Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [Y2(C6H7)4(C3H7O)2], is a centrosymmetric dimer bridged through the O atoms of the isopropoxide ligands. The Y2O2 unit is planar and the geometry around the eight-coordinate Y atom is distorted pseudo-tetrahedral. The Y-O distances are 2.2228 (19) and 2.2432 (19) Å, and the O-Y-O angle is 74.86 (7)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100004133/ta1289sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004133/ta1289Isup2.hkl
Contains datablock I

CCDC reference: 147606

Comment top

The lanthanide alkoxides have been used in a variety of applications, including as homogeneous catalysts for organic synthesis and polymerization (Shibasaki et al., 1997; Shen et al., 1995) and in the preparation of high purity oxide materials (Hubert-Pfalzgraf, 1995). In our study of the catalytic properties of organolanthanide alkoxides the title complex, (I), was obtained from the reaction of Cp'3Y (Cp'= CH3C5H4) with an equimolar amount of isopropyl alcohol in tetrahydrofuran. \sch

In the crystal, (I) is found to be a centrosymmetric binuclear molecule, with the isopropoxide ligands as the bridging groups. This is similar to other binuclear bis(cyclopentadienyl) lanthanide alkoxides (Wu et al., 1994, 1992; Evans et al., 1986). The eight-coordinate metal centres are coordinated to two methylcyclopentadienyl ring centroids and two O atoms of the isopropoxide ligands, to form a distorted tetrahedral geometry.

The Y1—O1 [2.2228 (19) Å] distance in (I) is much longer than that observed for the Yb—O bond [2.1970 (5) Å] in [(C5H5)2Yb(µ-OCH2CH2CH3)]2 (Wu et al., 1992) and a little shorter than the Y—O bond [2.275 (3) Å] in [(MeC5H4)2Y(µ-OCH=CH2)] (Evans et al., 1986), but is similar to the value accepted for the Y—O bond [2.2170 (3) Å] in [(C5H4SiMe3)2Y(µ-OMe)]2 (Evans et al., 1992). The bond angle O1—Y1—O1(-x, 2 − y, 1 − z) [74.86 (7)°] in (I) is slightly larger than those found in related complexes, such as [(C5H5)2Yb(µ-OCH2CH2CH3)]2 [73.6 (2)°; Wu et al., 1992], [(MeC5H4)2Y(µ-OCH=CH2)]2 [73.1 (7)°; Evans et al., 1986] and [(C5H4SiMe3)2Y(µ-OMe)]2 [73.6 (1)°; Evans et al., 1992]. However, the bond angle Y—O—Y(-x, 2 − y, 1 − z) [105.14 (7)°] is much smaller than those found in the corresponding related (Cp'2LnOR)2 structures (Ln = ?), such as [(MeC5H4)2Y(µ-OCH=CH2)]2 [106.9 (1)°; Evans et al., 1986] and [(C5H4SiMe3)2Y(µ-OMe)]2 [106.4 (1)°; Evans et al., 1992].

Experimental top

The organolanthanide complex described in this paper is very sensitive to air and moisture. Consequently, all manipulations were carried out under argon by Schlenk techniques. Crystals of (I) were obtained by the reaction of YbCp'3 with one equivalent of isopropyl alcohol in tetrahydrofuran, followed by crystallization from a toluene solution at 263 K. A suitable crystal was sealed in a thin-walled glass capillary for single-crystal structure determination.

Refinement top

H atoms were included but not refined. Please provide full details of C—H distances, etc. All calculations were performed using the TEXSAN (1992b) crystallographic software package. Full reference?

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 40% probability displacement ellipsoids. H atoms are omitted for clarity.
tetrakis[1,1,2,2(η5)-methylcyclopentadienyl]di-µ-isopropxy- 1:2κ2O-diyttrium(III)(Y—Y) top
Crystal data top
[Y2(C6H7)4(C3H7O)2]Dx = 1.385 Mg m3
Mr = 612.46Melting point: not measured K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.8370 (8) ÅCell parameters from 4567 reflections
b = 12.3820 (9) Åθ = 2.4–26.0°
c = 12.1515 (9) ŵ = 3.96 mm1
β = 97.212 (2)°T = 298 K
V = 1468.36 (19) Å3Prismatic, colourless
Z = 20.50 × 0.35 × 0.30 mm
F(000) = 632
Data collection top
Siemens SMART CCD area detector query
diffractometer
3002 independent reflections
Radiation source: fine-focus sealed tube2484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scanθmax = 26.4°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.132, Tmax = 0.305k = 915
6773 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0628P)2]
where P = (Fo2 + 2Fc2)/3
3002 reflections(Δ/σ)max = 0.002
154 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
[Y2(C6H7)4(C3H7O)2]V = 1468.36 (19) Å3
Mr = 612.46Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.8370 (8) ŵ = 3.96 mm1
b = 12.3820 (9) ÅT = 298 K
c = 12.1515 (9) Å0.50 × 0.35 × 0.30 mm
β = 97.212 (2)°
Data collection top
Siemens SMART CCD area detector query
diffractometer
3002 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2484 reflections with I > 2σ(I)
Tmin = 0.132, Tmax = 0.305Rint = 0.033
6773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.09Δρmax = 0.89 e Å3
3002 reflectionsΔρmin = 0.82 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y10.02541 (3)1.01773 (2)0.35923 (2)0.03312 (12)
O10.10623 (18)0.92928 (16)0.51278 (15)0.0353 (4)
C10.2088 (4)0.8509 (3)0.5487 (4)0.0751 (12)
H1A0.20270.84420.62830.090*
C20.1750 (4)0.7413 (3)0.5057 (3)0.0626 (10)
H2A0.08080.72570.51210.094*
H2B0.23260.68960.54790.094*
H2C0.18980.73750.42920.094*
C30.3497 (3)0.8873 (4)0.5450 (5)0.0859 (14)
H3A0.36050.95910.57480.129*
H3B0.36930.88730.46960.129*
H3C0.41190.83940.58830.129*
C40.1296 (4)1.1536 (3)0.2205 (3)0.0656 (11)
H4A0.10251.15580.14010.079*
C50.0752 (4)1.2181 (3)0.2958 (4)0.0722 (12)
H5A0.00641.27470.27790.087*
C60.1542 (4)1.2051 (3)0.3947 (4)0.0691 (11)
H6A0.14911.25080.45980.083*
C70.2574 (4)1.1315 (3)0.3846 (3)0.0647 (10)
H7A0.33671.11780.44010.078*
C80.2428 (4)1.0969 (3)0.2729 (4)0.0644 (10)
C90.3347 (6)1.0209 (4)0.2209 (6)0.0996 (19)
H9A0.40741.06100.19400.149*
H9B0.28280.98380.16020.149*
H9C0.37300.96930.27510.149*
C100.1942 (4)0.9093 (4)0.2691 (3)0.0758 (13)
H10A0.28370.90900.29660.091*
C110.0918 (5)0.8327 (3)0.2942 (3)0.0709 (12)
H11A0.09840.76940.34180.085*
C120.0053 (4)0.8477 (3)0.2254 (3)0.0657 (10)
H12A0.07980.79720.21630.079*
C130.0340 (4)0.9318 (4)0.1564 (3)0.0610 (10)
H13A0.00960.95210.09120.073*
C140.1591 (5)0.9728 (3)0.1825 (3)0.0643 (11)
C150.2409 (7)1.0634 (5)0.1224 (5)0.127 (3)
H15A0.30171.03420.06170.191*
H15B0.17951.11390.09440.191*
H15C0.29331.09960.17280.191*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.04355 (18)0.02590 (18)0.03048 (17)0.00484 (11)0.00682 (11)0.00056 (10)
O10.0384 (10)0.0291 (11)0.0382 (10)0.0050 (8)0.0036 (8)0.0020 (8)
C10.057 (2)0.049 (2)0.117 (4)0.0144 (18)0.002 (2)0.005 (2)
C20.078 (3)0.043 (2)0.068 (2)0.0250 (18)0.0126 (19)0.0035 (18)
C30.041 (2)0.080 (3)0.135 (4)0.0178 (19)0.005 (2)0.026 (3)
C40.081 (3)0.059 (2)0.058 (2)0.018 (2)0.018 (2)0.023 (2)
C50.088 (3)0.035 (2)0.100 (3)0.0030 (19)0.038 (3)0.017 (2)
C60.089 (3)0.046 (2)0.078 (3)0.032 (2)0.032 (2)0.011 (2)
C70.055 (2)0.065 (3)0.076 (3)0.0277 (19)0.0128 (18)0.011 (2)
C80.064 (2)0.049 (2)0.089 (3)0.0143 (18)0.044 (2)0.002 (2)
C90.102 (4)0.090 (4)0.120 (5)0.001 (3)0.062 (4)0.002 (3)
C100.061 (2)0.103 (4)0.064 (2)0.034 (2)0.0093 (19)0.039 (3)
C110.108 (3)0.042 (2)0.057 (2)0.026 (2)0.015 (2)0.0039 (18)
C120.089 (3)0.042 (2)0.063 (2)0.0100 (19)0.003 (2)0.0197 (19)
C130.092 (3)0.054 (3)0.0377 (17)0.000 (2)0.0076 (18)0.0162 (16)
C140.079 (3)0.058 (2)0.049 (2)0.0082 (19)0.021 (2)0.0175 (19)
C150.156 (6)0.101 (4)0.105 (4)0.055 (4)0.062 (4)0.020 (4)
Geometric parameters (Å, º) top
Y1—O12.2228 (19)C1—C31.464 (5)
Y1—O1i2.2432 (18)C1—C21.477 (5)
Y1—C112.641 (4)C4—C51.373 (6)
Y1—C62.652 (4)C4—C81.400 (5)
Y1—C122.653 (3)C5—C61.356 (6)
Y1—C102.660 (3)C6—C71.381 (6)
Y1—C52.661 (4)C7—C81.414 (6)
Y1—C72.667 (3)C8—C91.499 (6)
Y1—C42.675 (3)C10—C111.390 (6)
Y1—C132.680 (3)C10—C141.391 (6)
Y1—C82.683 (3)C11—C121.359 (6)
Y1—C142.690 (4)C12—C131.362 (6)
O1—C11.428 (4)C13—C141.404 (6)
O1—Y1i2.2432 (18)C14—C151.514 (6)
O1—Y1—O1i74.86 (7)C13—Y1—C882.99 (13)
Cp1—Y1—Cp2124.0O1—Y1—C14134.64 (11)
O1—Y1—C1185.43 (10)O1i—Y1—C14102.92 (11)
O1i—Y1—C11101.11 (12)C11—Y1—C1449.94 (13)
O1—Y1—C6100.45 (12)C6—Y1—C14124.83 (14)
O1i—Y1—C686.39 (10)C12—Y1—C1449.88 (12)
C11—Y1—C6171.54 (13)C10—Y1—C1430.14 (13)
O1—Y1—C1296.59 (10)C5—Y1—C1495.27 (15)
O1i—Y1—C12130.70 (11)C7—Y1—C14133.11 (14)
C11—Y1—C1229.75 (13)C4—Y1—C1484.29 (14)
C6—Y1—C12142.30 (14)C13—Y1—C1430.31 (12)
O1—Y1—C10106.47 (13)C8—Y1—C14104.74 (15)
O1i—Y1—C1085.62 (10)C1—O1—Y1139.1 (2)
C11—Y1—C1030.39 (14)C1—O1—Y1i115.7 (2)
C6—Y1—C10148.76 (16)Y1—O1—Y1i105.14 (7)
C12—Y1—C1049.66 (13)O1—C1—C3114.7 (3)
O1—Y1—C5130.01 (13)O1—C1—C2113.4 (3)
O1i—Y1—C594.08 (10)C3—C1—C2116.3 (4)
C11—Y1—C5144.24 (14)C5—C4—C8110.1 (4)
C6—Y1—C529.57 (13)C5—C4—Y174.5 (2)
C12—Y1—C5124.39 (14)C8—C4—Y175.17 (19)
C10—Y1—C5121.38 (17)C6—C5—C4107.1 (4)
O1—Y1—C787.28 (10)C6—C5—Y174.8 (2)
O1i—Y1—C7108.98 (11)C4—C5—Y175.6 (2)
C11—Y1—C7145.92 (15)C5—C6—C7110.2 (4)
C6—Y1—C730.09 (13)C5—C6—Y175.6 (2)
C12—Y1—C7119.16 (14)C7—C6—Y175.6 (2)
C10—Y1—C7162.42 (13)C6—C7—C8107.3 (4)
C5—Y1—C749.84 (14)C6—C7—Y174.4 (2)
O1—Y1—C4135.55 (10)C8—C7—Y175.3 (2)
O1i—Y1—C4123.58 (11)C4—C8—C7105.3 (4)
C11—Y1—C4123.00 (13)C4—C8—C9127.6 (5)
C6—Y1—C448.65 (13)C7—C8—C9127.0 (5)
C12—Y1—C496.77 (14)C4—C8—Y174.54 (19)
C10—Y1—C4114.42 (14)C7—C8—Y174.06 (18)
C5—Y1—C429.82 (12)C9—C8—Y1119.2 (3)
C7—Y1—C449.50 (13)C11—C10—C14108.1 (4)
O1—Y1—C13126.14 (11)C11—C10—Y174.1 (2)
O1i—Y1—C13132.49 (10)C14—C10—Y176.1 (2)
C11—Y1—C1349.01 (13)C12—C11—C10108.5 (4)
C6—Y1—C13122.76 (13)C12—C11—Y175.6 (2)
C12—Y1—C1329.59 (12)C10—C11—Y175.5 (2)
C10—Y1—C1349.38 (12)C11—C12—C13108.4 (4)
C5—Y1—C1397.51 (15)C11—C12—Y174.7 (2)
C7—Y1—C13113.62 (12)C13—C12—Y176.3 (2)
C4—Y1—C1374.15 (13)C12—C13—C14109.1 (4)
O1—Y1—C8106.83 (11)C12—C13—Y174.08 (19)
O1i—Y1—C8136.22 (10)C14—C13—Y175.2 (2)
C11—Y1—C8122.66 (14)C10—C14—C13105.9 (4)
C6—Y1—C849.91 (12)C10—C14—C15128.1 (5)
C12—Y1—C892.99 (14)C13—C14—C15125.9 (5)
C10—Y1—C8132.02 (13)C10—C14—Y173.8 (2)
C5—Y1—C850.33 (12)C13—C14—Y174.5 (2)
C7—Y1—C830.64 (12)C15—C14—Y1119.8 (3)
C4—Y1—C830.29 (12)
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Y2(C6H7)4(C3H7O)2]
Mr612.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.8370 (8), 12.3820 (9), 12.1515 (9)
β (°) 97.212 (2)
V3)1468.36 (19)
Z2
Radiation typeMo Kα
µ (mm1)3.96
Crystal size (mm)0.50 × 0.35 × 0.30
Data collection
DiffractometerSiemens SMART CCD area detector query
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.132, 0.305
No. of measured, independent and
observed [I > 2σ(I)] reflections
6773, 3002, 2484
Rint0.033
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.09
No. of reflections3002
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.82

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Y1—O12.2228 (19)Y1—C52.661 (4)
Y1—O1i2.2432 (18)Y1—C72.667 (3)
Y1—C112.641 (4)Y1—C42.675 (3)
Y1—C62.652 (4)Y1—C132.680 (3)
Y1—C122.653 (3)Y1—C82.683 (3)
Y1—C102.660 (3)Y1—C142.690 (4)
O1—Y1—O1i74.86 (7)Y1—O1—Y1i105.14 (7)
Cp1—Y1—Cp2124.0
Symmetry code: (i) x, y+2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds