Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
[Sr(C5H7NO4)]·6H2O, (I), and [Sr(C5H8NO4)2]·5H2O, (II), both crystallize with similar strontium-glutamate-water layers. In (I), the neutral layers are connected through hydrogen bonds by water mol­ecules, while in (II), the positively charged layers are connected through hydrogen bonds and electrostatic inter­actions by inter­leaving layers of hydrogen glutamate anions and water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105011820/sx1171sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105011820/sx1171Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105011820/sx1171IIsup3.hkl
Contains datablock II

CCDC references: 275492; 275493

Comment top

In recent years, it has been found that Sr has a significant influence on the development and growth of bone, and the effect of dose on bone structure has been investigated in great detail (Schrooten et al., 2003). These investigations have led to a growing interest in strontium(II) salts, and in synthetic methods that may provide products of high yield and purity. The present paper presents the structural investigations of two new strontium(II) salts, viz. the title compounds Sr(C5H7NO4)·6H2O, (I), and Sr(C5H8NO4)2·5H2O, (II).

The crystal structure of (I) is in full agreement with the structure of strontium(II) L-glutamate hexahydrate (Schmidbaur et al., 1989). Compounds (I) and (II) are built from the same type of layers; the strontium ions are nine-coordinated to three water and six carboxylic O atoms to form distorted mono-capped quadratic antiprisms. The α-carboxylates bridge two adjacent Sr-coordination complexes, with the polyhedra sharing edges to form zigzagging polyhedral chains in the a and b directions in (I) and (II), respectively. The chelating α- and γ-carboxylates are connected to different Sr polyedral chains, thus cross-linking them to form layers in the ab planes (cf. Figs. 3 and 4). Despite the difference in charge due to the protonated glutamate in (II), these layers are very similar as reflected in the unit-cell dimensions [a(I) = 7.3244 (4) Å, b(II) = 7.2450 (4) Å and a(II) = 8.7087 (5) Å, b(I) = 8.7417 (5) Å]. The difference between the structures lies in the stacking of the layers. The neutral Sr–glutamate–water layers in (I) are linked by hydrogen bonding to the three water molecules not involved in Sr coordination (Fig. 3 and Table 3). In (II), the positively charged Sr–hydrogen glutamate–water layers are interleaved by negatively charged layers of the hydrogen glutamate and the two water molecules not involved in Sr coordination. These layers are then linked by hydrogen-bonding and electrostatic interactions (Fig. 4 and Table 6). The conformations of the three glutamate ions are very similar, as seen from their torsion angles (Table 5). The difference between the Sr-coordinated glutamates (I) and (II:1) is due to the difference in absolute configuration, and the difference between the two L-glutamates (II:1) and (II:2) is essentially in the rotation of the carboxylic groups in order to optimize hydrogen bonding.

A zigzagging chain of Sr polyhedra is a common structural element in SrII dicarboxylic acid structures, seen in, for example, SrII maleate (Diaz de Delgade et al., 1995), SrII oxalate (Sterling, 1965), SrII phthalate (Bats et al., 1978) and SrII aspartate (Derrisen et al., 1968). By contrast, the two forms of SrII tartrate, the tri- (Ambady, 1968) and tetrahydrates (Starynowicz & Meyer, 2000), form isolated SrII polyhedra. The cross-linking of the Sr chains into layers as in the glutamates is also seen in SrII aspartate and SrII maleate. In SrII oxalate, on the other hand, the oxalates form three-dimensional connections through strontium coordination, and in SrII phthalate the Sr polyhedra chains are connected through hydrogen bonds into layers and by van der Waals bonds between layers. Obviously, the layer formations as in the glutamate, aspartate and maleate salts require a certain carbon chain length to allow for the layer formation.

Experimental top

The synthesis of strontium(II) compounds was performed according to a novel method of high-temperature synthesis that readily provided high-quality crystals that were well suited for analysis by single-crystal X-ray analysis (Price et al., 1999). Briefly, the crystal were obtained by synthesis in an autoclave at temperatures between 393–413 K over a period of 15 min. The crystals of strontium(II) D-glutamate were obtained by reacting strontium(II) hydroxide octahydrate with D-glutamic acid in a molar ratio of 1:2, while crystals of strontium(II) di(hydrogen L-glutamate) were obtained by reacting equimolar amounts of strontium(II) chloride hexahydrate with disodium L-glutamate (Price et al. 1999).

Refinement top

All H-atom parameters were initially refined freely. In the final cycles, H atoms of CH2 and CH groups were placed in calculated positions, with C—H = 0.97 and 0.98 Å, respectively, and refined as riding atoms. For the water molecules, the O—H distances were restrained to 0.84 (2) Å, and the N—H distances were restrained to 0.89 (2) Å. The displacement parameters were set to 1.2 (CH and NH) or 1.5 (OH) times Ueq of the corresponding C, N or O atoms.

Computing details top

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus and SADABS (Sheldrick, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 75% probability displacement ellipsoids and the atomic numbering. H atoms are represented by circles of arbitrary size. O1*, O2*, O3* and O4* are added to complete the Sr coordination sphere. [Atoms labelled with an asterisk (*) are at the symmetry positions indicated in Table 1.]
[Figure 2] Fig. 2. The asymmetric unit of (II), showing 75% probability displacement ellipsoids and the atomic numbering. H atoms are represented by circles of arbitrary size.
[Figure 3] Fig. 3. The crystal packing of (I), viewed down the a axis. The Sr nine-coordination is shown as polyhedra. H-atom positions have been omitted for clarity.
[Figure 4] Fig. 4. The crystal packing of (II), viewed along the b axis. The Sr nine-coordination is shown as polyhedra. H-atom positions have been omitted for clarity.
(I) Strontium D-glutamate hexahydrate top
Crystal data top
Sr(C5H7NO4)·6H2OF(000) = 696
Mr = 340.83Dx = 1.760 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3509 reflections
a = 7.3244 (4) Åθ = 2.5–28.0°
b = 8.7417 (5) ŵ = 4.23 mm1
c = 20.0952 (12) ÅT = 120 K
V = 1286.65 (13) Å3Plate, colourless
Z = 40.30 × 0.10 × 0.03 mm
Data collection top
Bruker SMART APEX
diffractometer
3098 independent reflections
Radiation source: fine-focus sealed tube2812 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scans, frame data integrationθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 99
Tmin = 0.64, Tmax = 0.88k = 1111
9203 measured reflectionsl = 2625
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051 w = 1/[σ2(Fo2)]
S = 0.89(Δ/σ)max = 0.002
3098 reflectionsΔρmax = 0.83 e Å3
196 parametersΔρmin = 0.44 e Å3
14 restraintsAbsolute structure: Flack (1983),1293 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (6)
Crystal data top
Sr(C5H7NO4)·6H2OV = 1286.65 (13) Å3
Mr = 340.83Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3244 (4) ŵ = 4.23 mm1
b = 8.7417 (5) ÅT = 120 K
c = 20.0952 (12) Å0.30 × 0.10 × 0.03 mm
Data collection top
Bruker SMART APEX
diffractometer
3098 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2812 reflections with I > 2σ(I)
Tmin = 0.64, Tmax = 0.88Rint = 0.039
9203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051Δρmax = 0.83 e Å3
S = 0.89Δρmin = 0.44 e Å3
3098 reflectionsAbsolute structure: Flack (1983),1293 Friedel pairs
196 parametersAbsolute structure parameter: 0.003 (6)
14 restraints
Special details top

Experimental. Oxford Cryosystem liquid nitrogen cryostream cooler

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.59172 (4)0.29952 (3)0.942985 (12)0.00864 (6)
O10.7410 (3)0.1447 (2)1.04626 (9)0.0116 (4)
O20.4388 (3)0.1327 (2)1.03924 (9)0.0123 (5)
O30.5981 (3)0.5032 (2)1.04399 (8)0.0130 (4)
O40.5819 (3)0.39746 (19)0.94409 (9)0.0129 (4)
O50.6344 (3)0.3971 (3)0.82041 (10)0.0179 (5)
O60.3875 (3)0.0953 (2)0.87571 (10)0.0145 (5)
O70.7930 (3)0.0837 (2)0.88795 (10)0.0143 (5)
O80.5885 (4)0.1647 (2)0.85517 (9)0.0164 (5)
O90.8906 (3)0.2018 (3)0.76530 (9)0.0193 (5)
O100.2660 (3)0.1808 (3)0.74915 (10)0.0217 (5)
N10.7484 (3)0.0371 (3)1.16126 (12)0.0145 (5)
C10.5884 (5)0.0934 (3)1.06514 (12)0.0100 (5)
C20.5814 (4)0.0261 (3)1.12097 (12)0.0117 (6)
C30.5328 (4)0.1824 (3)1.09245 (12)0.0111 (6)
C40.6588 (4)0.2339 (3)1.03601 (14)0.0175 (7)
C50.6087 (4)0.3870 (3)1.00622 (13)0.0119 (6)
H10.48210.00351.15100.014*
H20.779 (4)0.052 (2)1.1790 (13)0.017*
H30.840 (3)0.069 (3)1.1351 (12)0.017*
H40.40830.17931.07600.013*
H50.53770.25761.12790.013*
H60.65630.15721.00110.021*
H70.78280.23941.05280.021*
H80.706 (4)0.346 (3)0.7962 (14)0.027*
H90.654 (5)0.482 (2)0.8057 (16)0.027*
H100.422 (5)0.011 (2)0.8672 (14)0.022*
H110.308 (4)0.079 (4)0.9006 (13)0.022*
H120.883 (3)0.057 (3)0.9087 (13)0.021*
H130.742 (4)0.001 (3)0.8795 (15)0.021*
H140.625 (4)0.203 (4)0.8225 (11)0.025*
H150.581 (5)0.233 (3)0.8820 (12)0.025*
H160.869 (5)0.151 (3)0.7971 (12)0.029*
H170.845 (4)0.152 (3)0.7356 (12)0.029*
H180.157 (3)0.196 (5)0.7539 (15)0.033*
H190.301 (5)0.155 (4)0.7851 (11)0.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.00822 (11)0.00753 (10)0.01018 (10)0.00026 (13)0.00026 (13)0.00005 (11)
O10.0101 (11)0.0116 (9)0.0131 (10)0.0011 (8)0.0002 (9)0.0027 (8)
O20.0088 (12)0.0130 (10)0.0150 (10)0.0016 (8)0.0001 (9)0.0025 (8)
O30.0127 (10)0.0107 (9)0.0154 (10)0.0004 (10)0.0015 (10)0.0009 (8)
O40.0138 (9)0.0113 (9)0.0136 (8)0.0000 (9)0.0005 (12)0.0002 (8)
O50.0224 (14)0.0150 (11)0.0163 (11)0.0020 (10)0.0058 (9)0.0011 (9)
O60.0140 (13)0.0120 (10)0.0176 (10)0.0016 (10)0.0035 (10)0.0009 (9)
O70.0121 (12)0.0122 (11)0.0186 (11)0.0009 (9)0.0041 (9)0.0014 (10)
O80.0228 (12)0.0104 (11)0.0161 (10)0.0004 (11)0.0039 (13)0.0005 (8)
O90.0231 (12)0.0207 (11)0.0140 (10)0.0040 (14)0.0015 (11)0.0023 (11)
O100.0212 (13)0.0268 (14)0.0172 (11)0.0016 (12)0.0003 (10)0.0041 (11)
N10.0139 (14)0.0149 (13)0.0145 (13)0.0005 (11)0.0026 (11)0.0020 (11)
C10.0132 (13)0.0058 (11)0.0110 (13)0.0009 (13)0.0020 (15)0.0043 (11)
C20.0134 (14)0.0124 (13)0.0092 (12)0.0012 (14)0.0007 (14)0.0001 (10)
C30.0132 (14)0.0093 (15)0.0109 (13)0.0017 (12)0.0008 (11)0.0023 (12)
C40.0209 (17)0.0127 (16)0.0188 (15)0.0052 (12)0.0028 (13)0.0020 (12)
C50.0066 (15)0.0120 (14)0.0170 (14)0.0002 (13)0.0053 (13)0.0001 (11)
Geometric parameters (Å, º) top
Sr1—O1i2.623 (2)C3—H50.9700
Sr1—O52.625 (2)C4—C51.512 (4)
Sr1—O2ii2.635 (2)C4—H60.9700
Sr1—O72.637 (2)C4—H70.9700
Sr1—O4iii2.6501 (17)C5—O41.267 (3)
Sr1—O3iii2.6639 (17)C5—O31.270 (3)
Sr1—O22.6687 (18)O5—H80.841 (18)
Sr1—O62.693 (2)O5—H90.811 (18)
Sr1—O12.7083 (19)O6—H100.802 (17)
O1—C11.263 (3)O6—H110.778 (17)
O2—C11.261 (4)O7—H120.812 (18)
C1—C21.534 (4)O7—H130.829 (18)
C2—N11.470 (4)O8—H140.783 (17)
C2—C31.524 (4)O8—H150.803 (17)
C2—H10.9800O9—H160.797 (17)
N1—H20.883 (17)O9—H170.810 (17)
N1—H30.897 (17)O10—H180.814 (17)
C3—C41.530 (4)O10—H190.799 (18)
C3—H40.9700
O1i—Sr1—O597.67 (6)O2—Sr1—O148.78 (5)
O1i—Sr1—O2ii153.09 (6)O6—Sr1—O1106.12 (6)
O5—Sr1—O2ii86.51 (6)O2—C1—O1123.2 (2)
O1i—Sr1—O7135.63 (7)O2—C1—C2117.3 (3)
O5—Sr1—O776.85 (7)O1—C1—C2119.4 (3)
O2ii—Sr1—O771.24 (6)N1—C2—C3110.1 (2)
O1i—Sr1—O4iii77.69 (6)N1—C2—C1114.8 (3)
O5—Sr1—O4iii71.71 (6)C3—C2—C1110.1 (2)
O2ii—Sr1—O4iii78.48 (6)N1—C2—H1107.2
O7—Sr1—O4iii137.20 (7)C3—C2—H1107.2
O1i—Sr1—O3iii80.45 (7)C1—C2—H1107.2
O5—Sr1—O3iii120.15 (6)C2—N1—H2112 (2)
O2ii—Sr1—O3iii74.58 (6)C2—N1—H3108.7 (19)
O7—Sr1—O3iii140.60 (7)H2—N1—H3109 (3)
O4iii—Sr1—O3iii49.23 (5)C2—C3—C4113.7 (2)
O1i—Sr1—O268.34 (6)C2—C3—H4108.8
O5—Sr1—O2155.17 (6)C4—C3—H4108.8
O2ii—Sr1—O2115.44 (4)C2—C3—H5108.8
O7—Sr1—O298.49 (6)C4—C3—H5108.8
O4iii—Sr1—O2121.92 (6)H4—C3—H5107.7
O3iii—Sr1—O278.98 (6)C5—C4—C3114.1 (3)
O1i—Sr1—O667.72 (7)C5—C4—H6108.7
O5—Sr1—O679.08 (7)C3—C4—H6108.7
O2ii—Sr1—O6138.86 (7)C5—C4—H7108.7
O7—Sr1—O668.02 (6)C3—C4—H7108.7
O4iii—Sr1—O6130.68 (7)H6—C4—H7107.6
O3iii—Sr1—O6145.23 (7)O4—C5—O3121.4 (2)
O2—Sr1—O676.62 (6)O4—C5—C4119.5 (2)
O1i—Sr1—O1115.16 (5)O3—C5—C4119.1 (2)
O5—Sr1—O1146.43 (6)H8—O5—H999 (3)
O2ii—Sr1—O167.59 (5)H10—O6—H11102 (3)
O7—Sr1—O174.82 (6)H12—O7—H13103 (3)
O7—Sr1—O174.82 (6)H14—O8—H15106 (3)
O4iii—Sr1—O1120.27 (6)H16—O9—H17102 (3)
O3iii—Sr1—O174.49 (6)H18—O10—H19105 (3)
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x+1/2, y+1/2, z+2; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O5ii0.88 (2)2.64 (3)3.102 (3)114 (2)
N1—H3···O4iv0.90 (2)2.40 (2)3.283 (3)169 (3)
O5—H8···O90.84 (2)1.95 (2)2.768 (3)163 (3)
O5—H9···O10v0.81 (2)2.14 (2)2.939 (3)168 (3)
O6—H10···O80.80 (2)1.97 (2)2.740 (3)160 (4)
O6—H11···O3vi0.78 (2)2.01 (2)2.783 (3)170 (4)
O7—H12···O3iv0.81 (2)1.90 (2)2.713 (3)177 (3)
O7—H13···O80.83 (2)1.90 (2)2.719 (3)170 (3)
O8—H14···O10vii0.78 (2)1.94 (2)2.711 (3)171 (3)
O8—H15···O40.80 (2)1.91 (2)2.708 (3)176 (4)
O9—H16···O70.80 (2)2.00 (2)2.766 (3)163 (3)
O9—H17···N1viii0.81 (2)1.93 (2)2.735 (3)176 (3)
O10—H18···O9ix0.81 (2)1.97 (2)2.775 (3)172 (4)
O10—H19···O60.80 (2)2.00 (2)2.796 (3)178 (4)
Symmetry codes: (ii) x+1/2, y+1/2, z+2; (iv) x+1/2, y1/2, z+2; (v) x+1, y+1/2, z+3/2; (vi) x1/2, y1/2, z+2; (vii) x+1, y1/2, z+3/2; (viii) x+3/2, y, z1/2; (ix) x1, y, z.
(II) Strontium di(hydrogen-L-glutamate) pentahydrate top
Crystal data top
Sr(C5H8NO4)2·5H2OF(000) = 484
Mr = 469.95Dx = 1.725 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4782 reflections
a = 8.7097 (5) Åθ = 2.4–30.0°
b = 7.2450 (4) ŵ = 3.05 mm1
c = 14.5854 (8) ÅT = 117 K
β = 100.521 (1)°Plate, colourless
V = 904.89 (9) Å30.46 × 0.15 × 0.04 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
4586 independent reflections
Radiation source: fine-focus sealed tube4179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scans, frame data integrationθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1112
Tmin = 0.633, Tmax = 0.883k = 910
7102 measured reflectionsl = 2018
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054 w = 1/[σ2(Fo2)]
S = 0.79(Δ/σ)max = 0.001
4586 reflectionsΔρmax = 0.74 e Å3
283 parametersΔρmin = 0.33 e Å3
17 restraintsAbsolute structure: Flack (1983), 1850 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (5)
Crystal data top
Sr(C5H8NO4)2·5H2OV = 904.89 (9) Å3
Mr = 469.95Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.7097 (5) ŵ = 3.05 mm1
b = 7.2450 (4) ÅT = 117 K
c = 14.5854 (8) Å0.46 × 0.15 × 0.04 mm
β = 100.521 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4586 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
4179 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.883Rint = 0.021
7102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054Δρmax = 0.74 e Å3
S = 0.79Δρmin = 0.33 e Å3
4586 reflectionsAbsolute structure: Flack (1983), 1850 Friedel pairs
283 parametersAbsolute structure parameter: 0.010 (5)
17 restraints
Special details top

Experimental. Oxford Cryosystem liquid nitrogen cryostream cooler

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.932020 (19)0.16270 (5)0.417546 (11)0.00873 (5)
O51.1124 (3)0.3690 (3)0.33635 (17)0.0187 (5)
O61.1111 (3)0.0453 (3)0.33451 (16)0.0146 (5)
O70.78680 (18)0.1907 (3)0.24323 (11)0.0143 (4)
O80.35864 (19)0.1455 (4)0.28977 (12)0.0218 (4)
O91.0634 (2)0.2480 (3)0.80663 (13)0.0206 (4)
O110.1279 (2)0.3170 (3)0.55534 (14)0.0120 (4)
O120.1458 (2)0.0119 (3)0.56695 (14)0.0133 (4)
O130.77427 (14)0.1673 (4)0.55646 (9)0.0122 (3)
O140.63131 (15)0.1599 (4)0.41515 (9)0.0133 (3)
O210.8866 (2)0.0449 (3)0.84618 (12)0.0233 (4)
O221.01166 (17)0.3115 (3)0.88272 (10)0.0172 (4)
O230.57147 (17)0.8159 (3)0.87965 (10)0.0153 (4)
O240.42711 (19)0.5604 (2)0.86319 (12)0.0145 (3)
N110.3188 (2)0.0846 (3)0.75108 (14)0.0120 (4)
N210.7758 (2)0.0354 (3)1.00541 (14)0.0123 (4)
C110.19157 (19)0.1710 (5)0.59123 (12)0.0095 (3)
C120.3377 (2)0.1920 (4)0.66696 (14)0.0101 (5)
C130.4835 (2)0.1268 (3)0.63076 (15)0.0120 (5)
C140.4996 (3)0.2275 (3)0.54154 (16)0.0151 (5)
C150.6434 (2)0.1803 (5)0.50156 (14)0.0110 (4)
C210.9153 (3)0.1877 (3)0.89410 (16)0.0118 (4)
C220.8221 (3)0.2185 (3)0.97207 (15)0.0109 (4)
C230.6730 (2)0.3311 (6)0.93811 (13)0.0140 (4)
C240.7032 (3)0.5316 (3)0.91896 (17)0.0147 (5)
C250.5559 (3)0.6423 (3)0.88471 (15)0.0113 (4)
H11.149 (4)0.454 (4)0.368 (3)0.028*
H21.090 (4)0.407 (4)0.2820 (14)0.028*
H31.148 (4)0.126 (4)0.371 (2)0.022*
H41.183 (3)0.002 (4)0.3135 (19)0.022*
H50.850 (3)0.202 (4)0.2093 (15)0.021*
H60.713 (2)0.132 (4)0.2185 (16)0.021*
H70.440 (2)0.148 (6)0.3264 (16)0.033*
H80.308 (3)0.240 (3)0.296 (2)0.033*
H91.014 (3)0.157 (4)0.8198 (19)0.031*
H101.009 (3)0.323 (4)0.7754 (19)0.031*
H110.35060.32270.68400.012*
H120.232 (2)0.126 (4)0.7688 (16)0.014*
H130.309 (3)0.034 (2)0.7405 (18)0.014*
H140.401 (2)0.090 (4)0.7961 (14)0.014*
H150.57550.14920.67790.014*
H160.47620.00500.61890.014*
H170.40800.20080.49470.018*
H180.50010.35920.55360.018*
H210.88750.28371.02380.013*
H220.715 (3)0.053 (4)1.0498 (16)0.015*
H230.725 (3)0.026 (4)0.9574 (14)0.015*
H240.855 (2)0.027 (3)1.0391 (16)0.015*
H250.60700.32460.98490.017*
H260.61630.27530.88150.017*
H270.75920.58770.97570.018*
H280.76980.53810.87260.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.00914 (8)0.00785 (8)0.00920 (8)0.00016 (12)0.00164 (5)0.00005 (13)
O50.0283 (14)0.0137 (12)0.0142 (12)0.0054 (10)0.0043 (11)0.0024 (9)
O60.0144 (11)0.0138 (11)0.0164 (12)0.0028 (9)0.0051 (9)0.0029 (9)
O70.0137 (7)0.0177 (13)0.0117 (7)0.0038 (7)0.0031 (5)0.0022 (8)
O80.0171 (8)0.0266 (13)0.0206 (8)0.0020 (10)0.0000 (6)0.0007 (10)
O90.0176 (10)0.0251 (10)0.0186 (10)0.0022 (7)0.0022 (7)0.0037 (8)
O110.0139 (10)0.0080 (10)0.0138 (10)0.0023 (7)0.0017 (8)0.0002 (8)
O120.0132 (10)0.0105 (10)0.0149 (10)0.0016 (7)0.0007 (7)0.0023 (8)
O130.0117 (6)0.0117 (6)0.0132 (6)0.0024 (11)0.0020 (5)0.0011 (11)
O140.0124 (6)0.0149 (7)0.0127 (6)0.0011 (10)0.0031 (5)0.0028 (11)
O210.0362 (11)0.0176 (9)0.0199 (10)0.0097 (8)0.0155 (8)0.0085 (8)
O220.0157 (7)0.0210 (12)0.0160 (7)0.0070 (8)0.0062 (6)0.0041 (8)
O230.0154 (7)0.0099 (10)0.0191 (7)0.0004 (8)0.0004 (5)0.0010 (9)
O240.0123 (8)0.0155 (9)0.0161 (9)0.0008 (6)0.0038 (7)0.0001 (7)
N110.0129 (10)0.0119 (9)0.0106 (9)0.0009 (8)0.0007 (7)0.0001 (8)
N210.0128 (10)0.0127 (10)0.0121 (10)0.0027 (8)0.0037 (8)0.0031 (8)
C110.0082 (8)0.0121 (9)0.0089 (8)0.0026 (14)0.0040 (6)0.0049 (14)
C120.0096 (9)0.0098 (15)0.0104 (9)0.0004 (8)0.0008 (7)0.0021 (9)
C130.0101 (10)0.0119 (16)0.0142 (10)0.0017 (7)0.0027 (8)0.0001 (8)
C140.0124 (11)0.0198 (12)0.0139 (11)0.0050 (8)0.0042 (9)0.0035 (9)
C150.0127 (9)0.0041 (11)0.0170 (9)0.0009 (11)0.0047 (7)0.0017 (12)
C210.0104 (11)0.0135 (12)0.0109 (11)0.0019 (8)0.0007 (8)0.0017 (9)
C220.0130 (11)0.0106 (11)0.0095 (10)0.0007 (8)0.0031 (8)0.0005 (8)
C230.0126 (8)0.0139 (9)0.0161 (9)0.0011 (15)0.0040 (7)0.0018 (16)
C240.0123 (11)0.0134 (12)0.0181 (12)0.0004 (9)0.0020 (9)0.0004 (10)
C250.0140 (11)0.0141 (12)0.0064 (10)0.0014 (8)0.0035 (8)0.0001 (8)
Geometric parameters (Å, º) top
Sr1—O11i2.603 (2)O22—C211.260 (3)
Sr1—O52.605 (2)C21—C221.530 (3)
Sr1—O142.6130 (13)C22—N211.494 (3)
Sr1—O62.619 (2)C22—C231.537 (3)
Sr1—O72.6326 (16)C22—H210.9800
Sr1—O11ii2.636 (2)N21—H220.918 (16)
Sr1—O12iii2.639 (2)N21—H230.879 (17)
Sr1—O132.6478 (12)N21—H240.894 (17)
Sr1—O12ii2.816 (2)C23—C241.511 (5)
O11—C111.263 (4)C23—H250.9700
O12—C111.250 (4)C23—H260.9700
C11—C121.533 (3)C24—C251.519 (3)
C12—N111.487 (3)C24—H270.9700
C12—C131.536 (3)C24—H280.9700
C12—H110.9800C25—O241.257 (3)
N11—H120.894 (16)C25—O231.268 (3)
N11—H130.874 (17)O5—H10.798 (18)
N11—H140.879 (17)O5—H20.828 (17)
C13—C141.520 (3)O6—H30.815 (18)
C13—H150.9700O6—H40.825 (17)
C13—H160.9700O7—H50.811 (16)
C14—C151.514 (3)O7—H60.803 (17)
C14—H170.9700O8—H70.808 (17)
C14—H180.9700O8—H80.832 (18)
C15—O141.254 (2)O9—H90.829 (19)
C15—O131.271 (2)O9—H100.805 (18)
O21—C211.248 (3)
O11i—Sr1—O5140.85 (7)C14—C13—C12110.96 (18)
O11i—Sr1—O1476.48 (8)C14—C13—H15109.4
O5—Sr1—O14133.21 (8)C12—C13—H15109.4
O11i—Sr1—O670.71 (7)C14—C13—H16109.4
O5—Sr1—O670.15 (5)C12—C13—H16109.4
O14—Sr1—O6132.02 (7)H15—C13—H16108.0
O11i—Sr1—O798.43 (6)C15—C14—C13115.7 (2)
O5—Sr1—O774.93 (7)C15—C14—H17108.4
O14—Sr1—O771.58 (4)C13—C14—H17108.4
O6—Sr1—O779.60 (6)C15—C14—H18108.4
O11i—Sr1—O11ii114.33 (5)C13—C14—H18108.4
O5—Sr1—O11ii75.11 (7)H17—C14—H18107.4
O14—Sr1—O11ii121.41 (6)O14—C15—O13121.66 (17)
O6—Sr1—O11ii103.85 (7)O14—C15—C14119.36 (18)
O7—Sr1—O11ii146.47 (6)O13—C15—C14118.95 (19)
O11i—Sr1—O12iii147.92 (4)O21—C21—O22125.9 (2)
O5—Sr1—O12iii71.01 (7)O21—C21—C22117.3 (2)
O14—Sr1—O12iii74.70 (8)O22—C21—C22116.8 (2)
O6—Sr1—O12iii140.80 (7)N21—C22—C21108.90 (19)
O7—Sr1—O12iii85.60 (6)N21—C22—C23108.3 (2)
O11ii—Sr1—O12iii70.66 (6)C21—C22—C23111.70 (18)
O11i—Sr1—O1375.48 (8)N21—C22—H21109.3
O5—Sr1—O13141.36 (8)C21—C22—H21109.3
O14—Sr1—O1349.57 (4)C23—C22—H21109.3
O6—Sr1—O13142.85 (8)C22—N21—H22109.4 (18)
O7—Sr1—O13120.87 (4)C22—N21—H23108.6 (18)
O11ii—Sr1—O1376.43 (6)H22—N21—H23111 (2)
O12iii—Sr1—O1375.24 (8)C22—N21—H24113.6 (17)
O11i—Sr1—O12ii68.38 (6)H22—N21—H24100 (2)
O5—Sr1—O12ii101.90 (7)H23—N21—H24114 (3)
O14—Sr1—O12ii121.79 (6)C24—C23—C22113.87 (19)
O6—Sr1—O12ii76.65 (7)C24—C23—H25108.8
O7—Sr1—O12ii155.58 (6)C22—C23—H25108.8
O11ii—Sr1—O12ii47.93 (4)C24—C23—H26108.8
O12iii—Sr1—O12ii116.72 (5)C22—C23—H26108.8
O13—Sr1—O12ii76.99 (6)H25—C23—H26107.7
O12—C11—O11124.21 (17)C23—C24—C25113.81 (19)
O12—C11—C12118.4 (3)C23—C24—H27108.8
O11—C11—C12117.3 (3)C25—C24—H27108.8
N11—C12—C11109.90 (19)C23—C24—H28108.8
N11—C12—C13110.19 (18)C25—C24—H28108.8
C11—C12—C13110.58 (17)H27—C24—H28107.7
N11—C12—H11108.7O24—C25—O23123.6 (2)
C11—C12—H11108.7O24—C25—C24119.6 (2)
C13—C12—H11108.7O23—C25—C24116.7 (2)
C12—N11—H12106.9 (16)H1—O5—H2107 (4)
C12—N11—H13113.0 (17)H3—O6—H4108 (3)
H12—N11—H13109 (2)H5—O7—H6111 (3)
C12—N11—H14113.5 (17)H7—O8—H8109 (4)
H12—N11—H14113 (2)H9—O9—H10113 (3)
H13—N11—H14102 (2)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H12···O9iv0.89 (2)1.88 (2)2.769 (3)171 (3)
N11—H13···O7i0.87 (2)2.19 (2)3.004 (3)155 (2)
N11—H14···O23v0.88 (2)1.87 (2)2.715 (3)161 (2)
N21—H22···O24vi0.92 (2)1.93 (2)2.840 (3)173 (3)
N21—H23···O23v0.88 (2)1.96 (2)2.805 (3)162 (2)
N21—H24···O22vii0.89 (2)1.88 (2)2.760 (3)168 (2)
O5—H1···O13viii0.80 (2)1.95 (2)2.743 (3)177 (4)
O5—H2···O21viii0.83 (2)1.95 (2)2.736 (3)158 (3)
O6—H3···O13ix0.82 (2)1.89 (2)2.698 (3)173 (4)
O6—H4···O8ii0.83 (2)1.93 (2)2.738 (3)167 (3)
O7—H5···O22viii0.81 (2)1.96 (2)2.763 (2)170 (3)
O7—H6···O24iii0.80 (2)2.08 (2)2.852 (2)163 (3)
O8—H7···O140.81 (2)1.91 (2)2.722 (2)178 (4)
O8—H8···O5iv0.83 (2)2.11 (2)2.866 (3)150 (3)
O9—H9···O210.83 (2)1.92 (2)2.745 (3)176 (3)
O9—H10···O6viii0.81 (2)1.99 (2)2.765 (3)161 (3)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1; (iv) x1, y, z; (v) x, y+1, z; (vi) x+1, y+1/2, z+2; (vii) x+2, y+1/2, z+2; (viii) x+2, y+1/2, z+1; (ix) x+2, y1/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaSr(C5H7NO4)·6H2OSr(C5H8NO4)2·5H2O
Mr340.83469.95
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21
Temperature (K)120117
a, b, c (Å)7.3244 (4), 8.7417 (5), 20.0952 (12)8.7097 (5), 7.2450 (4), 14.5854 (8)
α, β, γ (°)90, 90, 9090, 100.521 (1), 90
V3)1286.65 (13)904.89 (9)
Z42
Radiation typeMo KαMo Kα
µ (mm1)4.233.05
Crystal size (mm)0.30 × 0.10 × 0.030.46 × 0.15 × 0.04
Data collection
DiffractometerBruker SMART APEX
diffractometer
Bruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Multi-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.64, 0.880.633, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
9203, 3098, 2812 7102, 4586, 4179
Rint0.0390.021
(sin θ/λ)max1)0.6610.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.051, 0.89 0.026, 0.054, 0.79
No. of reflections30984586
No. of parameters196283
No. of restraints1417
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.83, 0.440.74, 0.33
Absolute structureFlack (1983),1293 Friedel pairsFlack (1983), 1850 Friedel pairs
Absolute structure parameter0.003 (6)0.010 (5)

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SAINT-Plus and SADABS (Sheldrick, 2002), SHELXTL (Sheldrick, 2000), SHELXTL, ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 2000).

Selected bond lengths (Å) for (I) top
Sr1—O1i2.623 (2)Sr1—O3iii2.6639 (17)
Sr1—O52.625 (2)Sr1—O22.6687 (18)
Sr1—O2ii2.635 (2)Sr1—O62.693 (2)
Sr1—O72.637 (2)Sr1—O12.7083 (19)
Sr1—O4iii2.6501 (17)
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x+1/2, y+1/2, z+2; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H3···O4iv0.897 (17)2.398 (18)3.283 (3)169 (3)
O5—H8···O90.841 (18)1.95 (2)2.768 (3)163 (3)
O5—H9···O10v0.811 (18)2.140 (19)2.939 (3)168 (3)
O6—H10···O80.802 (17)1.97 (2)2.740 (3)160 (4)
O6—H11···O3vi0.778 (17)2.013 (19)2.783 (3)170 (4)
O7—H12···O3iv0.812 (18)1.901 (18)2.713 (3)177 (3)
O7—H13···O80.829 (18)1.900 (19)2.719 (3)170 (3)
O8—H14···O10vii0.783 (17)1.935 (18)2.711 (3)171 (3)
O8—H15···O40.803 (17)1.906 (18)2.708 (3)176 (4)
O9—H16···O70.797 (17)2.00 (2)2.766 (3)163 (3)
O9—H17···N1viii0.810 (17)1.927 (18)2.735 (3)176 (3)
O10—H18···O9ix0.814 (17)1.967 (19)2.775 (3)172 (4)
O10—H19···O60.799 (18)1.998 (18)2.796 (3)178 (4)
Symmetry codes: (iv) x+1/2, y1/2, z+2; (v) x+1, y+1/2, z+3/2; (vi) x1/2, y1/2, z+2; (vii) x+1, y1/2, z+3/2; (viii) x+3/2, y, z1/2; (ix) x1, y, z.
Selected bond lengths (Å) for (II) top
Sr1—O11i2.603 (2)Sr1—O11ii2.636 (2)
Sr1—O52.605 (2)Sr1—O12iii2.639 (2)
Sr1—O142.6130 (13)Sr1—O132.6478 (12)
Sr1—O62.619 (2)Sr1—O12ii2.816 (2)
Sr1—O72.6326 (16)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N11—H12···O9iv0.894 (16)1.882 (16)2.769 (3)171 (3)
N11—H13···O7i0.874 (17)2.191 (19)3.004 (3)155 (2)
N11—H14···O23v0.879 (17)1.870 (18)2.715 (3)161 (2)
N21—H22···O24vi0.918 (16)1.927 (17)2.840 (3)173 (3)
N21—H23···O23v0.879 (17)1.956 (18)2.805 (3)162 (2)
N21—H24···O22vii0.894 (17)1.879 (18)2.760 (3)168 (2)
O5—H1···O13viii0.798 (18)1.946 (18)2.743 (3)177 (4)
O5—H2···O21viii0.828 (17)1.95 (2)2.736 (3)158 (3)
O6—H3···O13ix0.815 (18)1.888 (19)2.698 (3)173 (4)
O6—H4···O8ii0.825 (17)1.928 (19)2.738 (3)167 (3)
O7—H5···O22viii0.811 (16)1.962 (16)2.763 (2)170 (3)
O7—H6···O24iii0.803 (17)2.076 (19)2.852 (2)163 (3)
O8—H7···O140.808 (17)1.914 (17)2.722 (2)178 (4)
O8—H8···O5iv0.832 (18)2.11 (2)2.866 (3)150 (3)
O9—H9···O210.829 (19)1.917 (19)2.745 (3)176 (3)
O9—H10···O6viii0.805 (18)1.99 (2)2.765 (3)161 (3)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1; (iv) x1, y, z; (v) x, y+1, z; (vi) x+1, y+1/2, z+2; (vii) x+2, y+1/2, z+2; (viii) x+2, y+1/2, z+1; (ix) x+2, y1/2, z+1.
Torsion angles (°) top
III:1II:2
O1-C1-C2-C3-107.3 (3)-109.8 (2)91.3 (3)
C1-C2-C3-C454.5 (3)55.1 (3)70.7 (3)
C2-C3-C4-C5-178.5 (2)177.4 (2)-179.6 (2)
C3-C4-C5-O3-56.3 (4)-43.5 (4)-170.6 (2)
O1-C1-C2-N117.5 (3)128.3 (2)-28.3 (3)
N1-C2-C3-C4-73.0 (3)176.8 (2)-169.4 (2)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds