Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C19H18F2IO6P, prepared as a potential antiviral and anticancer agent from 3-methyl­salicyl­chloro­phosphane and 1-(2,4-di­fluoro-5-iodo­phenyl)-2-deoxy-[beta]-D-ribo­furan­ose, is one of a 1:1 mixture of two diastereomers. The diastereomers differ in their configuration, S or R, at the asymmetric phosphorus center. X-Ray crystallographic analysis of the title compound has determined the absolute configuration at the asymmetric P center to be S.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104021602/sx1133sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104021602/sx1133Isup2.hkl
Contains datablock I

CCDC reference: 257010

Comment top

A group of synthetic 3-substituted (H, Me, OMe) cyclosaligenyl derivatives of 1-(2-deoxy-β-D-ribofuranosyl)-2,4-difluoro-5-iodo- (or -trifluoromethyl-) benzene, previously evaluated as antiviral and anticancer agents (Wang et al., 2001), have been synthesized. These cyclosaligenyl derivatives were designed to act as thymidine kinase-bypass pronucleotides that would give rise to the intracellular release of the monophosphate derivative of 1-(2-deoxy-β-D-ribofuranosyl)-2,4-difluoro-5-iodo- (or trifluoromethyl-) benzene (Meier De Clercq & Balzarini, 1998; Meier et al., 1999). The configuration of the phosphorus center in cyclosaligenyl phosphate has so far been assigned only by comparison with the known stereochemistry of the model compound using CD Please define spectroscopy (Meier Lorey et al., 1998). We now report the results of the X-ray crystal structure analysis for the title compound, (I), one of the two diastereomers of iodinated cyclosaligenyl phosphate produced in the reaction, in order to establish the absolute configuration at the asymmetric P center. \sch

Compound (I) was synthesized by the oxidation reaction of the coupled product of 1-(2-deoxy-β-D-ribofuranosyl)-2,4-difluoro-5-iodobenzene with 3-methylsaligenylchlorophosphane. Removal of the solvent in vacuo gave a residue which was purified by flash silica-gel column chromatography using CH2Cl2-EtOAc (1:1, v/v) as eluent, to give a 1:1 mixture of the respective S– and R-diastereomeric products. Optically pure (I) was obtained by fractional crystallization of an ether solution of the diastereomeric mixture. Single crystals for X-ray crystallographic analysis were prepared by the following procedure. Subsequent flash silica-gel column chromatography of the 1:1 mixture of S– [(I)] and R-diastereomeric isomers with CH2Cl2-EtOAc (3:2, v/v) as eluent gave the fast-eluting isomer, (I), and the slow-eluting isomer, respectively. The fast-eluting isomer, (I), was recrystallized from ether to afford optically pure crystals. Characterization of (I) by 1H and 31P NMR spectroscopy showed that the 31P resonance was more shielded (higher field), but in the1H NMR spectra, the benzylic-CH2 H atoms were less shielded than those of the slow-eluting isomer. Thus, the less polar diastereisomer, (I), was successfully crystallized from ether as colorless needles, which were subsequently subjected to X-ray crystallographic analysis. The crystallographic analysis afforded the assignment of the absolute configuration of the compound at the asymmetric P center in the cyclosaligenyl ring as S.

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are listed in Table 1. The P1O1 bond [1.454 (4) Å] indicates double-bond character and is shorter than P1—O2, P1—O3 and P1—O4 [1.565 (4), 1.557 (4) and 1.565 (4) Å, respectively]. The torsion angles at the phosphate, O1—P1—O2—C11, O1—P1—O3—C12 and O1—P1—O4—C18, are −48.3 (3), −170.6 (3) and 136.5 (4)°, respectively. The absolute stereochemistry of the iodinated molecule, (I), is confirmed by the value of the Flack (1983) parameter [0.02 (2)].

Our labeling of the deoxyribose ring differs from the standard labeling and therefore, in our description of its conformation, we use standard labels for the atoms followed by our labeling in parentheses. The O4' (O5)-endo conformation of the deoxyribose ring present in (I) is different from the C2'-endo conformation found in the structurally related compounds (E)-1-(2-deoxy-β-D-ribofuranosyl)-2,4-difluoro-5-(2-iodovinyl)benzene (Mark et al., 2001) and 1-(2-deoxy-β-D-ribofuranosyl)-2,4-difluoro-5-methylbenzene (Guckian & Kool, 1997). This O4' (O5)-endo conformation is consistent with the larger C3'-C4'-O4'-C1' (C9—C10—O5—C7) torsion angle of 32.4 (5)° relative to the smaller C1'-C2'-C3'-C4' (C7—C8—C9—C10) torsion angle of −13.3 (5)°. The 2,4-difluoro-5-iodobenzene ring in (I) is anti with respect to the deoxyribose, as measured by the O4'-C1'-C1—C2 (O5—C7—C1—C2) torsion angle of −171.2 (5)°.

Inspection of the packing structure of (I) reveals that intermolecular interactions are formed through hydrogen-bonding between a hydroxyl group (O6—H18) of the sugar ring and a phosphate O atom (P1O1) (Fig. 2, Table 2), and also through ππ interactions between the methylsaligenyl aromatic ring, represented by the short intermolecular distance [3.011 (8) Å] between atoms O3 and C18 of the cyclosaligenyl rings and the molecules related by unit-cell translations along the crystallographic b axis·(Fig. 3) Intermolecular C—H—F—C hydrogen-bonding interactions have been observed in the crystal structure of 1-deoxy-1-(2,4-difluorophenyl)-β-D-ribofuranose (Bats et al., 2000). The crystal structure of (I), however, shows no intermolecular hydrogen bonding involving the F atoms of the aryl ring.

Experimental top

The title compound was prepared from the coupling reaction of methylsalicylchlorophosphane and 1-(2,4-difluoro-5-iodophenyl)-2-deoxy-β-D-ribofuranose, followed by oxidation using tert-butyl hydroperoxide (Sun et al., 2003) (m.p. 408–409 K; yield 20%). Spectroscopic analysis: 1H NMR (CDCl3, δ, p.p.m.): 7.86 (t, J = 7.6 Hz, 1H, difluorophenyl H), 7.19 (d, J = 6.9 Hz, 1H, saligenyl H4), 7.05 (dd, J = 7.3 and 6.9 Hz, 1H, saligenyl H5), 6.94 (d, J = 7.3 Hz, 1H, saligenyl H6), 6.82 (dd, J = 9.8 and 7.6 Hz, 1H, difluorophenyl H), 5.38 (d, J = 16.5 Hz, 2H, benzyl-CH2), 5.33 (dd, J = 10.4 and 6.1 Hz, 1H, H1'), 4.51 (ddd, J = 6.5, 3.4 and 3.1 Hz, 1H, H3'), 4.26–4.47 (m, 2H, H5'), 4.10–4.18 (m, 1H, H4'), 2.40 (ddt, J = 12.8, 5.8 and 1.8 Hz, 1H, H2'α), 2.30 (s, 3H, CH3), 1.89–2.00 (m, 1H, H2'β), 1.82 (br s, 1H, OH); 31P NMR (CDCl3, δ, p.p.m.): −8.69.

Refinement top

H atoms were treated as riding, with C—H = 0.95 and O—H = 0.93 Å, and with Uiso(H) = 1.3Ueq(C,O). Please check added text. In particular, please clarify the treatment of atom H18 - the CIF bond table gives no s.u.s, but Table 2 does. Please also check the symmetry operator in Table 2 - the CIF originally gave 3_656, but no symmetry code 3 was defined, nor is one possible for this space group, and symmetry code 2 was assumed.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A molecular view of (I), showing the hydrogen-bonding pattern. The two molecules are related by the crystallographic 21 screw axis, with atom O6 of the left-hand molecule hydrogen-bonding to atom O1 of a molecule related to the right-hand molecule by a translation along the b axis, leading to the formation of an infinite spiral arrangement along the twofold screw axis.
[Figure 3] Fig. 3. A packing diagram for (I), showing the ππ interactions between atoms O3 and C18 (dashed lines). The molecules shown are related by translations along the b axis.
(2S)-2-[1-(2,4-Difluoro-5-iodophenyl)-2-deoxy-β-D-ribofuranos-5-yl]-8- methyl-4H-1,3,2-benzodioxaphosphole 2-oxide top
Crystal data top
C19H18F2IO6PF(000) = 532.00
Mr = 538.22Dx = 1.772 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ybCell parameters from 9501 reflections
a = 14.552 (5) Åθ = 3.3–27.5°
b = 4.610 (2) ŵ = 1.72 mm1
c = 15.989 (5) ÅT = 123 K
β = 109.86 (3)°Needle, colorless
V = 1008.9 (6) Å30.10 × 0.10 × 0.05 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3621 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.053
ω scansθmax = 27.5°
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
h = 1818
Tmin = 0.641, Tmax = 0.800k = 55
9720 measured reflectionsl = 2020
4063 independent reflections
Refinement top
Refinement on F2(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.037Δρmax = 2.12 e Å3
wR(F2) = 0.096Δρmin = 2.03 e Å3
S = 1.06Extinction correction: Larson (1970), eq. 22
4063 reflectionsExtinction coefficient: 61 (6)
282 parametersAbsolute structure: Flack (1983), with 1493 Friedel pairs
H-atom parameters constrainedAbsolute structure parameter: 0.02 (2)
w = 1/[0.0002Fo2 + 0.6σ(Fo2)]/(4Fo2)
Crystal data top
C19H18F2IO6PV = 1008.9 (6) Å3
Mr = 538.22Z = 2
Monoclinic, P21Mo Kα radiation
a = 14.552 (5) ŵ = 1.72 mm1
b = 4.610 (2) ÅT = 123 K
c = 15.989 (5) Å0.10 × 0.10 × 0.05 mm
β = 109.86 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4063 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
3621 reflections with F2 > 2σ(F2)
Tmin = 0.641, Tmax = 0.800Rint = 0.053
9720 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.096Δρmax = 2.12 e Å3
S = 1.06Δρmin = 2.03 e Å3
4063 reflectionsAbsolute structure: Flack (1983), with 1493 Friedel pairs
282 parametersAbsolute structure parameter: 0.02 (2)
Special details top

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.50272 (2)0.0311 (2)0.60024 (2)0.03475 (9)
P10.94755 (9)0.6546 (3)0.81250 (8)0.0262 (3)
F10.4394 (2)0.6480 (8)0.9091 (2)0.0413 (9)
F20.3197 (2)0.0298 (8)0.6639 (2)0.044 (1)
O11.0313 (2)0.483 (1)0.8646 (2)0.0363 (9)
O20.9008 (2)0.8397 (7)0.8697 (2)0.0262 (9)
O30.8640 (2)0.469 (1)0.7479 (2)0.0297 (8)
O40.9737 (2)0.8855 (7)0.7524 (2)0.0293 (9)
O50.7089 (2)0.6939 (8)0.8730 (2)0.0298 (9)
O60.7742 (3)0.8890 (8)1.0968 (2)0.034 (1)
C10.5455 (3)0.503 (2)0.8349 (3)0.028 (1)
C20.4527 (3)0.498 (1)0.8422 (3)0.028 (1)
C30.3778 (4)0.335 (1)0.7887 (3)0.033 (1)
C40.3942 (4)0.188 (1)0.7202 (3)0.033 (1)
C50.4841 (4)0.187 (1)0.7077 (3)0.028 (1)
C60.5591 (4)0.352 (1)0.7659 (3)0.030 (1)
C70.6247 (3)0.684 (1)0.9001 (3)0.028 (1)
C80.6633 (4)0.556 (1)0.9942 (3)0.030 (1)
C90.7680 (4)0.669 (1)1.0327 (3)0.028 (1)
C100.7877 (3)0.789 (1)0.9496 (3)0.025 (1)
C110.8816 (3)0.686 (1)0.9421 (3)0.027 (1)
C120.7835 (4)0.628 (1)0.6828 (3)0.032 (1)
C130.8225 (4)0.821 (1)0.6290 (3)0.031 (1)
C140.7676 (4)0.889 (1)0.5406 (3)0.042 (2)
C150.8051 (5)1.077 (1)0.4926 (4)0.048 (2)
C160.8988 (5)1.187 (1)0.5296 (4)0.045 (2)
C170.9561 (4)1.121 (1)0.6161 (3)0.031 (1)
C180.9150 (3)0.937 (1)0.6634 (3)0.028 (1)
C191.0580 (5)1.236 (2)0.6572 (4)0.050 (2)
H10.31700.32270.79830.043*
H20.62060.36110.75750.038*
H30.60110.87480.90220.035*
H40.66250.35020.99230.038*
H50.62540.62161.02850.038*
H60.81170.51531.05860.036*
H70.78800.99480.95150.032*
H80.87750.48370.93020.034*
H90.93320.72250.99640.034*
H100.75030.74050.71340.038*
H110.73920.49310.64490.038*
H120.70460.80670.51360.049*
H130.76631.12990.43380.057*
H140.92421.31070.49510.059*
H151.07381.35400.61520.068*
H161.10251.07850.67430.068*
H171.06191.34850.70810.068*
H180.83530.97701.11970.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0441 (2)0.0384 (2)0.0269 (2)0.0037 (2)0.0187 (1)0.0005 (2)
P10.0234 (6)0.0353 (8)0.0245 (6)0.0018 (5)0.0141 (5)0.0009 (6)
F10.032 (2)0.055 (2)0.046 (2)0.005 (2)0.026 (1)0.018 (2)
F20.037 (2)0.057 (3)0.041 (1)0.017 (2)0.016 (1)0.015 (2)
O10.030 (2)0.052 (2)0.033 (1)0.009 (2)0.018 (1)0.010 (3)
O20.028 (2)0.031 (2)0.027 (2)0.003 (1)0.018 (1)0.004 (1)
O30.032 (2)0.032 (2)0.028 (1)0.005 (2)0.014 (1)0.007 (2)
O40.030 (2)0.037 (2)0.025 (1)0.001 (1)0.015 (1)0.004 (1)
O50.023 (2)0.041 (2)0.030 (2)0.005 (2)0.015 (1)0.002 (2)
O60.028 (2)0.049 (3)0.032 (2)0.005 (1)0.018 (1)0.010 (2)
C10.028 (2)0.028 (3)0.034 (2)0.001 (3)0.019 (2)0.008 (3)
C20.034 (2)0.028 (3)0.029 (2)0.011 (3)0.018 (2)0.010 (3)
C30.023 (3)0.042 (3)0.043 (3)0.003 (2)0.021 (2)0.004 (3)
C40.031 (3)0.039 (3)0.029 (2)0.010 (2)0.011 (2)0.002 (2)
C50.034 (3)0.029 (3)0.026 (2)0.004 (2)0.016 (2)0.007 (2)
C60.026 (3)0.035 (3)0.035 (2)0.000 (2)0.017 (2)0.008 (2)
C70.021 (2)0.036 (3)0.032 (2)0.002 (2)0.017 (2)0.002 (2)
C80.034 (3)0.037 (3)0.025 (2)0.008 (2)0.018 (2)0.003 (2)
C90.028 (3)0.035 (3)0.027 (2)0.001 (2)0.019 (2)0.004 (2)
C100.026 (2)0.029 (3)0.026 (2)0.006 (2)0.015 (2)0.005 (2)
C110.025 (2)0.034 (3)0.027 (2)0.001 (2)0.016 (2)0.001 (2)
C120.027 (3)0.038 (3)0.030 (2)0.000 (2)0.007 (2)0.003 (2)
C130.034 (3)0.031 (3)0.031 (2)0.009 (2)0.016 (2)0.002 (2)
C140.039 (3)0.055 (4)0.030 (2)0.014 (3)0.008 (2)0.002 (2)
C150.062 (4)0.057 (4)0.025 (2)0.026 (3)0.014 (3)0.009 (3)
C160.074 (5)0.041 (3)0.031 (3)0.014 (3)0.032 (3)0.012 (3)
C170.046 (3)0.029 (3)0.028 (2)0.003 (2)0.024 (2)0.000 (2)
C180.035 (2)0.028 (3)0.024 (2)0.009 (2)0.016 (2)0.005 (3)
C190.069 (4)0.055 (4)0.045 (3)0.012 (4)0.044 (3)0.003 (3)
Geometric parameters (Å, º) top
I1—C52.088 (5)C13—C141.403 (7)
P1—O11.454 (4)C13—C181.378 (7)
P1—O21.565 (4)C14—C151.39 (1)
P1—O31.557 (4)C15—C161.386 (9)
P1—O41.565 (4)C16—C171.385 (7)
F1—C21.341 (7)C17—C181.399 (8)
F2—C41.362 (6)C17—C191.500 (9)
O2—C111.463 (6)O6—H180.9314
O3—C121.470 (6)C3—H10.9500
O4—C181.410 (5)C6—H20.9500
O5—C71.433 (7)C7—H30.9500
O5—C101.433 (5)C8—H40.9500
O6—C91.421 (6)C8—H50.9501
C1—C21.395 (7)C9—H60.9500
C1—C61.373 (8)C10—H70.9500
C1—C71.515 (7)C11—H80.9500
C2—C31.360 (7)C11—H90.9500
C3—C41.375 (8)C12—H100.9500
C4—C51.389 (8)C12—H110.9500
C5—C61.394 (6)C14—H120.9500
C7—C81.533 (6)C15—H130.9499
C8—C91.528 (7)C16—H140.9500
C9—C101.552 (7)C19—H150.9500
C10—C111.488 (7)C19—H160.9500
C12—C131.479 (8)C19—H170.9500
I1···F23.170 (4)O5···H71.9603
I1···C43.043 (6)O5···H82.5036
I1···C63.055 (5)O5···H93.1916
P1···C112.567 (6)O5···H102.8228
P1···C122.579 (4)O6···H33.2720
P1···C132.980 (5)O6···H43.1240
P1···C182.615 (5)O6···H4iv2.8477
F1···C12.343 (7)O6···H52.4075
F1···C32.327 (6)O6···H61.9658
F1···C43.562 (6)O6···H6iv3.0384
F1···C63.584 (7)O6···H72.4476
F1···C72.754 (6)O6···H93.3226
F1···C83.105 (6)C1···H13.2816
F2···C23.575 (6)C1···H22.0170
F2···C32.352 (6)C1···H3iii3.0975
F2···C52.367 (6)C1···H32.0413
F2···C14i3.497 (6)C1···H42.6103
F2···C15ii3.292 (7)C1···H52.9650
F2···C15i3.582 (7)C2···H12.0259
O1···O2iii3.539 (6)C2···H23.2330
O1···O22.534 (6)C2···H3iii3.5269
O1···O32.515 (4)C2···H32.6818
O1···O4iii3.239 (6)C2···H43.2517
O1···O42.517 (6)C2···H53.2295
O1···C112.999 (7)C4···H12.0389
O2···O1iv3.539 (6)C4···H23.2422
O2···O32.508 (5)C4···H12i3.5623
O2···O3iv3.433 (6)C4···H13i3.4285
O2···O42.457 (5)C5···H13.2855
O2···O52.890 (5)C5···H22.0362
O2···C102.413 (7)C5···H3iii3.3243
O2···C123.054 (5)C6···H3iii3.0111
O2···C183.404 (6)C6···H33.1661
O3···O2iii3.433 (6)C6···H43.4161
O3···O4iii3.116 (6)C7···H22.7064
O3···O42.481 (6)C7···H42.0708
O3···C113.190 (6)C7···H4iv3.3706
O3···C13iii3.482 (7)C7···H52.0693
O3···C132.414 (6)C7···H63.1223
O3···C17iii3.275 (7)C7···H72.6555
O3···C18iii3.011 (8)C8···H3iii3.4559
O3···C182.777 (7)C8···H32.0583
O4···O1iv3.239 (6)C8···H62.0610
O4···O3iv3.116 (6)C8···H7iii3.3605
O4···C122.867 (6)C8···H72.9472
O4···C132.424 (5)C8···H183.2623
O4···C172.370 (6)C9···H32.7759
O4···C192.776 (8)C9···H42.0657
O5···O63.494 (5)C9···H4iv3.4564
O5···C12.412 (6)C9···H52.0658
O5···C62.762 (6)C9···H7iii3.4202
O5···C82.339 (6)C9···H72.0673
O5···C92.404 (6)C9···H82.7801
O5···C112.377 (5)C9···H92.6683
O5···C123.572 (7)C9···H18iii3.4871
O6···C73.297 (5)C9···H181.9950
O6···C82.419 (6)C10···H32.5898
O6···C8iv3.599 (6)C10···H42.9524
O6···C102.471 (6)C10···H4iv3.3650
O6···C113.472 (7)C10···H53.1287
C1···C32.424 (7)C10···H62.0825
C1···C42.751 (7)C10···H82.0142
C1···C52.410 (7)C10···H8iv3.5131
C1···C82.554 (6)C10···H92.0147
C2···C42.332 (7)C10···H182.7114
C2···C52.748 (8)C11···H62.5317
C2···C62.371 (8)C11···H7iii3.4889
C2···C72.506 (7)C11···H72.0104
C2···C83.212 (6)C11···H103.5132
C3···C52.428 (9)C11···H183.4081
C3···C62.784 (8)C12···H23.2370
C4···C62.382 (7)C12···H122.6855
C6···C72.542 (7)C13···H102.0056
C6···C83.571 (6)C13···H112.0057
C7···C92.418 (6)C13···H11iv3.3680
C7···C102.283 (6)C13···H122.0496
C7···C113.567 (7)C13···H133.2719
C8···O6iii3.599 (6)C14···H102.9387
C8···C102.411 (8)C14···H112.5981
C8···C113.596 (8)C14···H11iv3.3418
C9···C112.541 (8)C14···H132.0315
C12···C142.514 (8)C14···H143.2599
C12···C182.489 (8)C15···H11iv3.4813
C13···O3iv3.482 (7)C15···H122.0338
C13···C152.416 (8)C15···H142.0301
C13···C162.795 (9)C16···H123.2624
C13···C172.452 (8)C16···H132.0316
C14···F2v3.497 (6)C16···H152.5653
C14···C162.41 (1)C16···H163.1194
C14···C172.807 (8)C16···H173.1195
C14···C182.375 (6)C17···H133.2643
C15···F2v3.582 (7)C17···H142.0278
C15···F2vi3.292 (7)C17···H152.0254
C15···C172.413 (7)C17···H162.0241
C15···C182.731 (7)C17···H172.0237
C16···C182.370 (8)C18···H102.9158
C16···C192.523 (8)C18···H113.2095
C17···O3iv3.275 (7)C18···H11iv3.5609
C18···O3iv3.011 (8)C18···H123.2383
C18···C192.527 (9)C18···H143.2354
I1···H23.0989C18···H153.2921
I1···H10iii3.5967C18···H162.7535
I1···H12i3.3331C18···H17iii3.3783
P1···H82.5506C18···H172.7647
P1···H93.0341C19···H142.6827
P1···H102.7956H2···O5iii3.5932
P1···H113.3774H3···C1iv3.0975
P1···H17iii3.0719H3···C2iv3.5269
F1···H12.5322H3···C5iv3.3243
F1···H32.6116H3···C6iv3.0111
F1···H43.3565H3···C8iv3.4559
F1···H52.7345H4···O6iii2.8477
F2···H12.5497H4···C7iii3.3706
F2···H12i3.0215H4···C9iii3.4564
F2···H13ii2.4654H4···C10iii3.3650
F2···H13i3.2145H6···O6iii3.0384
F2···H16vii3.2285H7···O5iv3.5076
O1···H82.7762H7···C8iv3.3605
O1···H93.1212H7···C9iv3.4202
O1···H17iii2.7575H7···C11iv3.4889
O2···H72.5252H8···O2iii3.1761
O2···H81.9917H8···C10iii3.5131
O2···H8iv3.1761H10···I1iv3.5967
O2···H91.9926H11···C13iii3.3680
O2···H102.7442H11···C14iii3.3418
O3···H82.8555H11···C15iii3.4813
O3···H101.9971H11···C18iii3.5609
O3···H111.9978H12···I1v3.3331
O3···H17iii3.2018H12···F2v3.0215
O4···H103.1658H12···C4v3.5623
O4···H162.7312H13···F2v3.2145
O4···H17iii2.9832H13···F2vi2.4654
O4···H172.7064H13···C4v3.4285
O5···H22.4091H16···F2viii3.2285
O5···H2iv3.5932H17···P1iv3.0719
O5···H31.9682H17···O1iv2.7575
O5···H42.7345H17···O3iv3.2018
O5···H53.1343H17···O4iv2.9832
O5···H62.9509H17···C18iv3.3783
O5···H7iii3.5076H18···C9iv3.4871
I1—C5—C4120.8 (3)C16—C17—C18116.8 (5)
I1—C5—C6121.4 (4)C16—C17—C19122.0 (6)
O2—P1—O1114.1 (2)C19—C17—C18121.3 (4)
O3—P1—O1113.3 (3)O2—C11—H8109.3906
O4—P1—O1113.0 (2)O2—C11—H9109.4650
O3—P1—O2106.9 (2)O3—C12—H10109.3402
O4—P1—O2103.4 (2)O3—C12—H11109.4004
P1—O2—C11115.9 (3)O5—C7—H3109.6849
O4—P1—O3105.3 (2)O5—C10—H7109.0370
P1—O3—C12116.8 (4)O6—C9—H6110.4086
P1—O4—C18123.0 (3)H18—O6—C9114.3573
F1—C2—C1117.7 (4)C1—C6—H2119.4290
F1—C2—C3118.9 (5)C1—C7—H3109.6671
F2—C4—C5118.7 (5)C2—C3—H1121.5308
F2—C4—C3118.4 (5)H1—C3—C4121.4657
O2—C11—C10109.7 (4)C5—C6—H2119.3931
O3—C12—C13109.9 (4)H3—C7—C8109.7221
O4—C18—C13120.8 (5)C7—C8—H4110.8091
O4—C18—C17115.1 (4)C7—C8—H5110.6725
O5—C7—C1109.8 (4)H4—C8—C9110.7524
O5—C7—C8104.0 (4)H5—C8—C9110.7578
C10—O5—C7105.6 (4)C8—C9—H6110.3483
O5—C10—C11108.9 (4)H5—C8—H4109.4610
O5—C10—C9107.3 (4)C9—C10—H7109.0865
O6—C9—C8110.1 (4)H6—C9—C10110.3851
O6—C9—C10112.3 (4)C10—C11—H8109.3943
C6—C1—C2117.9 (5)C10—C11—H9109.4351
C1—C2—C3123.2 (5)H7—C10—C11109.0632
C7—C1—C2118.8 (5)H9—C11—H8109.4572
C1—C6—C5121.2 (5)H10—C12—C13109.3617
C7—C1—C6123.3 (5)H11—C12—C13109.3709
C1—C7—C8113.8 (5)H11—C12—H10109.4646
C2—C3—C4117.0 (5)C13—C14—H12119.9537
C3—C4—C5122.9 (5)H12—C14—C15119.9574
C4—C5—C6117.7 (5)C14—C15—H13119.7218
C7—C8—C9104.3 (4)H13—C15—C16119.6723
C8—C9—C10103.0 (3)C15—C16—H14119.5128
C9—C10—C11113.4 (4)H14—C16—C17119.4041
C12—C13—C18121.2 (4)C17—C19—H16109.3666
C12—C13—C14121.5 (5)C17—C19—H17109.3295
C18—C13—C14117.3 (5)C17—C19—H15109.4787
C13—C14—C15120.1 (5)H16—C19—H15109.5921
C13—C18—C17124.1 (4)H17—C19—H15109.5883
C14—C15—C16120.6 (5)H17—C19—H16109.4715
C15—C16—C17121.1 (6)
O1—P1—O2—C1148.3 (3)F2—C4—C5—C6179.7 (5)
O3—P1—O2—C1177.7 (3)C3—C4—C5—I1178.4 (4)
O4—P1—O2—C11171.4 (2)C3—C4—C5—C62.5 (8)
O1—P1—O3—C12170.6 (3)I1—C5—C6—C1178.1 (4)
O2—P1—O3—C1262.8 (4)C4—C5—C6—C12.2 (8)
O4—P1—O3—C1246.7 (4)O5—C7—C8—C933.1 (5)
O1—P1—O4—C18136.5 (4)C1—C7—C8—C9152.5 (4)
O2—P1—O4—C1899.6 (4)C7—C8—C9—O6106.7 (4)
O3—P1—O4—C1812.4 (4)C7—C8—C9—C1013.3 (5)
P1—O2—C11—C10141.9 (3)O6—C9—C10—O5129.2 (4)
P1—O3—C12—C1356.3 (5)O6—C9—C10—C11110.6 (5)
P1—O4—C18—C1311.2 (8)C8—C9—C10—O510.7 (5)
P1—O4—C18—C17171.4 (4)C8—C9—C10—C11130.9 (4)
C10—O5—C7—C1162.9 (4)O5—C10—C11—O268.6 (5)
C10—O5—C7—C840.8 (5)C9—C10—C11—O2172.1 (3)
C7—O5—C10—C932.4 (5)O3—C12—C13—C14149.5 (5)
C7—O5—C10—C11155.5 (4)O3—C12—C13—C1829.4 (7)
C6—C1—C2—F1179.2 (5)C12—C13—C14—C15178.4 (6)
C6—C1—C2—C35.4 (9)C18—C13—C14—C152.7 (9)
C7—C1—C2—F12.4 (8)C12—C13—C18—O42.9 (9)
C7—C1—C2—C3177.7 (5)C12—C13—C18—C17180.0 (5)
C2—C1—C6—C53.5 (8)C14—C13—C18—O4178.2 (5)
C7—C1—C6—C5179.8 (5)C14—C13—C18—C171.1 (9)
C2—C1—C7—O5171.2 (5)C13—C14—C15—C163 (1)
C2—C1—C7—C872.7 (7)C14—C15—C16—C172 (1)
C6—C1—C7—O55.5 (8)C15—C16—C17—C180.4 (9)
C6—C1—C7—C8110.6 (6)C15—C16—C17—C19179.4 (6)
F1—C2—C3—C4179.1 (5)C16—C17—C18—O4177.2 (5)
C1—C2—C3—C45.6 (8)C16—C17—C18—C130.0 (8)
C2—C3—C4—F2178.1 (5)C19—C17—C18—O43.8 (8)
C2—C3—C4—C54.1 (8)C19—C17—C18—C13179.0 (6)
F2—C4—C5—I13.8 (7)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y3/2, z+1; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1, y+1/2, z+1; (vi) x+1, y+3/2, z+1; (vii) x1, y1, z; (viii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H18···O1ix0.93 (1)1.87 (1)2.719 (5)150 (4)
Symmetry code: (ix) x+2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC19H18F2IO6P
Mr538.22
Crystal system, space groupMonoclinic, P21
Temperature (K)123
a, b, c (Å)14.552 (5), 4.610 (2), 15.989 (5)
β (°) 109.86 (3)
V3)1008.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.10 × 0.10 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1999)
Tmin, Tmax0.641, 0.800
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
9720, 4063, 3621
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.06
No. of reflections4063
No. of parameters282
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.12, 2.03
Absolute structureFlack (1983), with 1493 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), CRYSTALS (Watkin et al., 1996), ORTEPII (Johnson, 1976), CrystalStructure.

Selected geometric parameters (Å, º) top
I1—C52.088 (5)P1—O31.557 (4)
P1—O11.454 (4)P1—O41.565 (4)
P1—O21.565 (4)O4—C181.410 (5)
O2—P1—O1114.1 (2)O3—P1—O2106.9 (2)
O4—P1—O1113.0 (2)O4—P1—O3105.3 (2)
C10—O5—C7—C840.8 (5)C7—C8—C9—C1013.3 (5)
C7—O5—C10—C932.4 (5)O6—C9—C10—C11110.6 (5)
C2—C1—C7—O5171.2 (5)C8—C9—C10—O510.7 (5)
O5—C7—C8—C933.1 (5)C9—C10—C11—O2172.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H18···O1i0.931 (5)1.871 (5)2.719 (5)150 (4)
Symmetry code: (i) x+2, y+1/2, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds