Download citation
Download citation
link to html
The complex cation in the title compound, [Co(C5H7O2)2(C9H20N2)(C18H15P)]PF6·CH2Cl2, is the first example of a CoIII complex in which a trans configuration for the coordinated monodentate phosphine and amine ligands has been confirmed by X-ray analysis. Owing to the large steric bulkiness of the axial PPh3 ligands influencing the interaction with the equatorial acetyl­acetonate ligands, the acetyl­acetonate planes bend away considerably from the PPh3 ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010000113X/ta1277sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010000113X/ta1277Isup2.hkl
Contains datablock I

CCDC reference: 145517

Comment top

In previous studies we have reported that trans-[Co(acac)2(PPh3)2]+ (Hacac = acetylacetone) is highly reactive toward substitution of the coordinated PPh3. For example, the reactions with strong Lewis bases such as PMe3 and CN- stereoselectively gave trans-[Co(acac)2(PMe3)2]+ and trans-[Co(acac)2(CN)2]-, respectively (Suzuki et al., 1998). Further, the reaction with an equimolar amount of substituted pyridine or amine derivatives (N-ligands) in CH2Cl2 afforded trans-[Co(acac)2(PPh3)(N-ligand)]+ in an almost quantitative yield (Ogita et al., 2000). These complexes are novel examples of CoIII complexes in which monodentate phosphine and amine ligands are located in the trans position (Katoh et al., 1984), and there has been no X-ray analysis for such complexes. Here, we report the single-crystal structure determination of the title complex, (I), which is the reaction product with 4-amino-2,2,6,6-tetramethylpiperidine (atmp). \scheme

The X-ray analysis confirmed the trans configuration for the phosphine and amine ligands in the cation of (I) (Fig. 1), as suggested by NMR spectroscopy in a CDCl3 solution. The most remarkable structural feature of the cation in (I) is the bending of the equatorial acac ligand planes away from the axial PPh3. The bending angles of the acac plane 1 (defined by O1, O2, C2, C3 and C4) and acac plane 2 (defined by O3, O4, C7, C8 and C9) from the equatorial four-oxygen coordination plane (defined by O1, O2, O3 and O4) are 9.8 (3) and 11.5 (3)°, respectively. The dihedral angle between the two acac planes is 21.2 (3)°. Such a bending structure was also found in trans-[Co(acac)2(PPh3)(H2O)]PF6 (Suzuki et al., 1999) and trans-[Co(acac)2(PPh3)(NIT4py or IM4py)]PF6 (Ogita et al., 2000), and resulted from the large steric bulkiness of the axial PPh3 influencing the interaction with the equatorial acac ligands. The three phenyl rings [phenyl(1) C11–C16, phenyl(2) C17–C22 and phenyl(3) C23–C28] of PPh3 have dihedral angles of 17.1 (3), 44.3 (2) and 75.6 (3)°, respectively, with the equatorial four-oxygen coordination plane. The other structural parameters concerning the CoIII-acac moiety are normal; the Co—O bond lengths are in the range 1.872 (4)–1.897 (4) Å and the acac bite angles (O—Co—O) are 95.0 (2) and 94.6 (2)°. These lengths and angles are similar to those in trans-[Co(acac)2(CN)2]-, trans-[Co(acac)2(PPh3)2]+ (Suzuki et al., 1999) and [Co(acac)3] (Kruger & Reynhardt, 1974).

In the cation of (I), the atmp ligand is coordinated to CoIII through the primary amine (N1), and the Co—N1 bond length is 2.014 (5) Å. This is, to our best knowledge, the first X-ray structural analysis of metal complexes containing atmp, while for its oxidized nitroxide radical, 4-amino-2,2,6,6-tetramethylpiperidinyl-1-oxide (amino-TEMPO), a crystal structure of the NiII complex, trans-[Ni(hfac)2(amino-TEMPO)(CH3OH)] (hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate), has already been reported (Cervantes-Lee & Porter, 1991). In (I), the six-membered piperidine ring of atmp adopts an ideal chair conformation and the coordinated amino group is in an equatorial position. The piperidyl group is oriented toward the void between two acac ligands, the torsion angle of the bisector of O1—Co—O4 and the N1—C29 with respect to Co—N1 bond, i.e. X—Co—N1—C29, where X is the midpoint of O1···O4, being only 4.7°. This orientation would effectively minimize the steric interaction between the piperidyl group and the bent acac planes.

The Co—P bond length in (I) is 2.292 (2) Å, which is shorter by ca 0.1 Å than that (2.3887 Å) in trans-[Co(acac)2(PPh3)2]PF6 (Suzuki et al., 1999). Since in trans-[Co(acac)2(PPh3)2]PF6 the steric interaction between two PPh3 and acac ligands occurs at both sides of the equatorial four-oxygen coordination plane, the substitution of one of the PPh3 ligands by atmp may give rise to a reduction in this steric interaction on one side. As a result, shortening of the remaining Co-PPh3 bond is induced, which causes the bending of the acac planes. There have been a huge number of X-ray structural analyses of CoIII complexes containing PPh3 or the other monodentate tertiary phosphines. Although the many cobaloxime derivatives containing a tertiary phosphine have been analyzed (Bresciani-Pahor et al., 1985), most of them have an anionic ligand or an organic group at the trans position to the phosphine, and no complexes with neutral N-ligand such as pyridines or amines have been reported so far. The Co—P bond lengths in the cobaloxime derivatives vary from 2.286 to 2.460 Å, depending on the type of trans-positioned ligand. As an example, the Co—P bond length in the structurally related 3,5-di-butylcatecholate monoanion (3,5-DBcatH) complex, trans-[Co(Hdmg)2(PPh3)(3,5-DBcatH)] (Hdmg = dimethylglyoximate monoanion), is 2.316 (1) Å (Simándi et al., 1995).

Experimental top

Compound (I) was prepared by a reaction of trans-[Co(acac)2(PPh3)2]PF6 and atmp (molar ratio 1:1) in CH2Cl2 at room temperature, precipitated by adding Et2O and recrystallized from CH2Cl2/Et2O (yield 77%). Analysis found: C 50.22, H 5.68, N 3.12%; calculated for C38H51Cl2CoF6N2O4P2: C 50.40, H 5.68, N 3.09%.

Refinement top

The F atoms of the PF6- anion were found to be positionally disordered and assumed to be three sets of arrangements with occupancies of 1/2, 0.25 and 1/4, because an attempt to refine the occupancies gave values close to these. These six F atoms were refined isotropically. Coordinates of all H atoms were refined with a fixed bond length, except for those of –CH3 which were assumed as idealized tetrahedral arrangements.

Computing details top

Data collection: Rigaku/AFC Diffractometer Control Software (Rigaku Corporation, 1985); cell refinement: Rigaku/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation and Rigaku Corporation, 1999); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEP (Johnson, 1970); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. A perspective view of the complex cation in (I). H atoms have been omitted for clarity and displacement ellipsoids are drawn at the 40% probability level.
trans-(4-Amino-2,2,6,6-tetramethylpiperidine-N4)bis(pentane-2,4-dionato-O,O') (triphenylphosphine-P)cobalt(III) hexafluorophosphate dichloromethane solvate top
Crystal data top
[Co(C5H7O2)2(C18H15P)(C9H20N2)]PF6·CH2Cl2Dx = 1.352 Mg m3
Mr = 905.61Mo Kα radiation, λ = 0.7107 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 15.169 (10) Åθ = 11.1–12.4°
b = 25.197 (8) ŵ = 0.64 mm1
c = 11.638 (6) ÅT = 296 K
V = 4448 (3) Å3Plate, dark red
Z = 40.32 × 0.28 × 0.13 mm
F(000) = 1880
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.022
ω/2θ scansθmax = 30.0°
Absorption correction: integration
(Coppens et al., 1965)
h = 921
Tmin = 0.843, Tmax = 0.922k = 035
9217 measured reflectionsl = 716
7522 independent reflections3 standard reflections every 150 reflections
3148 reflections with F > 4σ(F) intensity decay: 2.0%
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.193(Δ/σ)max = 0.031
S = 0.97Δρmax = 0.45 e Å3
7522 reflectionsΔρmin = 0.52 e Å3
518 parametersAbsolute structure: Flack (1983)
27 restraintsAbsolute structure parameter: 0.01 (3)
Crystal data top
[Co(C5H7O2)2(C18H15P)(C9H20N2)]PF6·CH2Cl2V = 4448 (3) Å3
Mr = 905.61Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 15.169 (10) ŵ = 0.64 mm1
b = 25.197 (8) ÅT = 296 K
c = 11.638 (6) Å0.32 × 0.28 × 0.13 mm
Data collection top
Rigaku AFC-5R
diffractometer
3148 reflections with F > 4σ(F)
Absorption correction: integration
(Coppens et al., 1965)
Rint = 0.022
Tmin = 0.843, Tmax = 0.9223 standard reflections every 150 reflections
9217 measured reflections intensity decay: 2.0%
7522 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.193Δρmax = 0.45 e Å3
S = 0.97Δρmin = 0.52 e Å3
7522 reflectionsAbsolute structure: Flack (1983)
518 parametersAbsolute structure parameter: 0.01 (3)
27 restraints
Special details top

Geometry. the angles between least-squares planes: plane 1 defined by O1, O2, O3, O4. plane 2 defined by O1, O2, C2, C3, C4. plane 3 defined by O3, O4, C7, C8, C9. plane 4 defined by C11, C12, C13, C14, C15, C16. plane 5 defined by C17, C18, C19, C20, C21, C22. plane 6 defined by C23, C24, C25, C26, C27, C28. plane 1 versus plane 2 = 9.8 (3)° plane 1 versus plane 3 = 11.5 (3)° plane 2 versus plane 3 = 21.2 (3)° plane 1 versus plane 4 = 17.1 (2)° plane 1 versus plane 5 = 44.2 (3)° plane 1 versus plane 6 = 75.6 (3)° plane 2 versus plane 4 = 24.0 (4)°

Refinement. None

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co0.01063 (5)0.65085 (3)0.12375 (7)0.0340 (2)
Cl10.0673 (3)0.6535 (2)0.6334 (3)0.152 (2)
Cl20.1032 (2)0.6155 (2)0.6846 (3)0.161 (2)
P10.0223 (1)0.56021 (7)0.1177 (2)0.0435 (4)
P20.4883 (2)0.67704 (9)0.1375 (2)0.0554 (5)
F110.4188 (8)0.6310 (5)0.167 (1)0.06128 (4)*0.50
F120.5609 (6)0.7174 (4)0.0897 (9)0.05929 (3)*0.50
F130.4166 (7)0.6958 (5)0.0401 (10)0.06839 (4)*0.50
F140.5458 (8)0.6674 (6)0.246 (1)0.08298 (5)*0.50
F150.548 (1)0.6391 (7)0.067 (2)0.11391 (6)*0.50
F160.4259 (10)0.7142 (6)0.213 (1)0.10320 (5)*0.50
F210.420 (2)0.656 (1)0.228 (2)0.08499 (9)*0.25
F220.558 (2)0.686 (1)0.036 (2)0.07651 (8)*0.25
F230.429 (1)0.7259 (7)0.117 (2)0.15603 (8)*0.50
F240.546 (2)0.710 (1)0.231 (3)0.1142 (1)*0.25
F250.546 (1)0.6212 (8)0.145 (2)0.07404 (8)*0.25
F260.439 (1)0.6662 (7)0.016 (2)0.04762 (5)*0.25
F310.429 (2)0.624 (1)0.126 (2)0.0816 (1)*0.25
F320.535 (1)0.7331 (7)0.131 (2)0.05337 (6)*0.25
F340.564 (1)0.6427 (9)0.204 (2)0.05448 (6)*0.25
F350.510 (2)0.656 (1)0.009 (2)0.09510 (9)*0.25
F360.460 (2)0.690 (1)0.261 (2)0.1020 (1)*0.25
O10.0912 (3)0.6470 (2)0.2454 (4)0.041 (1)
O20.0966 (3)0.6605 (2)0.0098 (4)0.042 (1)
O30.0703 (3)0.6541 (2)0.0004 (4)0.043 (1)
O40.0771 (3)0.6470 (2)0.2375 (4)0.041 (1)
N10.0039 (3)0.7305 (2)0.1362 (4)0.041 (1)
N20.0143 (4)0.8454 (2)0.4022 (5)0.048 (1)
C10.2237 (5)0.6482 (4)0.3467 (7)0.081 (3)
C20.1733 (5)0.6547 (4)0.2370 (7)0.053 (2)
C30.2164 (4)0.6698 (3)0.1351 (9)0.062 (2)
C40.1778 (5)0.6708 (3)0.0291 (7)0.050 (2)
C50.2324 (5)0.6862 (4)0.0742 (8)0.073 (3)
C60.2017 (5)0.6708 (4)0.0995 (7)0.078 (3)
C70.1527 (5)0.6628 (3)0.0107 (7)0.050 (2)
C80.1968 (4)0.6636 (3)0.1160 (8)0.058 (2)
C90.1589 (4)0.6535 (4)0.2206 (7)0.052 (2)
C100.2146 (5)0.6525 (4)0.3264 (7)0.074 (3)
C110.1381 (5)0.5409 (3)0.0991 (8)0.056 (2)
C120.1857 (6)0.5217 (4)0.1927 (8)0.069 (3)
C130.2722 (7)0.5143 (5)0.181 (1)0.104 (4)
C140.3173 (6)0.5240 (5)0.082 (1)0.101 (4)
C150.2724 (7)0.5412 (5)0.013 (1)0.098 (4)
C160.1822 (6)0.5516 (4)0.0041 (8)0.070 (3)
C170.0395 (6)0.5270 (3)0.0055 (8)0.062 (2)
C180.0034 (8)0.4928 (4)0.0748 (9)0.097 (4)
C190.047 (1)0.4685 (6)0.158 (1)0.130 (6)
C200.136 (1)0.4762 (6)0.162 (1)0.146 (7)
C210.1787 (8)0.5080 (5)0.085 (1)0.127 (5)
C220.1290 (7)0.5328 (4)0.0020 (10)0.090 (3)
C230.0132 (5)0.5261 (3)0.2495 (6)0.048 (2)
C240.0121 (6)0.5515 (3)0.3558 (6)0.057 (2)
C250.0332 (7)0.5230 (3)0.4536 (7)0.069 (3)
C260.0541 (7)0.4705 (4)0.4491 (9)0.080 (3)
C270.0519 (8)0.4453 (4)0.345 (1)0.097 (4)
C280.0331 (7)0.4716 (4)0.2457 (8)0.076 (3)
C290.0050 (5)0.7570 (2)0.2503 (5)0.039 (1)
C300.0909 (5)0.7865 (3)0.2722 (7)0.048 (2)
C310.0716 (4)0.7947 (3)0.2624 (6)0.045 (2)
C320.0943 (5)0.8128 (3)0.3886 (7)0.052 (2)
C330.0728 (4)0.8229 (3)0.3803 (8)0.049 (2)
C340.1703 (5)0.8526 (4)0.3900 (8)0.076 (3)
C350.1087 (6)0.7732 (4)0.4836 (6)0.069 (3)
C360.1371 (5)0.8702 (4)0.3721 (9)0.089 (3)
C370.1065 (6)0.7853 (4)0.4711 (8)0.078 (3)
C380.0175 (8)0.6546 (5)0.7269 (9)0.123 (5)
H1A0.195 (2)0.667 (2)0.407 (1)0.0814*
H01A0.04380.74030.09990.0411*
H1B0.227 (3)0.6113 (5)0.366 (2)0.0814*
H01B0.04970.74290.09540.0411*
H1C0.282 (1)0.662 (2)0.337 (1)0.0814*
H020.02190.87240.35500.0484*
H30.27750.67990.14380.0617*
H5A0.204 (2)0.715 (1)0.114 (2)0.0726*
H5B0.290 (1)0.697 (2)0.0495 (8)0.0726*
H5C0.238 (3)0.6563 (6)0.125 (2)0.0726*
H6A0.192 (3)0.6409 (10)0.149 (2)0.0780*
H6B0.2636 (6)0.674 (2)0.0838 (9)0.0780*
H6C0.181 (2)0.703 (1)0.136 (2)0.0780*
H80.25900.67040.11500.0584*
H10A0.272 (1)0.639 (2)0.308 (1)0.0738*
H10B0.188 (2)0.630 (1)0.383 (2)0.0738*
H10C0.219 (3)0.6877 (5)0.357 (2)0.0738*
H120.15430.51620.26580.0694*
H130.30690.49990.24560.1042*
H140.38310.52130.08090.1013*
H150.30260.54580.08780.0981*
H160.14950.56680.06630.0701*
H180.06830.48640.06790.0972*
H190.01780.44700.21800.1302*
H200.16300.45480.22160.1461*
H210.24110.51440.09860.1271*
H220.15910.55410.06510.0904*
H240.00760.58820.36090.0573*
H250.03620.54080.52790.0691*
H260.07190.45090.51890.0803*
H270.06400.40790.34450.0973*
H280.03160.45290.17180.0764*
H290.00020.73040.30950.0392*
H30A0.09820.81330.21360.0477*
H30B0.14020.76230.26430.0477*
H31A0.06570.82290.20180.0449*
H31B0.12590.77810.24870.0449*
H34A0.2253 (5)0.8339 (4)0.395 (4)0.0763*
H34B0.169 (2)0.873 (1)0.321 (2)0.0763*
H34C0.164 (2)0.876 (1)0.455 (3)0.0763*
H35A0.070 (2)0.7434 (9)0.473 (2)0.0689*
H35B0.169 (1)0.761 (1)0.482 (3)0.0689*
H35C0.096 (3)0.7896 (7)0.5562 (7)0.0689*
H36A0.117 (2)0.894 (1)0.314 (3)0.0888*
H36B0.1947 (9)0.8574 (4)0.352 (4)0.0888*
H36C0.140 (3)0.888 (1)0.445 (2)0.0888*
H37A0.097 (3)0.8005 (10)0.5458 (8)0.0776*
H37B0.1684 (9)0.779 (2)0.460 (3)0.0776*
H37C0.076 (2)0.7521 (8)0.466 (3)0.0776*
H38A0.00380.64310.80180.1228*
H38B0.03710.69070.73610.1228*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0303 (4)0.0398 (4)0.0318 (4)0.0019 (4)0.0006 (4)0.0038 (4)
Cl10.138 (3)0.200 (4)0.117 (3)0.044 (3)0.032 (3)0.008 (3)
Cl20.109 (3)0.235 (5)0.139 (3)0.048 (3)0.013 (2)0.080 (3)
P10.0446 (10)0.0425 (9)0.0434 (10)0.0035 (8)0.000 (1)0.0067 (9)
P20.051 (1)0.063 (1)0.053 (1)0.002 (1)0.003 (1)0.003 (1)
O10.031 (2)0.049 (3)0.044 (3)0.001 (2)0.010 (2)0.000 (3)
O20.042 (3)0.047 (3)0.037 (3)0.000 (2)0.006 (2)0.003 (2)
O30.032 (2)0.058 (3)0.038 (3)0.006 (2)0.005 (2)0.010 (3)
O40.039 (3)0.049 (3)0.036 (3)0.002 (2)0.004 (2)0.000 (3)
N10.046 (3)0.040 (3)0.037 (3)0.002 (3)0.005 (3)0.000 (2)
N20.054 (3)0.036 (3)0.055 (4)0.002 (3)0.004 (3)0.006 (3)
C10.057 (5)0.101 (7)0.086 (7)0.016 (5)0.036 (5)0.026 (7)
C20.041 (4)0.057 (5)0.061 (5)0.008 (4)0.018 (4)0.006 (5)
C30.028 (3)0.077 (6)0.081 (6)0.002 (3)0.001 (4)0.016 (5)
C40.039 (4)0.055 (5)0.056 (5)0.006 (4)0.014 (4)0.001 (4)
C50.047 (5)0.087 (7)0.083 (7)0.006 (5)0.027 (4)0.007 (6)
C60.054 (5)0.118 (9)0.062 (6)0.010 (5)0.022 (4)0.007 (5)
C70.041 (4)0.055 (5)0.053 (5)0.002 (4)0.011 (4)0.009 (4)
C80.026 (3)0.085 (6)0.065 (5)0.008 (3)0.003 (4)0.007 (5)
C90.031 (4)0.063 (5)0.062 (5)0.007 (4)0.008 (3)0.016 (5)
C100.048 (5)0.104 (8)0.069 (6)0.016 (5)0.021 (4)0.006 (6)
C110.053 (4)0.045 (4)0.070 (6)0.013 (4)0.011 (4)0.007 (4)
C120.058 (5)0.064 (6)0.086 (7)0.017 (5)0.000 (5)0.002 (5)
C130.066 (7)0.12 (1)0.12 (1)0.038 (7)0.002 (7)0.012 (8)
C140.053 (6)0.110 (9)0.14 (1)0.036 (6)0.017 (7)0.008 (8)
C150.072 (7)0.114 (9)0.108 (9)0.021 (6)0.036 (7)0.017 (8)
C160.077 (6)0.068 (6)0.065 (6)0.022 (5)0.017 (5)0.023 (5)
C170.079 (7)0.050 (5)0.057 (5)0.008 (5)0.006 (5)0.001 (4)
C180.126 (9)0.081 (7)0.085 (6)0.042 (7)0.028 (7)0.044 (5)
C190.17 (1)0.11 (1)0.11 (1)0.04 (1)0.00 (1)0.056 (9)
C200.21 (2)0.11 (1)0.12 (1)0.06 (1)0.07 (1)0.016 (9)
C210.12 (1)0.095 (10)0.16 (1)0.026 (8)0.08 (1)0.018 (9)
C220.083 (7)0.091 (8)0.097 (9)0.007 (6)0.020 (7)0.016 (7)
C230.036 (4)0.050 (4)0.058 (5)0.007 (4)0.007 (4)0.008 (3)
C240.078 (5)0.048 (4)0.047 (4)0.008 (4)0.004 (5)0.007 (3)
C250.106 (8)0.052 (5)0.049 (5)0.013 (5)0.005 (5)0.006 (4)
C260.092 (8)0.077 (7)0.072 (7)0.002 (6)0.001 (6)0.024 (6)
C270.121 (9)0.056 (6)0.115 (10)0.034 (6)0.005 (8)0.020 (6)
C280.097 (7)0.052 (5)0.081 (7)0.012 (5)0.000 (6)0.002 (5)
C290.045 (4)0.042 (4)0.031 (3)0.003 (3)0.003 (3)0.004 (3)
C300.040 (4)0.049 (5)0.054 (5)0.006 (4)0.001 (4)0.008 (4)
C310.035 (4)0.052 (5)0.048 (5)0.008 (3)0.003 (3)0.007 (4)
C320.047 (4)0.062 (5)0.046 (5)0.005 (4)0.003 (4)0.026 (4)
C330.040 (4)0.055 (5)0.051 (5)0.005 (3)0.004 (4)0.008 (5)
C340.061 (5)0.096 (7)0.072 (6)0.011 (5)0.014 (5)0.023 (6)
C350.089 (7)0.083 (7)0.034 (5)0.012 (5)0.019 (4)0.000 (5)
C360.042 (4)0.105 (8)0.120 (8)0.028 (5)0.006 (6)0.050 (7)
C370.058 (6)0.107 (8)0.068 (6)0.007 (5)0.011 (5)0.023 (6)
C380.117 (10)0.18 (1)0.074 (7)0.050 (10)0.015 (7)0.038 (8)
Geometric parameters (Å, º) top
Co—P12.292 (2)C6—H6A0.960
Co—O11.872 (4)C6—H6B0.960
Co—O21.875 (5)C6—H6C0.960
Co—O31.897 (4)C8—H80.959
Co—O41.880 (4)C10—H10A0.960
Co—N12.014 (5)C10—H10B0.960
P1—C111.836 (8)C10—H10C0.960
P1—C171.812 (9)C12—H120.985
P1—C231.839 (8)C13—H130.985
O1—C21.265 (9)C14—H141.001
O2—C41.279 (9)C15—H150.993
O3—C71.276 (9)C16—H160.958
O4—C91.266 (8)C18—H181.000
N1—C291.486 (8)C19—H190.994
N2—C321.474 (9)C20—H200.974
N2—C331.460 (9)C21—H210.973
C1—C21.50 (1)C22—H221.018
C2—C31.41 (1)C24—H240.973
C3—C41.37 (1)C25—H250.975
C4—C51.51 (1)C26—H260.990
C6—C71.50 (1)C27—H270.961
C7—C81.40 (1)C28—H280.981
C8—C91.37 (1)C29—H290.964
C9—C101.49 (1)C30—H30A0.967
C11—C121.39 (1)C30—H30B0.969
C11—C161.40 (1)C31—H31A1.006
C12—C131.33 (1)C31—H31B0.936
C13—C141.36 (2)C34—H34A0.960
C14—C151.37 (2)C34—H34B0.960
C15—C161.40 (1)C34—H34C0.960
C17—C181.43 (1)C35—H35A0.960
C17—C221.37 (1)C35—H35B0.960
C18—C191.37 (2)C35—H35C0.960
C19—C201.37 (3)C36—H36A0.960
C20—C211.36 (2)C36—H36B0.960
C21—C221.41 (2)C36—H36C0.960
C23—C241.39 (1)C37—H37A0.960
C23—C281.41 (1)C37—H37B0.960
C24—C251.38 (1)C37—H37C0.960
C25—C261.36 (1)Cl1—C381.68 (1)
C26—C271.37 (2)Cl2—C381.70 (1)
C27—C281.36 (2)C38—H38A0.974
C29—C301.52 (1)C38—H38B0.962
C29—C311.507 (10)P2—F111.61 (1)
C30—C321.51 (1)P2—F121.60 (1)
C31—C331.54 (1)P2—F131.64 (1)
C32—C341.53 (1)P2—F141.55 (1)
C32—C351.50 (1)P2—F151.55 (2)
C33—C361.54 (1)P2—F161.59 (2)
C33—C371.51 (1)P2—F211.56 (3)
N1—H01A0.873P2—F221.60 (2)
N1—H01B0.898P2—F231.55 (2)
N2—H020.881P2—F241.63 (3)
C1—H1A0.960P2—F251.66 (2)
C1—H1B0.960P2—F261.62 (2)
C1—H1C0.960P2—F311.61 (3)
C3—H30.967P2—F321.58 (2)
C5—H5A0.960P2—F341.63 (2)
C5—H5B0.960P2—F351.62 (3)
C5—H5C0.960P2—F361.53 (3)
P1—Co—O185.5 (2)C13—C12—H12122.9
P1—Co—O293.1 (2)C12—C13—H13120.2
P1—Co—O394.0 (2)C14—C13—H13116.1
P1—Co—O491.4 (2)C13—C14—H14120.3
P1—Co—N1177.2 (2)C15—C14—H14120.1
O1—Co—O295.0 (2)C14—C15—H15121.2
O1—Co—O3179.3 (2)C16—C15—H15119.6
O1—Co—O485.8 (2)C11—C16—H16118.5
O1—Co—N191.7 (2)C15—C16—H16121.8
O2—Co—O384.6 (2)C17—C18—H18119.5
O2—Co—O4175.5 (2)C19—C18—H18122.2
O2—Co—N187.5 (2)C18—C19—H19119.4
O3—Co—O494.6 (2)C20—C19—H19119.8
O3—Co—N188.8 (2)C19—C20—H20111.0
O4—Co—N188.0 (2)C21—C20—H20126.7
Co—P1—C11109.9 (2)C20—C21—H21117.1
Co—P1—C17116.2 (3)C22—C21—H21124.1
Co—P1—C23114.7 (2)C17—C22—H22118.7
C11—P1—C17106.7 (4)C21—C22—H22120.9
C11—P1—C23104.8 (4)C23—C24—H24119.6
C17—P1—C23103.5 (4)C25—C24—H24120.9
Co—O1—C2125.2 (5)C24—C25—H25120.1
Co—O2—C4124.9 (5)C26—C25—H25118.1
Co—O3—C7124.4 (5)C25—C26—H26121.2
Co—O4—C9125.3 (5)C27—C26—H26120.2
Co—N1—C29120.8 (4)C26—C27—H27116.9
C32—N2—C33120.6 (6)C28—C27—H27121.1
O1—C2—C1114.9 (7)C23—C28—H28119.5
O1—C2—C3124.3 (7)C27—C28—H28120.8
C1—C2—C3120.8 (7)N1—C29—H29109.0
C2—C3—C4124.6 (7)C30—C29—H29106.8
O2—C4—C3124.6 (7)C31—C29—H29107.9
O2—C4—C5116.1 (7)C29—C30—H30A108.7
C3—C4—C5119.3 (7)C29—C30—H30B109.7
O3—C7—C6115.0 (7)C32—C30—H30A108.8
O3—C7—C8124.1 (7)C32—C30—H30B109.6
C6—C7—C8120.9 (7)H30A—C30—H30B106.5
C7—C8—C9125.2 (6)C29—C31—H31A108.1
O4—C9—C8125.0 (7)C29—C31—H31B112.3
O4—C9—C10115.1 (7)C33—C31—H31A107.4
C8—C9—C10119.8 (6)C33—C31—H31B110.3
P1—C11—C12119.7 (7)H31A—C31—H31B106.0
P1—C11—C16120.5 (6)C32—C34—H34A109.5
C12—C11—C16119.3 (8)C32—C34—H34B109.5
C11—C12—C13118.8 (9)C32—C34—H34C109.5
C12—C13—C14123 (1)H34A—C34—H34B109.5
C13—C14—C15119.4 (9)H34A—C34—H34C109.5
C14—C15—C16119 (1)H34B—C34—H34C109.5
C11—C16—C15119.6 (9)C32—C35—H35A109.5
P1—C17—C18121.0 (7)C32—C35—H35B109.5
P1—C17—C22119.1 (7)C32—C35—H35C109.5
C18—C17—C22119.8 (9)H35A—C35—H35B109.5
C17—C18—C19118 (1)H35A—C35—H35C109.5
C18—C19—C20120 (1)H35B—C35—H35C109.5
C19—C20—C21122 (1)C33—C36—H36A109.5
C20—C21—C22118 (1)C33—C36—H36B109.5
C17—C22—C21120 (1)C33—C36—H36C109.5
P1—C23—C24121.5 (6)H36A—C36—H36B109.5
P1—C23—C28119.5 (6)H36A—C36—H36C109.5
C24—C23—C28118.6 (7)H36B—C36—H36C109.5
C23—C24—C25119.3 (7)C33—C37—H37A109.5
C24—C25—C26121.8 (8)C33—C37—H37B109.5
C25—C26—C27118.6 (9)C33—C37—H37C109.5
C26—C27—C28122.0 (9)H37A—C37—H37B109.5
C23—C28—C27119.6 (9)H37A—C37—H37C109.5
N1—C29—C30112.3 (5)H37B—C37—H37C109.5
N1—C29—C31111.0 (5)Cl1—C38—Cl2112.7 (6)
C30—C29—C31109.7 (6)Cl1—C38—H38A108.6
C29—C30—C32113.2 (6)Cl1—C38—H38B109.0
C29—C31—C33112.4 (6)Cl2—C38—H38A109.8
N2—C32—C30108.2 (6)Cl2—C38—H38B110.0
N2—C32—C34104.7 (6)H38A—C38—H38B106.5
N2—C32—C35114.2 (6)F11—P2—F12170.7 (6)
C30—C32—C34108.8 (6)F11—P2—F1385.6 (6)
C30—C32—C35111.9 (7)F11—P2—F1494.6 (7)
C34—C32—C35108.5 (7)F11—P2—F1592.9 (8)
N2—C33—C31108.9 (6)F11—P2—F1685.2 (7)
N2—C33—C36106.4 (6)F12—P2—F1391.9 (6)
N2—C33—C37115.4 (7)F12—P2—F1489.7 (6)
C31—C33—C36107.9 (7)F12—P2—F1578.9 (7)
C31—C33—C37109.7 (7)F12—P2—F16103.1 (7)
C36—C33—C37108.3 (7)F13—P2—F14168.3 (7)
Co—N1—H01A106.8F13—P2—F15101.2 (8)
Co—N1—H01B105.6F13—P2—F1679.4 (7)
C29—N1—H01A108.3F14—P2—F1590.5 (8)
C29—N1—H01B107.9F14—P2—F1688.9 (8)
H01A—N1—H01B106.6F15—P2—F16177.9 (8)
C32—N2—H02104.7F21—P2—F22168 (1)
C33—N2—H02108.1F21—P2—F2388 (1)
C2—C1—H1A109.5F21—P2—F2494 (1)
C2—C1—H1B109.5F21—P2—F2591 (1)
C2—C1—H1C109.5F21—P2—F26102 (1)
H1A—C1—H1B109.5F22—P2—F2399 (1)
H1A—C1—H1C109.5F22—P2—F2493 (1)
H1B—C1—H1C109.5F22—P2—F2579 (1)
C2—C3—H3115.3F22—P2—F2671 (1)
C4—C3—H3120.1F23—P2—F2490 (1)
C4—C5—H5A109.5F23—P2—F25172 (1)
C4—C5—H5B109.5F23—P2—F2674 (1)
C4—C5—H5C109.5F23—P2—F31108 (1)
H5A—C5—H5B109.5F23—P2—F3262.8 (9)
H5A—C5—H5C109.5F23—P2—F34154 (1)
H5B—C5—H5C109.5F23—P2—F35103 (1)
C7—C6—H6A109.5F23—P2—F3678 (1)
C7—C6—H6B109.5F24—P2—F2596 (1)
C7—C6—H6C109.5F24—P2—F26156 (1)
H6A—C6—H6B109.5F25—P2—F2698 (1)
H6A—C6—H6C109.5F31—P2—F32169 (1)
H6B—C6—H6C109.5F31—P2—F3489 (1)
C7—C8—H8117.6F31—P2—F3576 (1)
C9—C8—H8117.2F31—P2—F3695 (1)
C9—C10—H10A109.5F32—P2—F34100 (1)
C9—C10—H10B109.5F32—P2—F3598 (1)
C9—C10—H10C109.5F32—P2—F3688 (1)
H10A—C10—H10B109.5F34—P2—F3597 (1)
H10A—C10—H10C109.5F34—P2—F3682 (1)
H10B—C10—H10C109.5F35—P2—F36172 (1)
C11—C12—H12118.2

Experimental details

Crystal data
Chemical formula[Co(C5H7O2)2(C18H15P)(C9H20N2)]PF6·CH2Cl2
Mr905.61
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)15.169 (10), 25.197 (8), 11.638 (6)
V3)4448 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.32 × 0.28 × 0.13
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionIntegration
(Coppens et al., 1965)
Tmin, Tmax0.843, 0.922
No. of measured, independent and
observed [F > 4σ(F)] reflections
9217, 7522, 3148
Rint0.022
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.193, 0.97
No. of reflections7522
No. of parameters518
No. of restraints27
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.52
Absolute structureFlack (1983)
Absolute structure parameter0.01 (3)

Computer programs: Rigaku/AFC Diffractometer Control Software (Rigaku Corporation, 1985), Rigaku/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation and Rigaku Corporation, 1999), SHELXS86 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993), ORTEP (Johnson, 1970), TEXSAN.

Selected geometric parameters (Å, º) top
Co—P12.292 (2)Co—O31.897 (4)
Co—O11.872 (4)Co—O41.880 (4)
Co—O21.875 (5)Co—N12.014 (5)
P1—Co—N1177.2 (2)O3—Co—O494.6 (2)
O1—Co—O295.0 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds