48110.080*
C20.3907 (4)0.3710 (4)0.5147 (5)0.0586 (14)
H20.38550.36110.60180.080*
C30.4663 (4)0.3538 (4)0.4583 (5)0.064 (2)
H30.51360.33310.50690.080*
C40.4731 (3)0.3670 (4)0.3285 (5)0.0526 (13)
H40.52450.35600.28840.080*
C50.4643 (3)0.3788 (4)0.0436 (5)0.0505 (12)
H50.50820.34280.07890.080*
C60.4618 (4)0.3988 (4)0.0860 (5)0.0615 (15)
H60.50360.37650.13910.080*
C70.3965 (3)0.4523 (4)0.1335 (5)0.0557 (13)
H70.39400.46810.21950.080*
C80.3340 (3)0.4827 (3)0.0528 (4)0.0446 (11)
H80.29000.51920.08630.080*
C90.4008 (3)0.3971 (3)0.2599 (4)0.0356 (9)
C100.4008 (3)0.4129 (3)0.1197 (4)0.0368 (9)
C110.1891 (3)0.2775 (3)0.1681 (5)0.0467 (11)
H110.22210.26840.24280.080*
C120.1532 (4)0.2021 (3)0.1049 (5)0.0569 (14)
H120.16160.14410.13730.080*
C130.1054 (4)0.2160 (3)0.0056 (5)0.0566 (14)
H130.08140.16700.04980.080*
C140.0928 (3)0.3027 (3)0.0512 (5)0.0468 (12)
H140.06060.31270.12630.080*
C150.0738 (3)0.4967 (3)0.1330 (4)0.0436 (11)
H150.05120.45370.18970.080*
C160.0650 (3)0.5886 (4)0.1596 (4)0.0486 (12)
H160.03660.60760.23450.080*
C170.0982 (3)0.6505 (3)0.0750 (4)0.0406 (10)
H170.09220.71210.09120.080*
C180.1413 (3)0.6207 (3)0.0357 (4)0.0353 (9)
H180.16400.66310.09330.080*
C190.1290 (3)0.3750 (3)0.0164 (4)0.0332 (9)
C200.1164 (3)0.4704 (3)0.0217 (4)0.0327 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0314 (3)0.0207 (3)0.0267 (3)0.0019 (2)0.0001 (2)0.0008 (2)
V10.0310 (3)0.0230 (3)0.0197 (3)0.0031 (3)0.0011 (2)0.0037 (2)
V20.0424 (4)0.0238 (3)0.0200 (3)0.0003 (3)0.0025 (3)0.0001 (2)
V30.0270 (3)0.0224 (3)0.0322 (4)0.0052 (2)0.0029 (3)0.0065 (3)
O10.066 (2)0.026 (2)0.048 (2)0.0107 (15)0.021 (2)0.0023 (13)
O20.063 (2)0.073 (2)0.0213 (14)0.022 (2)0.0015 (13)0.0039 (15)
O30.037 (2)0.055 (2)0.047 (2)0.0057 (15)0.0055 (13)0.005 (2)
O40.063 (2)0.044 (2)0.033 (2)0.022 (2)0.0058 (14)0.0092 (14)
O50.148 (4)0.051 (2)0.062 (3)0.051 (3)0.027 (3)0.002 (2)
O60.056 (2)0.078 (3)0.044 (2)0.027 (2)0.003 (2)0.026 (2)
O70.039 (2)0.034 (2)0.039 (2)0.0061 (13)0.0074 (13)0.0023 (13)
O80.042 (3)0.047 (3)0.078 (4)0.023 (2)0.029 (2)0.019 (3)
O90.068 (2)0.036 (2)0.056 (2)0.013 (2)0.009 (2)0.004 (2)
N10.040 (2)0.026 (2)0.027 (2)0.0061 (14)0.0013 (14)0.0000 (13)
N20.035 (2)0.038 (2)0.034 (2)0.004 (2)0.0004 (14)0.0025 (15)
N30.041 (2)0.023 (2)0.037 (2)0.0036 (14)0.0059 (15)0.0043 (14)
N40.030 (2)0.027 (2)0.032 (2)0.0016 (13)0.0036 (13)0.0025 (13)
C10.059 (3)0.041 (2)0.031 (2)0.009 (2)0.002 (2)0.001 (2)
C20.085 (4)0.057 (3)0.033 (2)0.016 (3)0.013 (2)0.003 (2)
C30.067 (4)0.068 (4)0.056 (3)0.029 (3)0.024 (3)0.002 (3)
C40.045 (3)0.059 (3)0.054 (3)0.021 (2)0.006 (2)0.001 (2)
C50.047 (3)0.057 (3)0.048 (3)0.018 (2)0.006 (2)0.000 (2)
C60.070 (4)0.066 (4)0.049 (3)0.014 (3)0.021 (3)0.008 (3)
C70.059 (3)0.074 (4)0.035 (2)0.006 (3)0.009 (2)0.000 (2)
C80.050 (3)0.052 (3)0.032 (2)0.002 (2)0.009 (2)0.008 (2)
C90.041 (2)0.031 (2)0.034 (2)0.011 (2)0.007 (2)0.002 (2)
C100.036 (2)0.036 (2)0.038 (2)0.006 (2)0.004 (2)0.001 (2)
C110.064 (3)0.029 (2)0.048 (3)0.002 (2)0.016 (2)0.000 (2)
C120.085 (4)0.025 (2)0.062 (3)0.010 (2)0.025 (3)0.005 (2)
C130.073 (4)0.037 (3)0.062 (3)0.019 (3)0.018 (3)0.021 (2)
C140.048 (3)0.042 (3)0.051 (3)0.009 (2)0.006 (2)0.021 (2)
C150.047 (3)0.054 (3)0.030 (2)0.001 (2)0.005 (2)0.009 (2)
C160.047 (3)0.066 (3)0.032 (2)0.008 (2)0.004 (2)0.008 (2)
C170.044 (2)0.038 (2)0.041 (2)0.002 (2)0.003 (2)0.009 (2)
C180.038 (2)0.027 (2)0.040 (2)0.001 (2)0.003 (2)0.003 (2)
C190.034 (2)0.031 (2)0.035 (2)0.006 (2)0.007 (2)0.011 (2)
C200.032 (2)0.037 (2)0.029 (2)0.003 (2)0.001 (2)0.007 (2)
Geometric parameters (Å, º) top
Ni1—O12.027 (3)C2—H20.93
Ni1—N42.057 (3)C3—C41.381 (7)
Ni1—N12.060 (3)C3—H30.93
Ni1—N32.085 (3)C4—C91.385 (6)
Ni1—O72.087 (3)C4—H40.93
Ni1—N22.125 (4)C5—C101.385 (6)
V1—O31.612 (3)C5—C61.389 (7)
V1—O11.630 (3)C5—H50.93
V1—O21.808 (3)C6—C71.365 (8)
V1—O41.814 (3)C6—H60.93
V2—O51.584 (4)C7—C81.384 (7)
V2—O61.738 (3)C7—H70.93
V2—O21.740 (3)C8—H80.93
V2—O4i1.752 (3)C9—C101.487 (6)
V3—O91.612 (3)C11—C121.400 (7)
V3—O71.654 (3)C11—H110.93
V3—O81.7833 (7)C12—C131.369 (8)
V3—O61.822 (3)C12—H120.93
O4—V2ii1.752 (3)C13—C141.378 (7)
O8—V3iii1.7833 (7)C13—H130.93
N1—C11.337 (5)C14—C191.388 (6)
N1—C91.351 (5)C14—H140.93
N2—C81.340 (6)C15—C201.377 (6)
N2—C101.341 (5)C15—C161.391 (7)
N3—C111.327 (5)C15—H150.93
N3—C191.361 (5)C16—C171.362 (7)
N4—C181.350 (5)C16—H160.93
N4—C201.355 (5)C17—C181.389 (6)
C1—C21.388 (7)C17—H170.93
C1—H10.93C18—H180.93
C2—C31.358 (8)C19—C201.476 (6)
O1—Ni1—N493.77 (12)C1—C2—H2120
O1—Ni1—N190.42 (13)C2—C3—C4120.0 (5)
N4—Ni1—N1170.52 (13)C2—C3—H3120
O1—Ni1—N3172.68 (13)C4—C3—H3120
N4—Ni1—N378.90 (13)C3—C4—C9117.9 (5)
N1—Ni1—N396.81 (13)C3—C4—H4121
O1—Ni1—O787.59 (13)C9—C4—H4121
N4—Ni1—O796.49 (13)C10—C5—C6119.3 (5)
N1—Ni1—O792.18 (12)C10—C5—H5120
N3—Ni1—O793.24 (12)C6—C5—H5120
O1—Ni1—N292.52 (14)C7—C6—C5118.3 (5)
N4—Ni1—N292.76 (13)C7—C6—H6121
N1—Ni1—N278.55 (13)C5—C6—H6121
N3—Ni1—N287.83 (14)C6—C7—C8119.5 (5)
O7—Ni1—N2170.72 (13)C6—C7—H7120
O3—V1—O1110.0 (2)C8—C7—H7120
O3—V1—O2107.4 (2)N2—C8—C7122.7 (5)
O1—V1—O2109.8 (2)N2—C8—H8119
O3—V1—O4110.0 (2)C7—C8—H8119
O1—V1—O4108.9 (2)N1—C9—C4122.5 (4)
O2—V1—O4110.6 (2)N1—C9—C10115.1 (3)
O5—V2—O6110.1 (2)C4—C9—C10122.3 (4)
O5—V2—O2109.2 (2)N2—C10—C5122.2 (4)
O6—V2—O2108.5 (2)N2—C10—C9115.3 (4)
O5—V2—O4i108.9 (2)C5—C10—C9122.4 (4)
O6—V2—O4i111.0 (2)N3—C11—C12122.4 (5)
O2—V2—O4i109.1 (2)N3—C11—H11119
O9—V3—O7109.0 (2)C12—C11—H11119
O9—V3—O8109.95 (14)C13—C12—C11118.4 (5)
O7—V3—O8110.95 (11)C13—C12—H12121
O9—V3—O6107.2 (2)C11—C12—H12121
O7—V3—O6111.8 (2)C12—C13—C14119.8 (4)
O8—V3—O6107.90 (11)C12—C13—H13120
V1—O1—Ni1175.8 (2)C14—C13—H13120
V2—O2—V1138.9 (2)C13—C14—C19119.2 (5)
V2ii—O4—V1138.4 (2)C13—C14—H14120
V2—O6—V3142.3 (2)C19—C14—H14120
V3—O7—Ni1141.7 (2)C20—C15—C16119.1 (4)
V3iii—O8—V3180.0C20—C15—H15121
C1—N1—C9118.3 (4)C16—C15—H15121
C1—N1—Ni1125.4 (3)C17—C16—C15119.5 (4)
C9—N1—Ni1115.9 (3)C17—C16—H16120
C8—N2—C10117.8 (4)C15—C16—H16120
C8—N2—Ni1127.9 (3)C16—C17—C18119.4 (4)
C10—N2—Ni1113.6 (3)C16—C17—H17120
C11—N3—C19119.0 (4)C18—C17—H17120
C11—N3—Ni1127.0 (3)N4—C18—C17121.6 (4)
C19—N3—Ni1113.9 (3)N4—C18—H18119
C18—N4—C20118.8 (4)C17—C18—H18119
C18—N4—Ni1124.9 (3)N3—C19—C14121.1 (4)
C20—N4—Ni1115.2 (3)N3—C19—C20115.6 (3)
N1—C1—C2121.8 (4)C14—C19—C20123.3 (4)
N1—C1—H1119N4—C20—C15121.6 (4)
C2—C1—H1119N4—C20—C19114.7 (3)
C3—C2—C1119.5 (5)C15—C20—C19123.7 (4)
C3—C2—H2120
O3—V1—O1—Ni1110 (3)N2—Ni1—N3—C1983.9 (3)
O2—V1—O1—Ni18 (3)O1—Ni1—N4—C180.2 (3)
O4—V1—O1—Ni1130 (3)N1—Ni1—N4—C18116.3 (8)
N4—Ni1—O1—V1138 (3)N3—Ni1—N4—C18179.9 (4)
N1—Ni1—O1—V150 (3)O7—Ni1—N4—C1887.8 (3)
N3—Ni1—O1—V1139 (2)N2—Ni1—N4—C1892.9 (3)
O7—Ni1—O1—V142 (3)O1—Ni1—N4—C20168.2 (3)
N2—Ni1—O1—V1129 (3)N1—Ni1—N4—C2052.1 (9)
O5—V2—O2—V181.5 (4)N3—Ni1—N4—C2011.7 (3)
O6—V2—O2—V138.5 (4)O7—Ni1—N4—C20103.8 (3)
O4i—V2—O2—V1159.6 (3)N2—Ni1—N4—C2075.5 (3)
O3—V1—O2—V2138.6 (3)C9—N1—C1—C20.1 (7)
O1—V1—O2—V218.9 (4)Ni1—N1—C1—C2171.8 (4)
O4—V1—O2—V2101.3 (4)N1—C1—C2—C31.5 (8)
O3—V1—O4—V2ii33.9 (4)C1—C2—C3—C41.2 (9)
O1—V1—O4—V2ii86.8 (3)C2—C3—C4—C90.5 (9)
O2—V1—O4—V2ii152.5 (3)C10—C5—C6—C70.3 (9)
O5—V2—O6—V355.3 (4)C5—C6—C7—C81.6 (9)
O2—V2—O6—V364.2 (4)C10—N2—C8—C73.3 (7)
O4i—V2—O6—V3175.9 (3)Ni1—N2—C8—C7166.6 (4)
O9—V3—O6—V2109.1 (4)C6—C7—C8—N20.2 (8)
O7—V3—O6—V210.3 (4)C1—N1—C9—C42.0 (7)
O8—V3—O6—V2132.6 (4)Ni1—N1—C9—C4170.7 (4)
O9—V3—O7—Ni135.3 (3)C1—N1—C9—C10179.6 (4)
O8—V3—O7—Ni1156.6 (2)Ni1—N1—C9—C107.7 (5)
O6—V3—O7—Ni183.0 (3)C3—C4—C9—N12.2 (8)
O1—Ni1—O7—V338.1 (3)C3—C4—C9—C10179.5 (5)
N4—Ni1—O7—V355.4 (3)C8—N2—C10—C54.6 (7)
N1—Ni1—O7—V3128.4 (3)Ni1—N2—C10—C5166.7 (4)
N3—Ni1—O7—V3134.6 (3)C8—N2—C10—C9176.0 (4)
N2—Ni1—O7—V3129.0 (7)Ni1—N2—C10—C912.7 (5)
O9—V3—O8—V3iii14.100C6—C5—C10—N22.9 (8)
O7—V3—O8—V3iii134.100C6—C5—C10—C9177.7 (5)
O6—V3—O8—V3iii103.100N1—C9—C10—N213.7 (6)
O1—Ni1—N1—C180.5 (4)C4—C9—C10—N2164.6 (4)
N4—Ni1—N1—C1163.2 (7)N1—C9—C10—C5165.7 (4)
N3—Ni1—N1—C1100.6 (4)C4—C9—C10—C515.9 (7)
O7—Ni1—N1—C17.1 (4)C19—N3—C11—C120.6 (7)
N2—Ni1—N1—C1173.0 (4)Ni1—N3—C11—C12175.6 (3)
O1—Ni1—N1—C991.6 (3)N3—C11—C12—C130.6 (8)
N4—Ni1—N1—C924.7 (10)C11—C12—C13—C140.7 (8)
N3—Ni1—N1—C987.2 (3)C12—C13—C14—C190.2 (7)
O7—Ni1—N1—C9179.2 (3)C20—C15—C16—C170.3 (7)
N2—Ni1—N1—C90.8 (3)C15—C16—C17—C180.8 (7)
O1—Ni1—N2—C893.1 (4)C20—N4—C18—C171.2 (6)
N4—Ni1—N2—C80.8 (4)Ni1—N4—C18—C17166.8 (3)
N1—Ni1—N2—C8177.0 (4)C16—C17—C18—N40.0 (7)
N3—Ni1—N2—C879.6 (4)C11—N3—C19—C141.5 (6)
O7—Ni1—N2—C8176.4 (7)Ni1—N3—C19—C14175.2 (3)
O1—Ni1—N2—C1096.7 (3)C11—N3—C19—C20177.4 (4)
N4—Ni1—N2—C10169.4 (3)Ni1—N3—C19—C205.9 (4)
N1—Ni1—N2—C106.8 (3)C13—C14—C19—N31.3 (7)
N3—Ni1—N2—C1090.6 (3)C13—C14—C19—C20177.5 (4)
O7—Ni1—N2—C106.2 (10)C18—N4—C20—C151.7 (6)
O1—Ni1—N3—C11174.6 (10)Ni1—N4—C20—C15167.5 (3)
N4—Ni1—N3—C11174.3 (4)C18—N4—C20—C19178.8 (3)
N1—Ni1—N3—C1114.3 (4)Ni1—N4—C20—C1912.0 (4)
O7—Ni1—N3—C1178.3 (4)C16—C15—C20—N40.9 (7)
N2—Ni1—N3—C1192.5 (4)C16—C15—C20—C19179.6 (4)
O1—Ni1—N3—C199.0 (13)N3—C19—C20—N43.9 (5)
N4—Ni1—N3—C199.4 (3)C14—C19—C20—N4175.0 (4)
N1—Ni1—N3—C19162.1 (3)N3—C19—C20—C15175.6 (4)
O7—Ni1—N3—C19105.3 (3)C14—C19—C20—C155.5 (7)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[{Ni(C10H8N2)2}2{V6O17}]
Mr1319.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)15.529 (3), 14.770 (3), 10.477 (2)
β (°) 92.02 (3)
V3)2401.5 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.60 × 0.40 × 0.15
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.320, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
4798, 4718, 3558
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.05
No. of reflections4718
No. of parameters331
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.76

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1987), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1987), SHELXS86 (Sheldrick, 1990a), SHELXL93 (Sheldrick, 1993), SHELXTL/PC (Sheldrick, 1990b), SHELXL93.

Selected geometric parameters (Å, º) top
Ni1—O12.027 (3)V1—O41.814 (3)
Ni1—N42.057 (3)V2—O51.584 (4)
Ni1—N12.060 (3)V2—O61.738 (3)
Ni1—N32.085 (3)V2—O21.740 (3)
Ni1—O72.087 (3)V2—O4i1.752 (3)
Ni1—N22.125 (4)V3—O91.612 (3)
V1—O31.612 (3)V3—O71.654 (3)
V1—O11.630 (3)V3—O81.7833 (7)
V1—O21.808 (3)V3—O61.822 (3)
O1—Ni1—N493.77 (12)O1—V1—O2109.8 (2)
O1—Ni1—N190.42 (13)O3—V1—O4110.0 (2)
N4—Ni1—N1170.52 (13)O1—V1—O4108.9 (2)
O1—Ni1—N3172.68 (13)O2—V1—O4110.6 (2)
N4—Ni1—N378.90 (13)O5—V2—O6110.1 (2)
N1—Ni1—N396.81 (13)O5—V2—O2109.2 (2)
O1—Ni1—O787.59 (13)O6—V2—O2108.5 (2)
N4—Ni1—O796.49 (13)O5—V2—O4i108.9 (2)
N1—Ni1—O792.18 (12)O6—V2—O4i111.0 (2)
N3—Ni1—O793.24 (12)O2—V2—O4i109.1 (2)
O1—Ni1—N292.52 (14)O9—V3—O7109.0 (2)
N4—Ni1—N292.76 (13)O9—V3—O8109.95 (14)
N1—Ni1—N278.55 (13)O7—V3—O8110.95 (11)
N3—Ni1—N287.83 (14)O9—V3—O6107.2 (2)
O7—Ni1—N2170.72 (13)O7—V3—O6111.8 (2)
O3—V1—O1110.0 (2)O8—V3—O6107.90 (11)
O3—V1—O2107.4 (2)
Symmetry code: (i) x, y+3/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds