Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The chiral nitrogen-chelating alkaloid (-)-sparteine acts as a bidentate ligand, reacting with copper(II) acetate in ethanol to form the title complex, [Cu(CH3COO)2(C15H26N2)], with the two acetate groups occupying the remaining coordination sites in a monodentate fashion to produce a distorted four-coordinate tetrahedral structure. The dihedral angle between the N-Cu-N and O-Cu-O planes is 45.8 (3)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199012160/ta1266sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199012160/ta1266Isup2.hkl
Contains datablock I

CCDC reference: 140948

Comment top

Previously, we determined the crystal structures of (-)-sparteine copper(II) dinitrate and (-)-sparteine copper(II) dinitrite (Choi et al., 1995; Lee, Choi et al., 1998). The molecules of (-)-sparteine copper(II) dinitrate are mixed, with both four- and five-coordinates in one crystalline phase and only the four-coordinate species in the other (Choi et al., 1995). However, the copper(II) ion in (-)-sparteine copper(II) dinitrite is exclusively five-coordinate, with a highly distorted square-pyramidal geometry (Lee & Choi et al., 1998). The acetate ion, like the nitrate or nitrite ions, can coordinate to a metal in either a mono- or a bidentate fashion, and we expected that (-)-sparteine copper(II) diacetate, (I), might show either a four- or five-coordinate geometry around the copper(II) ion. The copper(II) ion in this complex is found to be exclusively four-coordinate, with a distorted tetrahedral geometry.

The N1—Cu—N9 plane in (I) is twisted by 45.8 (3)° from the O1—Cu—O3 plane. The respective bond lengths of Cu—O1 and Cu—O3 are 1.927 (5) and 1.973 (4) Å, and these values are similar to those found in strongly coordinated anions (Togni et al., 1990; Choi et al., 1995; Lopez et al., 1998; Lee, Choi et al., 1998; Lee, Oh et al., 1998). The Cu···O2 and Cu···O4 distances, which are 3.061 (5) and 2.701 (5) Å respectively, are too well separated to be considered as bonding interactions. The Cu—N bond distances of 2.010 (6) and 2.049 (6) Å are comparable to those found in other (-)-sparteine copper(II) complexes (Togni et al., 1990; Choi et al., 1995; Lopez et al., 1998; Lee, Choi et al., 1998).

The O—C—O bond angles in (I) are observed to be 124.9 (8)° and 124.0 (5)°, and these are similar to the value in the free acetate (Hsu & Nordman, 1983) and are much greater than the O—N—O bond angles of coordinated nitrates or nitrites (Choi et al., 1995; Lee, Choi et al., 1998). Furthermore, if the acetate ion chelates to the copper(II) centre, double-bond character will be developed at the endo-position of the chelate ring and this will require the O—C—O bond angle to be more open. The chelated acetate will cause greater ring strain than the chelated nitrite or nitrate does. As a result, the acetate seems to prefer to coordinate to the copper(II) ion in a monodentate fashion.

Experimental top

Complex (I) was prepared by the direct reaction of copper(II) acetate with a stoichiometric amount of (-)-sparteine in ethanol-triethylorthoformate (5:1 v/v) solution. Single crystals were obtained by recrystallization at about 278 K from a dichloromethane-triethylorthoformate (4:1 v/v) solution under carbon tetrachloride vapor.

Refinement top

All non-H atoms were found by direct methods, and their parameters were refined successfully with a full matrix least-squares procedure. H atoms were geometrically positioned and fixed.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software (Enraf-Nonius, 1989); data reduction: Xtal3.2 Reference Manual (Hall et al., 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ZORTEP (Zsolnai, 1996) diagram of (I), showing the atom-numbering scheme and 40% probability ellipsoids. H atoms are omitted for clarity.
{1,3,4,7,7a,8,9,10,11,13,14,14a-dodecahydro-7,14-methano- 2H,6H-dipyrido[1,2 − a:1',2'-e][1,5]diazocine-N,N'}bis(acetato- O,O')copper(II) top
Crystal data top
[Cu(C2H3O2)2(C15H26N2)]F(000) = 442
Mr = 416.01Dx = 1.393 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
a = 8.0507 (8) ÅCell parameters from 25 reflections
b = 12.0791 (12) Åθ = 7.3–13.0°
c = 10.2946 (8) ŵ = 1.13 mm1
β = 97.954 (8)°T = 293 K
V = 991.47 (16) Å3Cube, blue
Z = 20.60 × 0.45 × 0.25 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1626 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 214
Tmin = 0.543, Tmax = 0.754l = 1212
2013 measured reflections3 standard reflections every 3600 min
1838 independent reflections intensity decay: none
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: fullCalculated w = 1/[σ2(Fo2) + (0.0136P)2 + 1.9871P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.042(Δ/σ)max < 0.001
wR(F2) = 0.101Δρmax = 0.37 e Å3
S = 1.32Δρmin = 0.51 e Å3
1838 reflectionsAbsolute structure: Flack (1983)
230 parametersAbsolute structure parameter: 0.03 (3)
1 restraint
Crystal data top
[Cu(C2H3O2)2(C15H26N2)]V = 991.47 (16) Å3
Mr = 416.01Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.0507 (8) ŵ = 1.13 mm1
b = 12.0791 (12) ÅT = 293 K
c = 10.2946 (8) Å0.60 × 0.45 × 0.25 mm
β = 97.954 (8)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1626 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.543, Tmax = 0.7543 standard reflections every 3600 min
2013 measured reflections intensity decay: none
1838 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.101Δρmax = 0.37 e Å3
S = 1.32Δρmin = 0.51 e Å3
1838 reflectionsAbsolute structure: Flack (1983)
230 parametersAbsolute structure parameter: 0.03 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.52306 (8)0.05527 (7)0.14475 (6)0.0353 (2)
N10.2910 (7)0.0060 (5)0.0938 (6)0.0400 (13)
N90.5557 (7)0.0463 (6)0.3057 (6)0.0432 (14)
C20.2049 (8)0.0495 (10)0.0262 (6)0.0498 (17)
H2A0.09510.01650.05030.060*
H2B0.26920.03790.09800.060*
C30.1856 (11)0.1715 (8)0.0043 (9)0.064 (2)
H3A0.12950.20550.08390.077*
H3B0.29550.20520.01630.077*
C40.0843 (10)0.1916 (8)0.1074 (9)0.063 (2)
H4A0.08200.27020.12610.076*
H4B0.03020.16700.08170.076*
C50.1602 (12)0.1299 (8)0.2295 (10)0.053 (2)
H5A0.08850.13830.29720.064*
H5B0.26880.16150.26190.064*
C60.1809 (11)0.0073 (7)0.2011 (9)0.042 (2)
H60.06970.02170.16700.051*
C70.2482 (9)0.0617 (7)0.3210 (7)0.0477 (18)
H70.16910.05340.38460.057*
C80.3742 (10)0.1925 (7)0.1845 (7)0.0499 (19)
H80.37640.27020.15740.060*
C100.7244 (9)0.0206 (9)0.3780 (7)0.057 (2)
H10A0.71820.04920.42390.069*
H10B0.80240.01100.31510.069*
C110.7929 (11)0.1083 (10)0.4764 (8)0.072 (3)
H11A0.90520.08790.51560.087*
H11B0.72290.11230.54580.087*
C120.7977 (12)0.2205 (10)0.4117 (9)0.079 (3)
H12A0.87600.21890.34820.095*
H12B0.83540.27600.47730.095*
C130.6264 (12)0.2498 (9)0.3447 (9)0.069 (3)
H13A0.55320.26090.41090.083*
H13B0.63310.31940.29870.083*
C140.5482 (10)0.1632 (7)0.2475 (7)0.0441 (17)
H140.61770.16150.17650.053*
C150.4225 (9)0.0297 (8)0.3915 (7)0.0504 (19)
H15A0.42140.04740.41790.060*
H15B0.44830.07420.47010.060*
C160.3099 (10)0.1258 (6)0.0648 (8)0.0496 (19)
H16A0.38660.13390.00060.060*
H16B0.20200.15510.02650.060*
C170.2487 (10)0.1836 (7)0.2835 (9)0.055 (2)
H17A0.13780.20700.24410.066*
H17B0.28390.22910.36000.066*
C180.6499 (10)0.2447 (8)0.2835 (8)0.0513 (19)
C190.7790 (9)0.3333 (7)0.3132 (7)0.070 (3)
H19A0.72450.40280.32320.106*
H19B0.84490.33840.24250.106*
H19C0.85060.31550.39290.106*
C200.6865 (6)0.0045 (5)0.0544 (5)0.0395 (16)
C210.7282 (7)0.0045 (5)0.1936 (4)0.069 (3)
H21A0.83840.02470.19700.103*
H21B0.64770.03700.25180.103*
H21C0.72460.08080.22000.103*
O10.6750 (7)0.1758 (5)0.1956 (5)0.0573 (15)
O20.5343 (8)0.2397 (7)0.3496 (8)0.085 (2)
O30.5602 (5)0.0652 (7)0.0404 (4)0.0472 (11)
O40.7681 (7)0.0461 (5)0.0346 (5)0.0571 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0352 (4)0.0414 (4)0.0303 (3)0.0042 (5)0.0084 (3)0.0029 (5)
N10.036 (3)0.044 (3)0.040 (3)0.000 (3)0.006 (2)0.005 (3)
N90.040 (3)0.054 (4)0.037 (3)0.000 (3)0.011 (3)0.002 (3)
C20.039 (3)0.061 (5)0.046 (3)0.005 (5)0.005 (3)0.001 (6)
C30.056 (5)0.066 (6)0.068 (6)0.005 (5)0.004 (4)0.018 (5)
C40.043 (4)0.058 (5)0.089 (6)0.010 (4)0.010 (4)0.002 (5)
C50.045 (5)0.052 (5)0.066 (6)0.002 (4)0.019 (4)0.007 (5)
C60.029 (4)0.047 (4)0.052 (5)0.005 (3)0.007 (3)0.002 (4)
C70.040 (4)0.056 (5)0.049 (4)0.005 (4)0.017 (3)0.009 (4)
C80.062 (5)0.041 (4)0.049 (4)0.000 (4)0.017 (4)0.005 (4)
C100.037 (4)0.098 (7)0.036 (4)0.003 (4)0.001 (3)0.003 (4)
C110.055 (5)0.113 (9)0.048 (5)0.017 (6)0.005 (4)0.013 (6)
C120.071 (6)0.111 (9)0.056 (5)0.041 (6)0.016 (5)0.034 (6)
C130.083 (6)0.071 (6)0.059 (5)0.026 (5)0.033 (5)0.021 (5)
C140.051 (4)0.049 (5)0.035 (4)0.006 (4)0.020 (3)0.005 (3)
C150.056 (4)0.067 (5)0.031 (3)0.003 (4)0.018 (3)0.013 (4)
C160.053 (4)0.045 (4)0.050 (4)0.006 (4)0.005 (4)0.015 (4)
C170.052 (5)0.049 (5)0.070 (5)0.009 (4)0.026 (4)0.009 (4)
C180.047 (4)0.058 (5)0.048 (4)0.014 (4)0.005 (4)0.006 (4)
C190.080 (6)0.076 (7)0.058 (5)0.031 (5)0.020 (5)0.031 (5)
C200.048 (4)0.040 (4)0.032 (3)0.005 (3)0.011 (3)0.002 (3)
C210.082 (6)0.087 (7)0.042 (4)0.020 (5)0.025 (4)0.007 (5)
O10.066 (3)0.061 (4)0.050 (3)0.023 (3)0.024 (3)0.021 (3)
O20.063 (4)0.092 (5)0.110 (6)0.022 (4)0.047 (4)0.038 (5)
O30.052 (2)0.055 (3)0.035 (2)0.005 (4)0.0124 (18)0.002 (3)
O40.068 (4)0.057 (4)0.047 (3)0.005 (3)0.008 (3)0.003 (3)
Geometric parameters (Å, º) top
Cu—O11.927 (5)C7—C171.522 (12)
Cu—O31.973 (4)C7—C151.538 (10)
Cu—N12.010 (6)C8—C141.503 (11)
Cu—N92.049 (6)C8—C161.503 (11)
N1—C21.489 (9)C8—C171.535 (10)
N1—C161.491 (9)C10—C111.516 (12)
N1—C61.517 (10)C11—C121.513 (15)
N9—C101.488 (9)C12—C131.496 (14)
N9—C151.494 (8)C13—C141.523 (11)
N9—C141.531 (10)C18—O21.229 (9)
C2—C31.502 (15)C18—O11.266 (10)
C3—C41.519 (12)C18—C191.493 (9)
C4—C51.515 (13)C20—O41.216 (8)
C5—C61.523 (11)C20—O31.278 (7)
C6—C71.526 (11)C20—C211.5201 (12)
O1—Cu—O392.4 (3)C17—C7—C6109.7 (7)
O1—Cu—N1151.8 (2)C17—C7—C15109.2 (7)
O3—Cu—N191.7 (2)C6—C7—C15116.3 (6)
O1—Cu—N9103.1 (3)C14—C8—C16115.0 (6)
O3—Cu—N9142.9 (3)C14—C8—C17110.9 (7)
N1—Cu—N990.1 (2)C16—C8—C17108.9 (7)
C2—N1—C16108.6 (7)N9—C10—C11114.2 (8)
C2—N1—C6107.7 (6)C12—C11—C10111.2 (7)
C16—N1—C6109.5 (6)C13—C12—C11109.7 (8)
C2—N1—Cu111.1 (5)C12—C13—C14114.3 (8)
C16—N1—Cu107.0 (5)C8—C14—C13113.4 (7)
C6—N1—Cu112.8 (5)C8—C14—N9111.7 (6)
C10—N9—C15110.8 (6)C13—C14—N9112.7 (7)
C10—N9—C14111.9 (6)N9—C15—C7111.7 (6)
C15—N9—C14111.3 (6)N1—C16—C8112.9 (6)
C10—N9—Cu106.6 (5)C7—C17—C8105.1 (6)
C15—N9—Cu112.0 (5)O2—C18—O1124.9 (8)
C14—N9—Cu104.0 (4)O2—C18—C19118.7 (7)
N1—C2—C3111.3 (7)O1—C18—C19116.2 (6)
C2—C3—C4110.3 (8)O4—C20—O3124.0 (5)
C5—C4—C3110.6 (7)O4—C20—C21120.5 (3)
C4—C5—C6111.2 (9)O3—C20—C21115.5 (3)
N1—C6—C5109.4 (6)C18—O1—Cu122.2 (5)
N1—C6—C7110.7 (7)C20—O3—Cu107.7 (4)
C5—C6—C7114.3 (9)

Experimental details

Crystal data
Chemical formula[Cu(C2H3O2)2(C15H26N2)]
Mr416.01
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)8.0507 (8), 12.0791 (12), 10.2946 (8)
β (°) 97.954 (8)
V3)991.47 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.60 × 0.45 × 0.25
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.543, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
2013, 1838, 1626
Rint0.020
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.101, 1.32
No. of reflections1838
No. of parameters230
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.51
Absolute structureFlack (1983)
Absolute structure parameter0.03 (3)

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), Xtal3.2 Reference Manual (Hall et al., 1992), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1996), SHELXL97.

Selected geometric parameters (Å, º) top
Cu—O11.927 (5)C18—O21.229 (9)
Cu—O31.973 (4)C18—O11.266 (10)
Cu—N12.010 (6)C20—O41.216 (8)
Cu—N92.049 (6)C20—O31.278 (7)
O1—Cu—O392.4 (3)O3—Cu—N9142.9 (3)
O1—Cu—N1151.8 (2)N1—Cu—N990.1 (2)
O3—Cu—N191.7 (2)O2—C18—O1124.9 (8)
O1—Cu—N9103.1 (3)O4—C20—O3124.0 (5)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds