Download citation
Download citation
link to html
The crystal structure of the title compound, [CuCl(C5H8­NO4)(C12H8N2)]·H2O or [CuCl(L-Glu)(phen)]·H2O (where phen is 1,10-phenanthroline and L-Glu is L-glutamate), shows that the ternary complex consists of two neutral mol­ecules, in which the CuII ions each have a distorted square-pyramidal coordination geometry comprised of one bidentate phenanthroline ligand, one O,N-bidentate L-glutamate anion and an apical Cl- anion. The angles between the planes of the Cu-phenanthroline and the Cu-amino­carboxyl­ate chelate rings are 6.1 (5) and 11.8 (5)° in the two mol­ecules. The Cu-Cl bond lengths are 2.608 (3) and 2.590 (3) Å in the two mol­ecules, slightly longer than the value of 2.546 Å observed for the Cu-Cl bond in the analogous chloro(L-glycin­ato)(1,10-phenanthroline)copper complex [Solans, Ruiz-Ramírez, Martinez, Gasque & Briansó (1983). Acta Cryst. C44, 628-631]. Additionally, the Cu ion is weakly coordinated at a sixth position by an [alpha]-carboxyl O atom from a neighbouring complex. A number of intra- and intermolecular hydrogen bonds stabilize the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103026453/sx1128sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103026453/sx1128Isup2.hkl
Contains datablock I

CCDC reference: 231036

Comment top

In recent years, ternary copper(II) complexes have attracted significant attention due to their range of properties, which include interactions with DNA (Chikira et al., 2002), anticonvulsant activity (Viossat et al., 2003), nuclease activity (Garcýa-Raso et al., 2003), and interactions of copper(II) with nucleotides and nucleosides (Gasowska, 2003; Lomozik & Jastrzáb, 2003). A variety of ternary complexes involving copper, 1,10-phenanthroline (phen) and α-amino acids have been described (Anitolini et al., 1983, 1985; Moreno-Esparza et al., 1995; Solans et al., 1988; Venkatraman et al., 1999). Here, we report the crystal structure of the title novel copper, phenanthroline and α-amino acid ternary complex, (I). \sch

Some features of the molecular geometry of (I) are listed in Table 1. The molecular conformation and crystal packing are illustrated in Figs. 1 and 2, respectively. In this ternary complex, there are two neutral molecules in the asymmetric unit. The Cu ions in each complex have distorted square-pyramidal coordination geometry, with one bidentate phenanthroline ligand, one O,N-bidentate L-glutamic acid monovalent anion (with protonated γ-carboxylate) and an apical Cl anion, in contrast with the structure of [Cu(phen)(L-glu)(H2O)] (Anitolini et al., 1985), in which the Cu ions also have distorted square-pyramidal coordination geometry with a bidentate phenanthroline ligand, but an O,N-bidentate L-glutamic acid divalent anion (with ionized γ-carboxyl) and an apical coordinating water O atom.

The four equatorial donor atoms in (I) (N1, N2, N3 and O1, or N4, N5, N6 and O5) are nearly coplanar, with respective r.m.s. deviations of 0.0347 and 0.0526 Å in the two independent molecules, and the displacements of the Cu atoms toward the apical Cl ligand are 0.191 (5) and 0.151 (5) Å, respectively. The angles between the planes of the Cu-phenanthroline (atoms C1—C12/N1/N2/Cu1 or C18–29/N4/N5/Cu2) and the aminocarboxylate chelation ring (atoms C13/C14/Cu1/O1/N3 or C30/C31/Cu2/O5/N6) are 6.1 (5) and 11.8 (5)°, respectively, i.e. somewhat different in the two molecules. This variability in the angles between planes defined by chelation rings is also observed in ternary copper complexes with phenanthroline and other amino acids (Anitolini et al. 1985; Moreno-Esparza et al., 1995).

The Cu coordination distances are listed in Table 1. The Cu—N coordination bond lengths to the phenanthroline ligand are in the range 1.986 (11)–2.057 (9) Å; these and the other Cu coordination distances are typically observed in many other related structures (Anitolini et al., 1983, 1985; Moreno-Esparza et al., 1995; Solans et al., 1988; Venkatraman et al., 1999). The Cu—Cl bond lengths are 2.608 (3) and 2.590 (3) Å in the two molecules, slightly longer than the value of 2.546 Å observed for the Cu—Cl bond in the analogous chloro(glycinato)(1,10-phenanthroline)copper complex (Solans et al., 1988), but similar to that (2.602 Å) observed in the complex [Cu2(phen)2(OH)2(H2O)2][Cu2(phen)2(OH)2Cl2]Cl2·6H2O (Lu et al., 2003). In addition, Fig.2 shows that the Cu ions are coordinated by the O atom of an α-carboxylate group from a neighbouring asymmetric unit, forming a weak sixth coordination ligand, with Cu2—O2i and Cu1—O6ii distances of 3.275 and 3.215 Å, respectively [symmetry codes: (i) x, y − 1, z; x, y + 1, z]. Therefore, the overall coordination geometry is actually octahedral. This octahedral coordination geometry is also found in a similar L-proline ternary complex (Venkatraman et al., 1999), in which the weak sixth coordinating α-carboxyl O atom is from another ternary complex in same asymmetric unit.

The hydrogen-bonding geometry in (I) is listed in Table 2. As illustrated in Figs. 1 and 2 and Table 2, a number of intra- and intermolecular hydrogen bonds stabilize the crystal structure of (I). These hydrogen bonds are formed mainly between water molecules and α-amino N atoms, α-carboxyl and γ-carboxyl O atoms, and O atoms and the coordinating Cl anions. Hydrogen bonds also exist between α-amino N atoms and the Cl ligands. It is worthy of mention that atom H10B is involved in an intermolecular three-centred hydrogen bond with atoms O1 and O2. Furthermore, the weak coordination by the sixth ligand also contributes to the intermolecular interactions observed in the crystal packing. The Cl and carboxylate ligands together contribute to the extension of the intermolecular packing interactions throughout the crystal. Additionally, the complex molecules are arranged in such a way that symmetry-related phenanthroline planes of neighbouring complexes [the plane containing atoms C1—C12/N1/N2 and that containing atoms C18iii—C31iii/N4iii/N5iii; symmetry code: (iii) x, y + 1, z − 1] are orientated in parallel planes with phen-phen separations of about 3.42 Å, indicating siginificant ππ stacking interactions.

Experimental top

All chemicals were of reagent grade and commercially available from the Beijing Chemical Reagents Company of China, and were used without further purification. CuCl2·2H2O (1.705 g, 10.0 mmol) was dissolved in water (80 ml), and 1,10-phenanthroline (1.98 g, 10 mmol) was dissolved in water (20 ml) with a few drops of HCl. L-glutamic acid (1,47 g, 10.0 mmol) was then added to the copper(II) chloride solution with stirring at 333 K until all the L-glutamic acid had dissolved. The two solutions were then mixed, the pH adjusted to 3 with HCl and the solution stirred at room temperature for 2 h. The blue solution was filtered and the filtrate left at 277 K. Blue crystals of (I) appeared from the solution after several weeks, by slow evaporation of the aqueous solvent. Elemental analysis, calculated for C17H16ClCuN3O4·H2O: C 46.06, H 4.09, N 9.48%; found: C 45.98, H 4.17, N 9.35%.

Refinement top

H atoms attached to C and N atoms were placed in geometrically idealized positions, with Csp3—H = 0.99, Csp2—H = 0.95, α-Csp3—H = 1.000 and Nsp3—H = 0.92 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). H atoms attached to O atoms (L-glutamic acid and solvent water) were located from difference Fourier maps and their global Uiso value was refined. The O—H distances are in the range 0.81 (5)–0.90 (5) Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The hydrogen-bonding network and octahedral coordination geometry of (I). Atoms labelled with the suffices A, B, C or E are at the symmetry positions (x, y − 1, z), (x, y + 1, z), (x + 1, y − 1, z) and (x + 1, y, z), respectively.
Chloro(L-glutamato-κ2N,O)(1,10-phenanthroline-κ2N,N')copper(II) monohydrate top
Crystal data top
[CuCl(C5H8NO4)(C12H8N2)]·H2OZ = 2
Mr = 443.33F(000) = 454
Triclinic, P1Dx = 1.693 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3022 (14) ÅCell parameters from 3499 reflections
b = 10.0591 (17) Åθ = 2.3–27.2°
c = 12.393 (2) ŵ = 1.45 mm1
α = 66.730 (2)°T = 183 K
β = 72.047 (2)°Block, blue
γ = 68.828 (2)°0.55 × 0.40 × 0.40 mm
V = 869.9 (3) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3578 independent reflections
Radiation source: fine-focus sealed tube3455 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 99
Tmin = 0.474, Tmax = 0.561k = 118
4229 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0562P)2 + 2.5194P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3578 reflectionsΔρmax = 0.52 e Å3
506 parametersΔρmin = 0.75 e Å3
9 restraintsAbsolute structure: Flack (1983), with x Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
[CuCl(C5H8NO4)(C12H8N2)]·H2Oγ = 68.828 (2)°
Mr = 443.33V = 869.9 (3) Å3
Triclinic, P1Z = 2
a = 8.3022 (14) ÅMo Kα radiation
b = 10.0591 (17) ŵ = 1.45 mm1
c = 12.393 (2) ÅT = 183 K
α = 66.730 (2)°0.55 × 0.40 × 0.40 mm
β = 72.047 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3578 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3455 reflections with I > 2σ(I)
Tmin = 0.474, Tmax = 0.561Rint = 0.022
4229 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121Δρmax = 0.52 e Å3
S = 1.10Δρmin = 0.75 e Å3
3578 reflectionsAbsolute structure: Flack (1983), with x Friedel pairs
506 parametersAbsolute structure parameter: 0.02 (3)
9 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.27011 (10)0.95620 (8)0.66301 (7)0.0258 (3)
Cu20.48343 (10)0.28453 (9)0.85224 (7)0.0257 (3)
Cl10.6759 (3)0.4730 (3)0.7447 (2)0.0296 (6)
Cl20.0761 (3)0.7714 (3)0.7697 (2)0.0293 (6)
N10.1037 (13)1.1118 (11)0.5554 (9)0.023 (2)
N20.3848 (12)0.8895 (12)0.5133 (8)0.024 (2)
N30.4529 (14)0.8288 (11)0.7609 (10)0.028 (2)
H3A0.48040.73020.76440.033*
H3B0.55350.86060.72780.033*
N40.3802 (12)0.3553 (10)0.9945 (9)0.026 (2)
N50.6526 (14)0.1349 (12)0.9559 (9)0.026 (2)
N60.3012 (13)0.4185 (12)0.7519 (8)0.027 (2)
H6A0.19110.42780.80010.033*
H6B0.31910.51270.71550.033*
C10.0297 (17)1.2233 (15)0.5803 (12)0.033 (3)
H10.05351.23780.65560.040*
C20.1355 (14)1.3200 (14)0.4962 (11)0.031 (3)
H20.23011.40060.51460.038*
C30.1052 (16)1.3005 (15)0.3875 (11)0.032 (3)
H30.17861.36610.33110.038*
C40.0328 (17)1.1846 (14)0.3617 (11)0.028 (3)
C50.1366 (15)1.0922 (13)0.4512 (11)0.025 (2)
C60.2869 (17)0.9733 (14)0.4251 (10)0.028 (2)
C70.0847 (16)1.1484 (14)0.2519 (11)0.029 (2)
H70.01681.20800.19130.035*
C80.2252 (17)1.0338 (15)0.2308 (11)0.035 (3)
H80.25291.01460.15710.042*
C90.3331 (16)0.9406 (14)0.3199 (11)0.031 (3)
C100.4810 (19)0.8257 (16)0.3017 (12)0.039 (3)
H100.51410.80130.22980.047*
C110.5796 (17)0.7469 (15)0.3902 (12)0.035 (3)
H110.68220.66770.37940.042*
C120.5287 (16)0.7836 (14)0.4958 (12)0.033 (3)
H120.59920.73120.55550.040*
C130.2543 (13)1.0017 (12)0.8710 (10)0.023 (2)
C140.3798 (11)0.8427 (9)0.8834 (7)0.0235 (17)
H140.30370.77230.92530.028*
C150.5145 (15)0.7928 (13)0.9585 (11)0.035 (3)
H15A0.58400.86690.92490.042*
H15B0.45190.79601.04000.042*
C160.6398 (15)0.6399 (14)0.9697 (10)0.026 (2)
H16A0.57430.57090.97690.031*
H16B0.72970.64550.89500.031*
C170.7274 (16)0.5769 (14)1.0683 (12)0.040 (3)
C180.2381 (15)0.4686 (13)1.0153 (11)0.029 (2)
H180.16830.52600.95560.035*
C190.1901 (17)0.5046 (14)1.1201 (12)0.035 (3)
H190.08760.58411.13060.042*
C200.2856 (18)0.4294 (14)1.2072 (12)0.035 (3)
H200.25230.45661.27780.042*
C210.4366 (16)0.3090 (15)1.1919 (11)0.029 (3)
C220.4730 (15)0.2814 (13)1.0815 (11)0.024 (2)
C230.6195 (17)0.1588 (14)1.0654 (10)0.025 (2)
C240.5470 (16)0.2163 (15)1.2781 (11)0.032 (3)
H240.51970.23591.35160.039*
C250.689 (2)0.1018 (17)1.2592 (13)0.041 (3)
H250.76170.04411.31690.049*
C260.7254 (15)0.0699 (13)1.1502 (11)0.027 (2)
C270.8694 (15)0.0539 (14)1.1234 (12)0.031 (3)
H270.94390.11891.17920.038*
C280.8962 (16)0.0756 (14)1.0166 (11)0.031 (3)
H280.98940.15680.99780.038*
C290.7874 (15)0.0207 (13)0.9358 (11)0.026 (2)
H290.81080.00400.86150.031*
C300.4791 (16)0.2286 (13)0.6536 (10)0.027 (3)
C310.3098 (11)0.3566 (9)0.6597 (8)0.0259 (18)
H310.21000.30990.68880.031*
C320.2859 (15)0.4708 (13)0.5397 (11)0.034 (2)
H32A0.28810.42050.48480.041*
H32B0.38450.51780.50590.041*
C330.1101 (18)0.5936 (14)0.5495 (12)0.035 (3)
H33A0.01550.54470.59920.042*
H33B0.11840.65650.59100.042*
C340.0593 (17)0.6951 (12)0.4290 (11)0.037 (3)
O10.1805 (10)1.0619 (9)0.7796 (7)0.0263 (18)
O20.2261 (12)1.0633 (10)0.9466 (8)0.035 (2)
O30.7081 (11)0.6263 (9)1.1466 (8)0.060 (3)
O40.8524 (13)0.4391 (10)1.0784 (9)0.044 (2)
H4A0.867 (12)0.438 (10)1.011 (5)0.020 (8)*
O50.5650 (11)0.1780 (9)0.7368 (7)0.0275 (18)
O60.5196 (12)0.1761 (10)0.5703 (7)0.035 (2)
O70.1283 (12)0.6655 (8)0.3374 (7)0.056 (2)
O80.0643 (12)0.8215 (11)0.4284 (9)0.044 (2)
H8A0.076 (11)0.846 (9)0.488 (6)0.020 (8)*
O90.7884 (11)0.9109 (10)0.6139 (9)0.034 (2)
H9A0.861 (10)0.897 (9)0.661 (7)0.020 (8)*
H9B0.763 (11)1.004 (6)0.569 (6)0.020 (8)*
O100.9680 (12)0.3349 (11)0.8998 (9)0.038 (2)
H10A0.922 (11)0.377 (9)0.840 (6)0.020 (8)*
H10B1.051 (9)0.250 (7)0.896 (7)0.020 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0257 (7)0.0265 (8)0.0245 (7)0.0012 (6)0.0083 (6)0.0103 (6)
Cu20.0260 (7)0.0268 (7)0.0220 (7)0.0010 (6)0.0090 (5)0.0098 (6)
Cl10.0300 (14)0.0275 (15)0.0300 (15)0.0051 (12)0.0061 (12)0.0102 (12)
Cl20.0325 (14)0.0244 (14)0.0314 (15)0.0058 (11)0.0103 (12)0.0083 (12)
N10.025 (5)0.019 (5)0.022 (5)0.005 (4)0.009 (4)0.001 (4)
N20.022 (4)0.037 (5)0.018 (4)0.008 (4)0.000 (3)0.015 (4)
N30.032 (5)0.021 (5)0.042 (6)0.005 (4)0.014 (4)0.018 (4)
N40.020 (4)0.017 (4)0.032 (5)0.004 (3)0.013 (4)0.002 (4)
N50.026 (5)0.034 (6)0.018 (5)0.006 (4)0.003 (4)0.013 (4)
N60.027 (5)0.030 (5)0.013 (5)0.002 (4)0.008 (4)0.002 (4)
C10.033 (7)0.037 (7)0.026 (7)0.009 (6)0.002 (5)0.011 (6)
C20.018 (5)0.034 (7)0.033 (7)0.003 (5)0.007 (5)0.009 (5)
C30.028 (6)0.040 (7)0.021 (6)0.007 (5)0.014 (5)0.002 (5)
C40.033 (6)0.029 (6)0.025 (6)0.016 (5)0.012 (5)0.001 (5)
C50.019 (5)0.019 (5)0.031 (6)0.000 (4)0.007 (4)0.005 (4)
C60.035 (6)0.030 (5)0.016 (5)0.006 (4)0.011 (4)0.001 (4)
C70.028 (5)0.035 (6)0.023 (5)0.003 (4)0.016 (4)0.005 (4)
C80.044 (7)0.042 (7)0.016 (5)0.008 (5)0.013 (5)0.006 (5)
C90.030 (5)0.027 (6)0.031 (6)0.000 (4)0.010 (5)0.008 (4)
C100.051 (7)0.044 (7)0.020 (6)0.013 (6)0.003 (5)0.012 (5)
C110.033 (6)0.030 (6)0.032 (7)0.001 (5)0.002 (5)0.010 (5)
C120.036 (6)0.029 (6)0.038 (7)0.003 (5)0.017 (5)0.011 (5)
C130.016 (5)0.022 (5)0.028 (6)0.000 (4)0.001 (4)0.014 (4)
C140.026 (4)0.028 (5)0.020 (4)0.003 (3)0.010 (3)0.011 (3)
C150.039 (6)0.035 (5)0.034 (6)0.003 (4)0.021 (5)0.014 (5)
C160.023 (6)0.031 (6)0.026 (6)0.004 (5)0.010 (5)0.017 (5)
C170.035 (5)0.042 (7)0.044 (7)0.000 (5)0.002 (5)0.029 (5)
C180.023 (5)0.029 (6)0.025 (6)0.003 (4)0.002 (4)0.005 (4)
C190.041 (6)0.025 (6)0.036 (7)0.002 (5)0.011 (5)0.013 (5)
C200.043 (7)0.026 (6)0.027 (6)0.001 (5)0.005 (5)0.008 (5)
C210.030 (5)0.041 (7)0.025 (6)0.016 (5)0.003 (4)0.020 (5)
C220.019 (5)0.029 (5)0.026 (6)0.006 (4)0.002 (4)0.012 (4)
C230.036 (6)0.033 (6)0.010 (5)0.014 (5)0.007 (4)0.004 (4)
C240.036 (6)0.040 (7)0.032 (6)0.010 (5)0.010 (5)0.020 (5)
C250.043 (7)0.044 (7)0.039 (7)0.012 (6)0.019 (5)0.008 (5)
C260.020 (5)0.023 (5)0.033 (6)0.001 (4)0.006 (4)0.009 (4)
C270.019 (5)0.027 (6)0.039 (7)0.002 (4)0.009 (5)0.005 (5)
C280.029 (6)0.024 (6)0.037 (7)0.008 (5)0.002 (5)0.011 (5)
C290.027 (6)0.022 (6)0.028 (6)0.008 (5)0.005 (5)0.007 (5)
C300.034 (6)0.027 (6)0.019 (5)0.010 (5)0.009 (4)0.001 (4)
C310.024 (4)0.022 (4)0.035 (5)0.002 (3)0.010 (4)0.014 (4)
C320.031 (5)0.034 (5)0.028 (5)0.003 (4)0.009 (4)0.010 (4)
C330.041 (7)0.027 (7)0.032 (7)0.002 (5)0.016 (6)0.009 (5)
C340.057 (7)0.024 (5)0.030 (6)0.005 (4)0.028 (5)0.008 (4)
O10.023 (4)0.029 (4)0.029 (5)0.003 (3)0.005 (3)0.015 (4)
O20.037 (5)0.029 (5)0.043 (6)0.005 (4)0.020 (4)0.017 (4)
O30.070 (6)0.056 (5)0.052 (5)0.023 (4)0.039 (4)0.031 (4)
O40.049 (5)0.039 (5)0.035 (4)0.014 (3)0.024 (4)0.014 (3)
O50.033 (4)0.023 (4)0.024 (5)0.002 (3)0.019 (4)0.004 (3)
O60.036 (5)0.041 (5)0.020 (5)0.009 (4)0.008 (4)0.017 (4)
O70.076 (6)0.043 (4)0.031 (4)0.023 (4)0.024 (4)0.017 (3)
O80.051 (5)0.040 (4)0.034 (5)0.016 (4)0.025 (4)0.017 (4)
O90.028 (4)0.031 (5)0.044 (6)0.000 (4)0.009 (4)0.019 (4)
O100.033 (5)0.037 (5)0.039 (5)0.007 (4)0.016 (4)0.015 (4)
Geometric parameters (Å, º) top
Cu1—O11.937 (8)C14—H141.0000
Cu1—N31.979 (11)C15—C161.494 (16)
Cu1—N12.016 (10)C15—H15A0.9900
Cu1—N22.057 (9)C15—H15B0.9900
Cu1—Cl22.590 (3)C16—C171.423 (17)
Cu2—O51.934 (8)C16—H16A0.9900
Cu2—N51.986 (11)C16—H16B0.9900
Cu2—N41.993 (10)C17—O31.202 (14)
Cu2—N62.004 (10)C17—O41.385 (15)
Cu2—Cl12.608 (3)C18—C191.387 (17)
N1—C51.313 (15)C18—H180.9500
N1—C11.321 (17)C19—C201.348 (18)
N2—C121.308 (17)C19—H190.9500
N2—C61.374 (16)C20—C211.418 (18)
N3—C141.495 (12)C20—H200.9500
N3—H3A0.9200C21—C221.424 (16)
N3—H3B0.9200C21—C241.432 (18)
N4—C221.331 (15)C22—C231.415 (17)
N4—C181.353 (16)C23—C261.392 (18)
N5—C291.327 (16)C24—C251.35 (2)
N5—C231.398 (14)C24—H240.9500
N6—C311.475 (12)C25—C261.427 (18)
N6—H6A0.9200C25—H250.9500
N6—H6B0.9200C26—C271.448 (16)
C1—C21.397 (18)C27—C281.363 (17)
C1—H10.9500C27—H270.9500
C2—C31.372 (17)C28—C291.384 (18)
C2—H20.9500C28—H280.9500
C3—C41.371 (19)C29—H290.9500
C3—H30.9500C30—O61.243 (14)
C4—C51.426 (17)C30—O51.269 (13)
C4—C71.444 (17)C30—C311.531 (15)
C5—C61.439 (17)C31—C321.496 (15)
C6—C91.377 (17)C31—H311.0000
C7—C81.355 (18)C32—C331.542 (17)
C7—H70.9500C32—H32A0.9900
C8—C91.444 (17)C32—H32B0.9900
C8—H80.9500C33—C341.524 (16)
C9—C101.380 (19)C33—H33A0.9900
C10—C111.378 (19)C33—H33B0.9900
C10—H100.9500C34—O71.204 (14)
C11—C121.399 (17)C34—O81.313 (14)
C11—H110.9500O4—H4A0.81 (5)
C12—H120.9500O8—H8A0.84 (4)
C13—O21.239 (13)O9—H9A0.90 (5)
C13—O11.281 (13)O9—H9B0.87 (5)
C13—C141.539 (13)O10—H10A0.83 (5)
C14—C151.495 (13)O10—H10B0.89 (5)
O1—Cu1—N384.6 (4)C15—C14—C13116.0 (8)
O1—Cu1—N192.4 (4)N3—C14—H14105.8
N3—Cu1—N1170.8 (4)C15—C14—H14105.8
O1—Cu1—N2166.2 (4)C13—C14—H14105.8
N3—Cu1—N299.2 (4)C16—C15—C14116.8 (9)
N1—Cu1—N281.8 (4)C16—C15—H15A108.1
O1—Cu1—Cl295.9 (3)C14—C15—H15A108.1
N3—Cu1—Cl293.1 (3)C16—C15—H15B108.1
N1—Cu1—Cl295.9 (3)C14—C15—H15B108.1
N2—Cu1—Cl297.2 (3)H15A—C15—H15B107.3
O5—Cu2—N593.4 (3)C17—C16—C15115.2 (9)
O5—Cu2—N4167.4 (4)C17—C16—H16A108.5
N5—Cu2—N481.9 (4)C15—C16—H16A108.5
O5—Cu2—N684.1 (4)C17—C16—H16B108.5
N5—Cu2—N6174.1 (4)C15—C16—H16B108.5
N4—Cu2—N699.3 (4)H16A—C16—H16B107.5
O5—Cu2—Cl197.8 (3)O3—C17—O4113.7 (12)
N5—Cu2—Cl194.6 (3)O3—C17—C16129.0 (11)
N4—Cu2—Cl194.2 (3)O4—C17—C16117.3 (10)
N6—Cu2—Cl191.0 (3)N4—C18—C19122.8 (11)
C5—N1—C1119.8 (11)N4—C18—H18118.6
C5—N1—Cu1113.0 (8)C19—C18—H18118.6
C1—N1—Cu1127.2 (9)C20—C19—C18121.4 (12)
C12—N2—C6120.7 (10)C20—C19—H19119.3
C12—N2—Cu1128.8 (9)C18—C19—H19119.3
C6—N2—Cu1110.5 (8)C19—C20—C21119.0 (11)
C14—N3—Cu1107.3 (6)C19—C20—H20120.5
C14—N3—H3A110.3C21—C20—H20120.5
Cu1—N3—H3A110.2C20—C21—C22114.8 (12)
C14—N3—H3B110.3C20—C21—C24125.2 (10)
Cu1—N3—H3B110.3C22—C21—C24120.0 (11)
H3A—N3—H3B108.5N4—C22—C23117.2 (10)
C22—N4—C18115.1 (10)N4—C22—C21126.8 (11)
C22—N4—Cu2113.5 (8)C23—C22—C21116.0 (11)
C18—N4—Cu2131.3 (9)C26—C23—N5122.1 (12)
C29—N5—C23117.6 (11)C26—C23—C22123.2 (10)
C29—N5—Cu2129.9 (9)N5—C23—C22114.7 (11)
C23—N5—Cu2112.5 (9)C25—C24—C21122.7 (11)
C31—N6—Cu2110.8 (7)C25—C24—H24118.7
C31—N6—H6A109.5C21—C24—H24118.7
Cu2—N6—H6A109.5C24—C25—C26118.3 (13)
C31—N6—H6B109.5C24—C25—H25120.8
Cu2—N6—H6B109.5C26—C25—H25120.8
H6A—N6—H6B108.1C23—C26—C25119.8 (12)
N1—C1—C2120.1 (12)C23—C26—C27117.5 (11)
N1—C1—H1119.9C25—C26—C27122.7 (12)
C2—C1—H1119.9C28—C27—C26118.9 (12)
C3—C2—C1121.1 (12)C28—C27—H27120.6
C3—C2—H2119.4C26—C27—H27120.6
C1—C2—H2119.4C27—C28—C29119.9 (11)
C4—C3—C2118.8 (12)C27—C28—H28120.0
C4—C3—H3120.6C29—C28—H28120.0
C2—C3—H3120.6N5—C29—C28123.9 (11)
C3—C4—C5116.8 (11)N5—C29—H29118.0
C3—C4—C7126.3 (12)C28—C29—H29118.0
C5—C4—C7116.9 (12)O6—C30—O5124.0 (11)
N1—C5—C4123.4 (11)O6—C30—C31118.0 (10)
N1—C5—C6118.4 (11)O5—C30—C31117.9 (9)
C4—C5—C6118.2 (11)N6—C31—C32114.8 (8)
N2—C6—C9120.3 (11)N6—C31—C30109.2 (8)
N2—C6—C5116.0 (10)C32—C31—C30112.8 (8)
C9—C6—C5123.7 (11)N6—C31—H31106.5
C8—C7—C4123.4 (11)C32—C31—H31106.5
C8—C7—H7118.3C30—C31—H31106.5
C4—C7—H7118.3C31—C32—C33111.0 (9)
C7—C8—C9120.3 (11)C31—C32—H32A109.4
C7—C8—H8119.8C33—C32—H32A109.4
C9—C8—H8119.8C31—C32—H32B109.4
C6—C9—C10119.8 (12)C33—C32—H32B109.4
C6—C9—C8117.4 (11)H32A—C32—H32B108.0
C10—C9—C8122.8 (11)C34—C33—C32113.8 (11)
C11—C10—C9118.5 (11)C34—C33—H33A108.8
C11—C10—H10120.7C32—C33—H33A108.8
C9—C10—H10120.7C34—C33—H33B108.8
C10—C11—C12120.1 (12)C32—C33—H33B108.8
C10—C11—H11120.0H33A—C33—H33B107.7
C12—C11—H11120.0O7—C34—O8120.3 (10)
N2—C12—C11120.6 (12)O7—C34—C33123.3 (11)
N2—C12—H12119.7O8—C34—C33116.4 (11)
C11—C12—H12119.7C13—O1—Cu1115.7 (7)
O2—C13—O1123.6 (10)C17—O4—H4A99 (6)
O2—C13—C14121.2 (10)C30—O5—Cu2116.6 (8)
O1—C13—C14115.2 (8)C34—O8—H8A112 (6)
N3—C14—C15114.6 (8)H9A—O9—H9B109 (8)
N3—C14—C13108.0 (8)H10A—O10—H10B112 (8)
O1—Cu1—N1—C5171.7 (8)Cu1—N3—C14—C15162.6 (7)
N2—Cu1—N1—C54.3 (8)Cu1—N3—C14—C1331.5 (9)
Cl2—Cu1—N1—C592.2 (7)O2—C13—C14—N3153.3 (10)
O1—Cu1—N1—C19.6 (10)O1—C13—C14—N328.1 (12)
N2—Cu1—N1—C1177.0 (10)O2—C13—C14—C1523.1 (14)
Cl2—Cu1—N1—C186.6 (10)O1—C13—C14—C15158.3 (9)
O1—Cu1—N2—C12110.1 (18)N3—C14—C15—C1651.8 (13)
N3—Cu1—N2—C125.4 (11)C13—C14—C15—C16178.8 (10)
N1—Cu1—N2—C12176.2 (11)C14—C15—C16—C17161.1 (10)
Cl2—Cu1—N2—C1288.9 (11)C15—C16—C17—O34 (2)
O1—Cu1—N2—C670.4 (18)C15—C16—C17—O4176.3 (10)
N3—Cu1—N2—C6175.1 (7)C22—N4—C18—C190.9 (16)
N1—Cu1—N2—C64.3 (7)Cu2—N4—C18—C19177.5 (9)
Cl2—Cu1—N2—C690.6 (7)N4—C18—C19—C201.3 (18)
O1—Cu1—N3—C1422.5 (6)C18—C19—C20—C211.2 (18)
N2—Cu1—N3—C14171.0 (6)C19—C20—C21—C220.8 (16)
Cl2—Cu1—N3—C1473.1 (6)C19—C20—C21—C24177.9 (12)
O5—Cu2—N4—C2273 (2)C18—N4—C22—C23178.0 (10)
N5—Cu2—N4—C224.0 (8)Cu2—N4—C22—C234.8 (12)
N6—Cu2—N4—C22178.2 (8)C18—N4—C22—C210.6 (16)
Cl1—Cu2—N4—C2290.1 (7)Cu2—N4—C22—C21177.8 (9)
O5—Cu2—N4—C18110.2 (18)C20—C21—C22—N40.5 (17)
N5—Cu2—N4—C18179.3 (11)C24—C21—C22—N4178.3 (11)
N6—Cu2—N4—C185.2 (11)C20—C21—C22—C23178.0 (10)
Cl1—Cu2—N4—C1886.6 (10)C24—C21—C22—C230.8 (15)
O5—Cu2—N5—C299.5 (10)C29—N5—C23—C261.7 (15)
N4—Cu2—N5—C29177.8 (11)Cu2—N5—C23—C26178.0 (9)
Cl1—Cu2—N5—C2988.6 (10)C29—N5—C23—C22179.4 (10)
O5—Cu2—N5—C23170.9 (8)Cu2—N5—C23—C220.9 (12)
N4—Cu2—N5—C232.6 (7)N4—C22—C23—C26178.5 (10)
Cl1—Cu2—N5—C2391.0 (7)C21—C22—C23—C260.8 (16)
O5—Cu2—N6—C317.5 (7)N4—C22—C23—N52.6 (15)
N4—Cu2—N6—C31160.3 (7)C21—C22—C23—N5179.7 (10)
Cl1—Cu2—N6—C31105.3 (7)C20—C21—C24—C25179.3 (13)
C5—N1—C1—C20.1 (17)C22—C21—C24—C250.6 (18)
Cu1—N1—C1—C2178.5 (8)C21—C24—C25—C262.0 (19)
N1—C1—C2—C30.8 (18)N5—C23—C26—C25178.3 (11)
C1—C2—C3—C40.7 (18)C22—C23—C26—C250.5 (17)
C2—C3—C4—C50.4 (17)N5—C23—C26—C272.3 (16)
C2—C3—C4—C7179.4 (10)C22—C23—C26—C27178.9 (11)
C1—N1—C5—C41.2 (17)C24—C25—C26—C231.9 (18)
Cu1—N1—C5—C4177.6 (8)C24—C25—C26—C27177.4 (12)
C1—N1—C5—C6177.6 (11)C23—C26—C27—C281.2 (16)
Cu1—N1—C5—C63.5 (13)C25—C26—C27—C28179.4 (11)
C3—C4—C5—N11.3 (17)C26—C27—C28—C290.5 (16)
C7—C4—C5—N1179.5 (10)C23—N5—C29—C280.2 (16)
C3—C4—C5—C6177.5 (12)Cu2—N5—C29—C28179.8 (8)
C7—C4—C5—C61.6 (15)C27—C28—C29—N51.3 (17)
C12—N2—C6—C94.0 (17)Cu2—N6—C31—C32139.7 (7)
Cu1—N2—C6—C9175.6 (10)Cu2—N6—C31—C3011.8 (10)
C12—N2—C6—C5176.7 (11)O6—C30—C31—N6170.9 (10)
Cu1—N2—C6—C53.8 (12)O5—C30—C31—N612.3 (13)
N1—C5—C6—N20.3 (16)O6—C30—C31—C3241.9 (13)
C4—C5—C6—N2178.6 (9)O5—C30—C31—C32141.3 (10)
N1—C5—C6—C9179.0 (11)N6—C31—C32—C3356.5 (12)
C4—C5—C6—C92.0 (18)C30—C31—C32—C33177.5 (9)
C3—C4—C7—C8178.6 (13)C31—C32—C33—C34168.2 (10)
C5—C4—C7—C80.5 (17)C32—C33—C34—O714.4 (17)
C4—C7—C8—C90.4 (19)C32—C33—C34—O8164.4 (11)
N2—C6—C9—C101.6 (18)O2—C13—O1—Cu1171.7 (9)
C5—C6—C9—C10179.1 (12)C14—C13—O1—Cu19.7 (11)
N2—C6—C9—C8179.6 (10)N3—Cu1—O1—C137.7 (8)
C5—C6—C9—C81.1 (18)N1—Cu1—O1—C13179.0 (8)
C7—C8—C9—C60.1 (18)N2—Cu1—O1—C13114.0 (17)
C7—C8—C9—C10177.8 (13)Cl2—Cu1—O1—C1384.9 (7)
C6—C9—C10—C110.5 (18)O6—C30—O5—Cu2177.0 (9)
C8—C9—C10—C11177.4 (12)C31—C30—O5—Cu26.4 (12)
C9—C10—C11—C120.3 (19)N5—Cu2—O5—C30173.9 (8)
C6—N2—C12—C114.2 (17)N4—Cu2—O5—C30106.0 (18)
Cu1—N2—C12—C11175.3 (8)N6—Cu2—O5—C300.7 (8)
C10—C11—C12—N22.0 (18)Cl1—Cu2—O5—C3090.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10B···O1i0.89 (5)2.56 (6)3.313 (12)143 (6)
O10—H10B···O2i0.89 (5)1.92 (5)2.771 (13)159 (7)
O9—H9B···O6ii0.87 (5)2.13 (7)2.774 (12)130 (7)
O8—H8A···O9iii0.84 (4)1.82 (6)2.587 (12)152 (8)
O4—H4A···O100.81 (5)1.86 (6)2.592 (13)149 (9)
O10—H10A···Cl10.83 (5)2.38 (6)3.136 (10)153 (8)
O9—H9A···Cl2iv0.90 (5)2.26 (6)3.112 (10)157 (7)
N6—H6B···Cl20.922.843.423 (11)123
N6—H6A···O10iii0.922.183.009 (14)149
N3—H3B···O90.922.123.017 (14)164
N3—H3A···Cl10.922.573.440 (10)158
Symmetry codes: (i) x+1, y1, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[CuCl(C5H8NO4)(C12H8N2)]·H2O
Mr443.33
Crystal system, space groupTriclinic, P1
Temperature (K)183
a, b, c (Å)8.3022 (14), 10.0591 (17), 12.393 (2)
α, β, γ (°)66.730 (2), 72.047 (2), 68.828 (2)
V3)869.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.55 × 0.40 × 0.40
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.474, 0.561
No. of measured, independent and
observed [I > 2σ(I)] reflections
4229, 3578, 3455
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 1.10
No. of reflections3578
No. of parameters506
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.75
Absolute structureFlack (1983), with x Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1999), SHELXTL/PC.

Selected geometric parameters (Å, º) top
Cu1—O11.937 (8)N3—C141.495 (12)
Cu1—N31.979 (11)N6—C311.475 (12)
Cu1—N12.016 (10)C13—O21.239 (13)
Cu1—N22.057 (9)C13—O11.281 (13)
Cu1—Cl22.590 (3)C17—O31.202 (14)
Cu2—O51.934 (8)C17—O41.385 (15)
Cu2—N51.986 (11)C30—O61.243 (14)
Cu2—N41.993 (10)C30—O51.269 (13)
Cu2—N62.004 (10)C34—O71.204 (14)
Cu2—Cl12.608 (3)C34—O81.313 (14)
O1—Cu1—N384.6 (4)O5—Cu2—Cl197.8 (3)
N1—Cu1—N281.8 (4)N5—Cu2—Cl194.6 (3)
O1—Cu1—Cl295.9 (3)N4—Cu2—Cl194.2 (3)
N3—Cu1—Cl293.1 (3)N6—Cu2—Cl191.0 (3)
N1—Cu1—Cl295.9 (3)O2—C13—O1123.6 (10)
N2—Cu1—Cl297.2 (3)O3—C17—O4113.7 (12)
O5—Cu2—N593.4 (3)O6—C30—O5124.0 (11)
O5—Cu2—N684.1 (4)O7—C34—O8120.3 (10)
O1—Cu1—N1—C5171.7 (8)O5—Cu2—N4—C2273 (2)
Cl2—Cu1—N1—C592.2 (7)N6—Cu2—N4—C22178.2 (8)
O1—Cu1—N1—C19.6 (10)N6—Cu2—N4—C185.2 (11)
N3—Cu1—N2—C125.4 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10B···O1i0.89 (5)2.56 (6)3.313 (12)143 (6)
O10—H10B···O2i0.89 (5)1.92 (5)2.771 (13)159 (7)
O9—H9B···O6ii0.87 (5)2.13 (7)2.774 (12)130 (7)
O8—H8A···O9iii0.84 (4)1.82 (6)2.587 (12)152 (8)
O4—H4A···O100.81 (5)1.86 (6)2.592 (13)149 (9)
O10—H10A···Cl10.83 (5)2.38 (6)3.136 (10)153 (8)
O9—H9A···Cl2iv0.90 (5)2.26 (6)3.112 (10)157 (7)
N6—H6A···O10iii0.922.183.009 (14)149
N3—H3B···O90.922.123.017 (14)164
N3—H3A···Cl10.922.573.440 (10)158
Symmetry codes: (i) x+1, y1, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds