Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of (6S)-6-iso­butyl­piperidine-2,4-dione, C9H15NO2, shows that the keto tautomer is favoured in the solid state. The reduction of the keto functionality leads to the corresponding 4-hydroxy-6-iso­butyl­piperidin-2-one, C9H17NO2, with an 84:16 cis/trans ratio, containing the 4R,6S and 4S,6S isomers; the ratio of the two isomers was determined by NMR analysis of the reaction mixture. Crystals obtained from the mixture of both isomers have been studied and shown to contain the isomers in a 86:14 ratio. Hence, both X-ray and NMR analyses show that crystallization does not select the major diastereomer formed by the reduction. In both crystal structures, the two independent mol­ecules dimerize through an R_2^2(8) hydrogen-bond motif between adjacent amide groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103024065/sx1125sup1.cif
Contains datablocks global, II, III_IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103024065/sx1125IIsup2.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103024065/sx1125III_IVsup3.hkl
Contains datablock III/IV

CCDC references: 235347; 235348

Comment top

As part of a programme to synthesize enantiopure monohydroxylated δ-lactams, we recently introduced 6-substituted-2,4-dioxopiperidine-1-carboxylates as novel chiral adducts for the asymmetric synthesis of 4-hydroxy-6-substituted-2-oxopiperidine-1-carboxylate. In this series, the pseudo-axial orientation of the side chain at the 6-position [resulting from minimization of the allylic A(1,3) strain] is believed to account for the high stereoselectivity observed in the reduction of the 4-oxo group. A variety of reductive agents and conditions have been explored. Treatment of lactam (I), bearing an isobutyl side chain at atom C6, with NaBH4 in a mixture of CH2Cl2 and 10% acetic acid affords the desired 4-hydroxy derivative in 93% yield with a 90:10 cis/trans ratio (Didierjean et al., 2003).

Surprisingly, the attempt to reduce (I) with tetramethylammonium triacetoxyborohydride in a mixture of MeCN and 15% acetic acid resulted exclusively in removal of the Boc (butyloxycarbonyl) protecting group and afforded (6S)-6-isobutyl-2,4-dioxopiperidine, (II), in 84% yield. Subsequent reduction of (II) with NaBH4 in a mixture of CH2Cl2/AcOH (9:1) gave the corresponding 4-hydroxy-6-isobutyl-2-oxopiperidine, in an 84:16 cis/trans ratio; the (4R,6S) and (4S,6S) isomers are denoted (III) and (IV), respectively The overall yield was 62% and the ratio of isomers was determined by NMR analysis of the reaction mixture. The reduction of (II) is driven by torsional effects that favour attack of the hydride reagent across the axial face of the C=O bond. A similar selectivity (85:15 cis/trans) was reported by Davis and co-workers in the reduction of the related enantiopure (R)-6-phenylpiperidine-2,4-dione (Davis et al., 2000). We present here the results of the X-ray crystallographic analyses of (II), (III) and (IV).

Compound (II) crystallizes with two independent molecules, (IIA) and (IIB), in the asymmetric unit in a triclinic cell. A view of the independent molecules with the atom numbering schemes is shown in Fig. 1. A l l bond distances and angles fall in normal limits (Allen et al., 1987) and are in agreement with the geometry of similar piperidine rings (Didierjean et al., 2003; Marin et al., 2002; Thomas et al., 1996; Bocelli & Grenier-Loustalot, 1981). The S configuration of the C atom at the 6-position of the piperidine ring was assumed from the precursor Boc-β-L-Leu-OH compound (Seebach et al., 1996). Both independent molecules, (IIA) and (IIB), reveal that the keto tautomer is favoured over the enol tautomer in the solid state. This preference is evident from the observed C3—C4 and C4—O2 bond distances in (IIA) [C13—C14 and C14—O12 in (IIB)], which are consistent with single and double bonds, respectively (Table 1). Molecules (IIA) and (IIB) show a similar conformation (Table 1). Both independent piperidine rings adopt a twisted-boat conformation, with the isobutyl group in an equatorial orientation. The C3—C4—C5—C6 and C13—C14—C15—C16 torsion angles [−43.9 (4)° and −21.6 (5)°, respectively] reveal that the conformation is more twisted in (IIA) than in (IIB).

X-ray analysis of crystals obtained from the mixture of (III) and (IV) reveals a monoclinic cell, with two independent molecules in the asymmetric unit. In one of two independent molecules, the C atoms at the 4- and 5-positions and the hydroxy group of the piperidine ring are disordered, leading to a mixture of (III) and (IV) in a 0.712 (8):0.288 (8) ratio. No detectable disorder was observed in the other independent molecule, which is the major diastereomer formed by the reduction of (II), i.e. the diastereomer (4R,6S). Thus the asymmetric unit of the crystal consists of a unit-occupancy and a 0.712 (8) occupancy (4R,6S) diastereomer (Figs. 2 and 3), and a 0.288 (8) occupancy (4S,6S) diastereomer (Fig. 4). The (4R,6S):(4S,6S) ratio in the crystals, determined by crystallographic refinement, is thus 1.712:0.288 (or 86:14), in very good agreement with NMR analysis of the reaction mixture. NMR measurements on the dissolved crystals confirmed that a mixture of the (4R,6S) and (4S,6S) isomers was present in the solid state. In the three structures, the hydroxy group at the 4-position and the isobutyl side chain at the 6-position of the piperidine ring assume an equatorial orientation (Table 3). The two structures of (III) have similar piperidine ring conformations, close to half-chair. The C atom at the 5-position is displaced 0.693 (6) Å [0.610 (3) Å] from the mean plane, defined by atoms N1, C2, C3, C4 and C6 (N11, C12, C13, C14 and C16). The six-membered ring of (IV) adopts a sofa conformation, with the C atom at the 4-position displaced 0.70 (2) Å from the mean plane defined by the five other atoms of the ring. The positions of the hydroxy O atoms in the 0.712 (8)-occupancy molecule of (III) and the 0.288 (8)-occupancy molecule of (IV) are separated by? 0.46 (1) Å. Both hydroxy groups are thus involved in the same intermolecular hydrogen bonds (Table 4).

In both structures, a typical amide–amide hydrogen-bond motif (Rychlewska & Warzatis, 2000) is observed, joining the two independent molecules via two intermolecular N—H···O=C hydrogen bonds (Figs. 5 and 6, and Tables 2 and 4). The amide H atoms, which are obviously cis to the amide carbonyl O atom, form an eight-membered ring, leading to the graph-set motif R22(8) (Bernstein et al., 1995). Both crystals show a similar molecular packing, which can be described as a regular stacking of bilayers with the isopropyl groups on the surfaces (Figs. 5 and 6). In each bilayer, the hydrogen-bonded independent dimers (Tables 2 and 4) pack together, the packing? involving mainly van der Waals interactions in the crystal of (II). In the crystal of (III)/(IV), a three-dimensional hydrogen-bond network between the dimers is observed, involving the hydroxy and carbonyl groups of the piperidine rings (Table 4 and Fig. 6). It is interesting to note that the crystals of the N-Boc-protected molecules of (II) and (III) show similar stacking of bilayers, with hydrophobic heads on the surface (Didierjean et al., 2003). Nevertheless, the molecular packing mode inside a bilayer is different. Indeed, strong OH···O=C hydrogen bonds lead to infinite chains packed in a parallel fashion, via van der Waals interactions, to form a bilayer.

Experimental top

For the preparation of (6S)-6-isobutylpiperidine-2,4-dione, (II), tetramethylammonium triacetoxyborohydride (293 mg, 1.11 mmol) was added to a stirred solution of I (100 mg, 0.37 mmol) in a mixture of acetonitrile and 15% v/v acetic acid at room temperature. After 48 h, the mixture was quenched with water. Acetonitrile was evaporated under reduced pressure and replaced with ethyl acetate, which was extracted using water and brine. The organic layer was dried over Na2SO4, filtered and evaporated to afford a residue that was purified by flash chromatography (ethyl acetate) to give pure (II) (53 mg, 84%). Colorless single crystals of (II), suitable for X-ray analysis, were grown from a mixture of dichloromethane and diisopropyl ether (1:3) (m.p. 395–397 K). 1H NMR (300 MHz, CDCl3): δ 7.24 (bs, 1H), 3.80–3.65 (m, 1H), 3.32 (d, J = 19.8 Hz, 1H), 3.20 (d, J = 19.8 Hz), 2.68 (dd, J = 16.3, 4.2 Hz, 1H), 2.31 (dd, J = 16.3, 8.8 Hz, 1H), 1.82–1.62 (m, 1H), 1.57–1.27 (m, 2H), 0.90 (d, J = 2.1 Hz, 3H), 0.87 (d, J = 2.1 Hz, 3H); For the preparation of 4-hydroxy-6-isobutylpiperidin-2-one, (III)/(IV), sodium borohydride (67 mg, 1.77 mmol) was added to a stirred solution of (II) (100 mg, 0.59 mmol) in a mixture of dichloromethane and 10% v/v acetic acid at room temperature. After 72 h, the mixture was quenched with water. Dichloromethane was evaporated under reduced pressure and replaced with ethyl acetate, which was extracted using water and brine. The organic layer was dried over Na2SO4, filtered and evaporated to afford a residue that was purified by flash chromatography (ethyl acetate–acetic acid, 95:5), giving a 84:16 mixture (63 mg, 62%) of (III) and the corresponding (4S,6S) diastereomer, (IV). Colorless single crystals of (III/IV), suitable for X-ray analysis, were grown from a mixture of dichloromethane and diisopropyl ether (1:3); the ratio between (III) and (IV) changed to 75:25 (determined by NMR); (m.p. 418–420 K). Spectroscopic analysis of the major diastereomer, (III): 1H NMR (300 MHz, CD3OD): δ 4.03–3.93 (m, 1H), 3.49–3.40 (m, 1H), 2.61 (ddd, J = 17.2, 5.6, 2.2 Hz, 1H), 2.20–2.11 (m, 2H), 1.79–1.68 (m, 1H), 1.50–1.41 (m, 1H), 1.39–1.22 (m, 2H), 0.94 (d, J = 3.8 Hz, 3H), 0.92 (d, J = 3.8 Hz, 3H).

Refinement top

Because of the lack of any significant anomalous dispersion effects, the absolute configuration could not be determined from the diffraction experiment, so Friedel pairs were merged prior to refinement. All H atoms were placed at calculated positions and refined using a riding model, with C—H distances of 0.93–0.97 Å, an N—H distance of 0.88 Å and an O—H distance of 0.82 Å. The Uiso(H) parameters were fixed at 1.2Ueq(C,N) for methyl, methylene and NH groups, and 1.5Ueq(C,O) for methyl and OH groups. In the (III/IV) crystal structure, the distances between Csp3 atoms in the disordered piperidine rings were restrained to 1.50 (2) Å. The C41, O21 and C51 atoms of the 0.288 (8)-occupancy molecule of (IV) were refined isotropically.

Computing details top

Data collection: COLLECT (Nonius, 1998) for (II); COLLECT software (Nonius, 1998) for III_IV. Cell refinement: COLLECT for (II); COLLECT software (Nonius, 1998) for III_IV. For both compounds, data reduction: HKL Suite (Otwinoski & Minor, 1997). Program(s) used to solve structure: SIR92 (Altomare et al., 1994) for (II); SIR_92 (Altomare et al., 1994) for III_IV. For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and WebLab ViewerPro 3.5 (MSI, 1999) for (II); ORTEP-3 for Windows (Farrugia, 1997), WebLab ViewerPro 3.5 (MSI, 1999) for III_IV. Software used to prepare material for publication: WinGX (Farrugia, 1999) for (II); WinGX publication routines (Farrugia, 1999) for III_IV.

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (II), with the atom-numbering scheme and 25% probability displacement ellipsoids. H atoms, except those of the NH groups, have been omitted for clarity. The intermolecular hydrogen bonds are marked as dashed lines.
[Figure 2] Fig. 2. A view of the unit-occupancy molecule of (III), with the atom-numbering scheme and 25% probability displacement ellipsoids. H atoms, except those of the hydroxy and NH groups and asymmetric C atoms, have been omitted for clarity.
[Figure 3] Fig. 3. A view of the 0.712 (8)-occupancy molecule of (III), with the atom-numbering scheme and 25% probability displacement ellipsoids. H atoms, except those of the hydroxy and NH groups and asymmetric C atoms, have been omitted for clarity.
[Figure 4] Fig. 4. A view of the 0.288 (8)-occupancy molecule of (IV), with the atom-numbering scheme and 25% probability displacement ellipsoids. H atoms, except those of the hydroxy and NH groups and asymmetric C atoms, have been omitted for clarity.
[Figure 5] Fig. 5. A packing diagram for (II), viewed along the a axis. The intermolecular hydrogen bonds are marked as dashed lines.
[Figure 6] Fig. 6. A packing diagram for (III/IV), viewed along the b axis. The intermolecular hydrogen bonds are marked as dashed lines. The 0.288 (8)-occupancy molecules of (IV) have been omitted for clarity.
(II) top
Crystal data top
C9H15NO2Z = 2
Mr = 169.22F(000) = 184
Triclinic, P1Dx = 1.16 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0760 (2) ÅCell parameters from 7698 reflections
b = 10.0760 (4) Åθ = 2.1–26.3°
c = 10.1210 (5) ŵ = 0.08 mm1
α = 95.691 (1)°T = 293 K
β = 102.529 (1)°Prism, colorless
γ = 103.730 (2)°0.2 × 0.1 × 0.1 mm
V = 484.65 (4) Å3
Data collection top
Nonius KAPPACCD
diffractometer
1334 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 26.3°, θmin = 2.7°
oscillation scansh = 56
7698 measured reflectionsk = 1212
1959 independent reflectionsl = 1212
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0747P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118(Δ/σ)max < 0.001
S = 0.94Δρmax = 0.14 e Å3
1959 reflectionsΔρmin = 0.14 e Å3
217 parameters
Crystal data top
C9H15NO2γ = 103.730 (2)°
Mr = 169.22V = 484.65 (4) Å3
Triclinic, P1Z = 2
a = 5.0760 (2) ÅMo Kα radiation
b = 10.0760 (4) ŵ = 0.08 mm1
c = 10.1210 (5) ÅT = 293 K
α = 95.691 (1)°0.2 × 0.1 × 0.1 mm
β = 102.529 (1)°
Data collection top
Nonius KAPPACCD
diffractometer
1334 reflections with I > 2σ(I)
7698 measured reflectionsRint = 0.040
1959 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0435 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 0.94Δρmax = 0.14 e Å3
1959 reflectionsΔρmin = 0.14 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3820 (5)0.1967 (3)0.0122 (3)0.0566 (7)
H10.54670.23680.06310.068*
C20.2799 (7)0.0638 (4)0.0162 (3)0.0540 (8)
O10.4126 (4)0.0013 (2)0.0917 (2)0.0663 (7)
C30.0112 (8)0.0081 (4)0.0706 (4)0.0689 (10)
H3A0.00640.09630.11660.083*
H3B0.13410.02760.00960.083*
C40.1391 (8)0.0665 (4)0.1762 (4)0.0635 (9)
O20.3847 (6)0.0255 (3)0.2350 (3)0.0910 (9)
C50.0532 (8)0.1930 (4)0.2035 (4)0.0678 (10)
H5A0.0570.24670.2540.081*
H5B0.16920.16520.25980.081*
C60.2382 (6)0.2816 (3)0.0717 (4)0.0563 (9)
H60.11980.31780.02090.068*
C70.4524 (7)0.4033 (4)0.0983 (5)0.0714 (10)
H7A0.60280.43740.01580.086*
H7B0.53220.37060.16990.086*
C80.3369 (9)0.5230 (5)0.1406 (5)0.0912 (15)
H80.15120.48460.20340.109*
C90.5261 (14)0.6112 (6)0.2166 (8)0.135 (2)
H9A0.54320.55390.29420.202*
H9B0.7080.65170.15590.202*
H9C0.44550.68330.24730.202*
C100.3047 (15)0.6091 (6)0.0168 (8)0.138 (2)
H10A0.23190.68430.04510.208*
H10B0.48380.64540.04750.208*
H10C0.1780.55240.02590.208*
N110.9458 (5)0.1279 (3)0.2813 (3)0.0531 (7)
H110.81040.08160.21360.064*
O110.9300 (5)0.3245 (3)0.1947 (3)0.0751 (8)
O121.7096 (6)0.3177 (3)0.5272 (3)0.1004 (11)
C170.9541 (7)0.1015 (4)0.3292 (4)0.0624 (9)
H17A1.02960.11650.25050.075*
H17B0.75180.12660.29660.075*
C181.0328 (7)0.1992 (4)0.4273 (4)0.0687 (10)
H181.23740.17170.45970.082*
C190.9189 (13)0.1900 (6)0.5516 (6)0.1128 (17)
H19A0.97650.25340.60920.169*
H19B0.71820.21330.52380.169*
H19C0.98910.09750.60130.169*
C200.9504 (16)0.3462 (6)0.3500 (7)0.133 (2)
H20A1.00180.40730.41190.2*
H20B1.04550.34920.27790.2*
H20C0.75170.37490.31130.2*
C121.0402 (6)0.2625 (4)0.2810 (4)0.0602 (9)
C161.0532 (7)0.0515 (4)0.3873 (4)0.0516 (8)
H160.97680.0680.46650.062*
C151.3716 (7)0.1052 (4)0.4313 (4)0.0600 (9)
H15A1.43980.06860.51330.072*
H15B1.44870.07010.35980.072*
C141.4771 (7)0.2587 (4)0.4596 (4)0.0628 (10)
C131.2854 (8)0.3397 (4)0.3962 (5)0.0863 (13)
H13A1.3950.41550.36250.104*
H13B1.21460.380.46770.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0571 (16)0.0540 (19)0.0519 (17)0.0146 (14)0.0015 (12)0.0100 (13)
C20.061 (2)0.054 (2)0.0434 (18)0.0160 (17)0.0051 (15)0.0105 (16)
O10.0718 (15)0.0600 (16)0.0614 (16)0.0210 (12)0.0031 (12)0.0183 (13)
C30.067 (2)0.066 (2)0.060 (2)0.0072 (17)0.0031 (17)0.0139 (18)
C40.066 (2)0.068 (2)0.047 (2)0.0178 (19)0.0010 (18)0.0061 (17)
O20.0667 (17)0.102 (2)0.085 (2)0.0124 (15)0.0117 (14)0.0195 (17)
C50.072 (2)0.072 (2)0.054 (2)0.0212 (18)0.0006 (16)0.0195 (17)
C60.0567 (19)0.054 (2)0.057 (2)0.0202 (16)0.0031 (15)0.0147 (17)
C70.067 (2)0.061 (2)0.080 (3)0.0157 (17)0.0034 (18)0.0206 (19)
C80.081 (3)0.062 (3)0.111 (4)0.009 (2)0.013 (2)0.031 (3)
C90.152 (4)0.085 (4)0.149 (6)0.007 (3)0.009 (4)0.059 (4)
C100.158 (5)0.088 (4)0.174 (7)0.057 (4)0.030 (4)0.008 (4)
N110.0516 (15)0.0565 (18)0.0485 (17)0.0166 (13)0.0025 (12)0.0130 (13)
O110.0716 (15)0.0624 (17)0.0814 (19)0.0137 (12)0.0042 (13)0.0268 (14)
O120.0732 (18)0.091 (2)0.106 (3)0.0038 (16)0.0265 (15)0.0249 (18)
C170.071 (2)0.063 (2)0.056 (2)0.0227 (17)0.0131 (16)0.0148 (17)
C180.072 (2)0.061 (2)0.076 (3)0.0275 (18)0.0111 (19)0.021 (2)
C190.159 (4)0.118 (4)0.095 (4)0.059 (3)0.058 (3)0.060 (3)
C200.203 (6)0.074 (3)0.130 (5)0.056 (4)0.032 (4)0.022 (3)
C120.0485 (19)0.059 (2)0.068 (2)0.0141 (16)0.0004 (17)0.0175 (19)
C160.0531 (17)0.059 (2)0.0457 (19)0.0198 (15)0.0104 (14)0.0160 (15)
C150.0515 (18)0.073 (2)0.058 (2)0.0226 (16)0.0087 (15)0.0198 (17)
C140.050 (2)0.072 (3)0.058 (2)0.0071 (17)0.0023 (18)0.0170 (19)
C130.070 (2)0.062 (2)0.101 (3)0.0099 (19)0.021 (2)0.010 (2)
Geometric parameters (Å, º) top
C3—C41.489 (5)C10—H10B0.96
C4—O21.210 (4)C10—H10C0.96
C13—C141.494 (5)N11—C121.328 (5)
C14—O121.204 (4)N11—C161.466 (4)
N1—C21.325 (4)N11—H110.86
N1—C61.469 (4)O11—C121.236 (4)
N1—H10.86C17—C161.516 (5)
C2—O11.246 (4)C17—C181.524 (5)
C2—C31.511 (5)C17—H17A0.97
C3—H3A0.97C17—H17B0.97
C3—H3B0.97C18—C191.497 (6)
C4—C51.500 (6)C18—C201.521 (7)
C5—C61.510 (5)C18—H180.98
C5—H5A0.97C19—H19A0.96
C5—H5B0.97C19—H19B0.96
C6—C71.523 (5)C19—H19C0.96
C6—H60.98C20—H20A0.96
C7—C81.520 (6)C20—H20B0.96
C7—H7A0.97C20—H20C0.96
C7—H7B0.97C12—C131.498 (5)
C8—C101.513 (8)C16—C151.526 (5)
C8—C91.535 (7)C16—H160.98
C8—H80.98C15—C141.488 (5)
C9—H9A0.96C15—H15A0.97
C9—H9B0.96C15—H15B0.97
C9—H9C0.96C13—H13A0.97
C10—H10A0.96C13—H13B0.97
C2—N1—C6125.7 (3)C12—N11—C16125.5 (3)
C2—N1—H1117.2C12—N11—H11117.3
C6—N1—H1117.2C16—N11—H11117.3
O1—C2—N1122.1 (3)C16—C17—C18116.1 (3)
O1—C2—C3119.8 (3)C16—C17—H17A108.3
N1—C2—C3118.1 (3)C18—C17—H17A108.3
C4—C3—C2117.2 (3)C16—C17—H17B108.3
C4—C3—H3A108C18—C17—H17B108.3
C2—C3—H3A108H17A—C17—H17B107.4
C4—C3—H3B108C19—C18—C20112.4 (5)
C2—C3—H3B108C19—C18—C17113.5 (3)
H3A—C3—H3B107.2C20—C18—C17109.7 (4)
O2—C4—C3120.8 (4)C19—C18—H18106.9
O2—C4—C5123.1 (3)C20—C18—H18106.9
C3—C4—C5116.2 (3)C17—C18—H18106.9
C4—C5—C6111.3 (3)C18—C19—H19A109.5
C4—C5—H5A109.4C18—C19—H19B109.5
C6—C5—H5A109.4H19A—C19—H19B109.5
C4—C5—H5B109.4C18—C19—H19C109.5
C6—C5—H5B109.4H19A—C19—H19C109.5
H5A—C5—H5B108H19B—C19—H19C109.5
N1—C6—C5109.6 (3)C18—C20—H20A109.5
N1—C6—C7109.9 (3)C18—C20—H20B109.5
C5—C6—C7111.8 (3)H20A—C20—H20B109.5
N1—C6—H6108.5C18—C20—H20C109.5
C5—C6—H6108.5H20A—C20—H20C109.5
C7—C6—H6108.5H20B—C20—H20C109.5
C8—C7—C6114.7 (3)O11—C12—N11123.2 (3)
C8—C7—H7A108.6O11—C12—C13120.4 (4)
C6—C7—H7A108.6N11—C12—C13116.3 (3)
C8—C7—H7B108.6N11—C16—C17108.2 (3)
C6—C7—H7B108.6N11—C16—C15108.6 (3)
H7A—C7—H7B107.6C17—C16—C15112.8 (3)
C10—C8—C7110.5 (4)N11—C16—H16109
C10—C8—C9111.4 (5)C17—C16—H16109
C7—C8—C9110.2 (4)C15—C16—H16109
C10—C8—H8108.2C14—C15—C16114.2 (3)
C7—C8—H8108.2C14—C15—H15A108.7
C9—C8—H8108.2C16—C15—H15A108.7
C8—C9—H9A109.5C14—C15—H15B108.7
C8—C9—H9B109.5C16—C15—H15B108.7
H9A—C9—H9B109.5H15A—C15—H15B107.6
C8—C9—H9C109.5O12—C14—C15122.5 (3)
H9A—C9—H9C109.5O12—C14—C13120.1 (3)
H9B—C9—H9C109.5C15—C14—C13117.3 (3)
C8—C10—H10A109.5C14—C13—C12116.9 (3)
C8—C10—H10B109.5C14—C13—H13A108.1
H10A—C10—H10B109.5C12—C13—H13A108.1
C8—C10—H10C109.5C14—C13—H13B108.1
H10A—C10—H10C109.5C12—C13—H13B108.1
H10B—C10—H10C109.5H13A—C13—H13B107.3
N1—C2—C3—C412.6 (5)C2—C3—C4—O2168.9 (4)
C2—C3—C4—C511.0 (5)O2—C4—C5—C6135.9 (4)
C3—C4—C5—C643.9 (5)C2—N1—C6—C7155.4 (3)
C4—C5—C6—N152.7 (4)N1—C6—C7—C8160.3 (3)
C2—N1—C6—C532.1 (5)C5—C6—C7—C877.7 (4)
C6—N1—C2—C31.1 (5)C6—C7—C8—C1078.3 (5)
C4—C5—C6—C7174.8 (3)C6—C7—C8—C9158.2 (4)
N11—C12—C13—C1427.0 (6)C16—C17—C18—C1960.2 (5)
C15—C14—C13—C1216.2 (6)C16—C17—C18—C20173.2 (4)
C16—C15—C14—C1321.6 (5)C16—N11—C12—O11174.5 (3)
N11—C16—C15—C1447.2 (4)C12—N11—C16—C17163.0 (3)
C12—N11—C16—C1540.1 (4)C18—C17—C16—N11177.0 (3)
C16—N11—C12—C133.0 (5)C18—C17—C16—C1562.7 (4)
C17—C16—C15—C14167.2 (3)C16—C15—C14—O12160.5 (4)
C6—N1—C2—O1178.9 (3)O12—C14—C13—C12161.7 (4)
O1—C2—C3—C4169.5 (3)O11—C12—C13—C14155.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O110.862.042.899 (3)176
N11—H11···O10.862.052.878 (3)161
(III_IV) top
Crystal data top
C9H17NO2F(000) = 376
Mr = 171.24Dx = 1.166 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2173 reflections
a = 12.9121 (6) Åθ = 1.0–26.4°
b = 5.3871 (3) ŵ = 0.08 mm1
c = 14.8945 (7) ÅT = 100 K
β = 109.692 (2)°Prism, colorless
V = 975.45 (8) Å30.2 × 0.1 × 0.1 mm
Z = 4
Data collection top
Nonius KAPPACCD
diffractometer
1760 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.079
Graphite monochromatorθmax = 26.3°, θmin = 2.6°
oscillation scansh = 1616
18084 measured reflectionsk = 66
2196 independent reflectionsl = 1817
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.0386P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max = 0.002
S = 1.01Δρmax = 0.16 e Å3
2196 reflectionsΔρmin = 0.19 e Å3
236 parameters
Crystal data top
C9H17NO2V = 975.45 (8) Å3
Mr = 171.24Z = 4
Monoclinic, P21Mo Kα radiation
a = 12.9121 (6) ŵ = 0.08 mm1
b = 5.3871 (3) ÅT = 100 K
c = 14.8945 (7) Å0.2 × 0.1 × 0.1 mm
β = 109.692 (2)°
Data collection top
Nonius KAPPACCD
diffractometer
1760 reflections with I > 2σ(I)
18084 measured reflectionsRint = 0.079
2196 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0437 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
2196 reflectionsΔρmin = 0.19 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.67946 (11)0.6828 (3)1.04958 (10)0.0319 (4)
N10.68232 (14)0.7075 (4)0.89926 (12)0.0295 (5)
H10.72770.58020.91220.035*
C20.64628 (17)0.7824 (5)0.96856 (15)0.0291 (6)
O20.4449 (4)1.2792 (11)0.8307 (4)0.0404 (11)0.712 (8)
H20.40971.24760.86750.061*0.712 (8)
C30.5635 (2)0.9892 (5)0.94855 (17)0.0379 (6)0.712 (8)
H3A0.58831.10941.00180.045*0.712 (8)
H3B0.49290.91860.9490.045*0.712 (8)
C40.5416 (3)1.1311 (8)0.8560 (2)0.0315 (11)0.712 (8)
H40.60531.24510.86450.038*0.712 (8)
C50.5391 (3)0.9472 (8)0.7780 (2)0.0295 (10)0.712 (8)
H5A0.52181.03510.71630.035*0.712 (8)
H5B0.48110.82160.77180.035*0.712 (8)
C60.6543 (2)0.8153 (5)0.80329 (16)0.0331 (6)0.712 (8)
H60.71180.93710.80110.04*0.712 (8)
C70.6439 (2)0.6083 (5)0.73134 (17)0.0372 (6)
H7A0.70470.48890.75860.045*
H7B0.5740.51890.72180.045*
C80.6463 (2)0.6931 (6)0.63432 (15)0.0405 (7)
H80.59870.84370.61450.049*
C90.5981 (3)0.4876 (7)0.56153 (19)0.0618 (9)
H9A0.6030.53620.49970.093*
H9B0.52080.46090.55510.093*
H9C0.63950.33380.58310.093*
C100.7618 (2)0.7602 (8)0.63802 (19)0.0609 (9)
H10A0.80960.61470.65780.091*
H10B0.79010.89490.6840.091*
H10C0.76010.81430.57470.091*
O210.4302 (11)1.203 (2)0.8175 (9)0.034 (3)*0.288 (8)
H210.38531.19420.84720.052*0.288 (8)
C310.5635 (2)0.9892 (5)0.94855 (17)0.0379 (6)0.288 (8)
H31A0.51080.95880.98260.045*0.288 (8)
H31B0.60121.1490.97110.045*0.288 (8)
C410.5033 (8)1.000 (3)0.8427 (6)0.035 (2)*0.288 (8)
H410.46050.84340.82220.042*0.288 (8)
C510.5854 (10)1.025 (2)0.7890 (7)0.035 (2)*0.288 (8)
H51A0.54471.04550.72010.042*0.288 (8)
H51B0.6311.17550.81160.042*0.288 (8)
C610.6543 (2)0.8153 (5)0.80329 (16)0.0331 (6)0.288 (8)
H610.72580.89260.80640.04*0.288 (8)
O110.81679 (11)0.2582 (3)0.94945 (9)0.0299 (4)
O121.06794 (13)0.2869 (4)1.17635 (11)0.0353 (4)
H121.10770.31.14210.053*
N110.83492 (14)0.2784 (4)1.10496 (12)0.0288 (5)
H110.78320.39261.09010.035*
C120.85924 (16)0.1795 (5)1.03320 (14)0.0260 (5)
C130.93683 (17)0.0382 (5)1.05320 (15)0.0293 (5)
H13A0.98360.02461.01260.035*
H13B0.89340.19291.03530.035*
C141.01056 (18)0.0561 (5)1.15703 (15)0.0304 (6)
H141.06510.08281.17180.037*
C150.94089 (19)0.0340 (5)1.21962 (15)0.0314 (5)
H15A0.98760.05621.28710.038*
H15B0.88440.16641.20310.038*
C160.88493 (17)0.2184 (5)1.20713 (14)0.0293 (5)
H160.94190.34671.23760.035*
C170.79473 (18)0.2343 (5)1.25201 (15)0.0331 (6)
H17A0.73920.10441.22320.04*
H17B0.75770.39731.23560.04*
C180.8344 (2)0.2037 (6)1.36104 (16)0.0407 (7)
H180.87380.04121.37690.049*
C190.9146 (3)0.4062 (7)1.4117 (2)0.0639 (9)
H19A0.88020.56891.39280.096*
H19B0.9810.39461.3940.096*
H19C0.93430.38571.48080.096*
C200.7355 (3)0.1922 (9)1.3941 (2)0.0708 (11)
H20A0.76030.16011.46290.106*
H20B0.68640.05851.36030.106*
H20C0.69610.35081.38050.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0310 (8)0.0337 (10)0.0313 (8)0.0044 (8)0.0108 (6)0.0069 (8)
N10.0324 (10)0.0256 (11)0.0307 (9)0.0042 (10)0.0111 (8)0.0029 (9)
C20.0244 (11)0.0287 (14)0.0341 (13)0.0009 (11)0.0098 (9)0.0023 (11)
O20.037 (2)0.042 (3)0.048 (2)0.017 (2)0.0214 (18)0.019 (2)
C30.0400 (13)0.0397 (16)0.0373 (13)0.0115 (14)0.0174 (10)0.0073 (13)
C40.0275 (19)0.031 (2)0.0386 (19)0.0057 (18)0.0140 (14)0.0073 (17)
C50.0230 (18)0.0264 (19)0.0369 (18)0.0010 (17)0.0070 (14)0.0055 (16)
C60.0406 (13)0.0266 (13)0.0315 (12)0.0016 (12)0.0112 (10)0.0029 (11)
C70.0395 (13)0.0292 (14)0.0374 (13)0.0042 (12)0.0056 (10)0.0020 (11)
C80.0459 (13)0.0420 (17)0.0283 (11)0.0127 (15)0.0054 (10)0.0006 (13)
C90.078 (2)0.060 (2)0.0373 (15)0.0108 (19)0.0059 (13)0.0103 (16)
C100.0569 (16)0.091 (3)0.0349 (13)0.007 (2)0.0157 (12)0.0043 (18)
C310.0400 (13)0.0397 (16)0.0373 (13)0.0115 (14)0.0174 (10)0.0073 (13)
C610.0406 (13)0.0266 (13)0.0315 (12)0.0016 (12)0.0112 (10)0.0029 (11)
O110.0298 (8)0.0322 (10)0.0267 (8)0.0029 (8)0.0081 (6)0.0025 (8)
O120.0354 (9)0.0344 (10)0.0382 (9)0.0114 (9)0.0153 (7)0.0078 (9)
N110.0281 (9)0.0282 (11)0.0287 (9)0.0052 (10)0.0078 (7)0.0040 (9)
C120.0220 (10)0.0241 (13)0.0305 (12)0.0036 (11)0.0071 (8)0.0005 (11)
C130.0286 (11)0.0290 (13)0.0311 (11)0.0010 (12)0.0112 (9)0.0006 (11)
C140.0312 (12)0.0260 (13)0.0328 (12)0.0041 (12)0.0092 (9)0.0028 (11)
C150.0331 (12)0.0321 (13)0.0283 (11)0.0020 (12)0.0095 (9)0.0042 (12)
C160.0285 (11)0.0295 (13)0.0266 (10)0.0000 (12)0.0053 (8)0.0006 (11)
C170.0338 (12)0.0346 (14)0.0306 (11)0.0058 (12)0.0104 (9)0.0020 (11)
C180.0473 (14)0.0426 (16)0.0338 (12)0.0140 (15)0.0160 (10)0.0066 (13)
C190.090 (2)0.055 (2)0.0366 (15)0.004 (2)0.0084 (14)0.0063 (15)
C200.0694 (19)0.108 (3)0.0475 (16)0.026 (2)0.0354 (14)0.019 (2)
Geometric parameters (Å, º) top
O1—C21.257 (3)C41—H411
N1—C21.330 (3)C51—H51A0.99
N1—C61.471 (3)C51—H51B0.99
N1—H10.88O11—C121.255 (2)
C2—C31.503 (4)O12—C141.426 (3)
O2—C41.422 (5)O12—H120.84
O2—H20.84N11—C121.323 (3)
C3—C41.517 (4)N11—C161.475 (3)
C3—H3A0.99N11—H110.88
C3—H3B0.99C12—C131.505 (3)
C4—C51.519 (6)C13—C141.522 (3)
C4—H41C13—H13A0.99
C5—C61.575 (4)C13—H13B0.99
C5—H5A0.99C14—C151.503 (3)
C5—H5B0.99C14—H141
C6—C71.521 (3)C15—C161.521 (4)
C6—H61C15—H15A0.99
C7—C81.526 (3)C15—H15B0.99
C7—H7A0.99C16—C171.528 (3)
C7—H7B0.99C16—H161
C8—C101.517 (4)C17—C181.538 (3)
C8—C91.528 (4)C17—H17A0.99
C8—H81C17—H17B0.99
C9—H9A0.98C18—C201.516 (4)
C9—H9B0.98C18—C191.518 (5)
C9—H9C0.98C18—H181
C10—H10A0.98C19—H19A0.98
C10—H10B0.98C19—H19B0.98
C10—H10C0.98C19—H19C0.98
O21—C411.410 (17)C20—H20A0.98
O21—H210.84C20—H20B0.98
C41—C511.533 (13)C20—H20C0.98
C2—N1—C6126.8 (2)C41—C51—H51A109.4
C2—N1—H1116.6C41—C51—H51B109.4
C6—N1—H1116.6H51A—C51—H51B108
O1—C2—N1121.4 (2)C14—O12—H12109.5
O1—C2—C3119.78 (19)C12—N11—C16127.2 (2)
N1—C2—C3118.86 (19)C12—N11—H11116.4
C2—C3—C4117.1 (2)C16—N11—H11116.4
C2—C3—H3A108O11—C12—N11121.6 (2)
C4—C3—H3A108O11—C12—C13119.90 (19)
C2—C3—H3B108N11—C12—C13118.50 (18)
C4—C3—H3B108C12—C13—C14113.42 (19)
H3A—C3—H3B107.3C12—C13—H13A108.9
O2—C4—C3113.7 (3)C14—C13—H13A108.9
O2—C4—C5111.9 (4)C12—C13—H13B108.9
C3—C4—C5108.4 (3)C14—C13—H13B108.9
O2—C4—H4107.5H13A—C13—H13B107.7
C3—C4—H4107.5O12—C14—C15108.8 (2)
C5—C4—H4107.5O12—C14—C13111.4 (2)
C4—C5—C6109.7 (3)C15—C14—C13108.98 (18)
C4—C5—H5A109.7O12—C14—H14109.2
C6—C5—H5A109.7C15—C14—H14109.2
C4—C5—H5B109.7C13—C14—H14109.2
C6—C5—H5B109.7C14—C15—C16110.7 (2)
H5A—C5—H5B108.2C14—C15—H15A109.5
N1—C6—C7109.3 (2)C16—C15—H15A109.5
N1—C6—C5108.3 (2)C14—C15—H15B109.5
C7—C6—C5108.1 (2)C16—C15—H15B109.5
N1—C6—H6110.4H15A—C15—H15B108.1
C7—C6—H6110.4N11—C16—C15110.29 (19)
C5—C6—H6110.4N11—C16—C17107.81 (16)
C8—C7—C6115.0 (2)C15—C16—C17113.4 (2)
C8—C7—H7A108.5N11—C16—H16108.4
C6—C7—H7A108.5C15—C16—H16108.4
C8—C7—H7B108.5C17—C16—H16108.4
C6—C7—H7B108.5C16—C17—C18115.09 (18)
H7A—C7—H7B107.5C16—C17—H17A108.5
C10—C8—C7111.71 (19)C18—C17—H17A108.5
C10—C8—C9111.0 (2)C16—C17—H17B108.5
C7—C8—C9108.8 (3)C18—C17—H17B108.5
C10—C8—H8108.4H17A—C17—H17B107.5
C7—C8—H8108.4C20—C18—C19112.1 (3)
C9—C8—H8108.4C20—C18—C17109.3 (2)
C8—C9—H9A109.5C19—C18—C17112.1 (2)
C8—C9—H9B109.5C20—C18—H18107.7
H9A—C9—H9B109.5C19—C18—H18107.7
C8—C9—H9C109.5C17—C18—H18107.7
H9A—C9—H9C109.5C18—C19—H19A109.5
H9B—C9—H9C109.5C18—C19—H19B109.5
C8—C10—H10A109.5H19A—C19—H19B109.5
C8—C10—H10B109.5C18—C19—H19C109.5
H10A—C10—H10B109.5H19A—C19—H19C109.5
C8—C10—H10C109.5H19B—C19—H19C109.5
H10A—C10—H10C109.5C18—C20—H20A109.5
H10B—C10—H10C109.5C18—C20—H20B109.5
C41—O21—H21109.5H20A—C20—H20B109.5
O21—C41—C51108.2 (10)C18—C20—H20C109.5
O21—C41—H41108.8H20A—C20—H20C109.5
C51—C41—H41108.8H20B—C20—H20C109.5
N11—C12—C13—C1422.1 (3)C61—N1—C2—C33.6 (4)
C12—C13—C14—C1549.3 (3)C2—C31—C41—O21175.2 (8)
C13—C14—C15—C1662.7 (3)C2—N1—C61—C7142.6 (2)
C14—C15—C16—N1146.8 (2)C6—N1—C2—O1176.9 (2)
C15—C16—N11—C1219.8 (3)C6—N1—C2—C33.6 (4)
C16—N11—C12—C137.5 (3)O1—C2—C3—C4169.7 (3)
C12—C13—C14—O12169.41 (19)O2—C4—C5—C6172.1 (3)
C14—C15—C16—C17167.86 (18)C2—N1—C6—C7142.7 (2)
N1—C2—C3—C410.8 (4)N1—C6—C7—C8164.04 (19)
C2—C3—C4—C540.1 (4)C5—C6—C7—C878.3 (3)
C3—C4—C5—C661.8 (4)C6—C7—C8—C1075.7 (3)
C4—C5—C6—N153.9 (4)C6—C7—C8—C9161.5 (2)
C5—C6—N1—C225.1 (4)C16—N11—C12—O11174.7 (2)
C2—C3—C4—O2165.2 (4)O11—C12—C13—C14160.0 (2)
C4—C5—C6—C7172.2 (3)O12—C14—C15—C16175.55 (17)
N1—C2—C31—C4123.3 (6)C12—N11—C16—C17144.1 (2)
C2—C31—C41—C5155 (1)N11—C16—C17—C18173.9 (2)
C31—C41—C51—C6163 (1)C15—C16—C17—C1863.7 (3)
C41—C51—C61—N135 (1)C16—C17—C18—C20173.2 (3)
C51—C61—N1—C22.7 (7)C16—C17—C18—C1961.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O110.882.052.925 (3)172
N11—H11···O10.882.012.888 (3)172
O12—H12···O11i0.841.952.769 (2)164
O2—H2···O1ii0.841.982.821 (5)177
O21—H21···O1ii0.841.982.797 (14)163
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+1, y+1/2, z+2.

Experimental details

(II)(III_IV)
Crystal data
Chemical formulaC9H15NO2C9H17NO2
Mr169.22171.24
Crystal system, space groupTriclinic, P1Monoclinic, P21
Temperature (K)293100
a, b, c (Å)5.0760 (2), 10.0760 (4), 10.1210 (5)12.9121 (6), 5.3871 (3), 14.8945 (7)
α, β, γ (°)95.691 (1), 102.529 (1), 103.730 (2)90, 109.692 (2), 90
V3)484.65 (4)975.45 (8)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.2 × 0.1 × 0.10.2 × 0.1 × 0.1
Data collection
DiffractometerNonius KAPPACCD
diffractometer
Nonius KAPPACCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7698, 1959, 1334 18084, 2196, 1760
Rint0.0400.079
(sin θ/λ)max1)0.6230.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.118, 0.94 0.043, 0.114, 1.01
No. of reflections19592196
No. of parameters217236
No. of restraints57
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.140.16, 0.19

Computer programs: COLLECT (Nonius, 1998), COLLECT software (Nonius, 1998), COLLECT, HKL Suite (Otwinoski & Minor, 1997), SIR92 (Altomare et al., 1994), SIR_92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and WebLab ViewerPro 3.5 (MSI, 1999), ORTEP-3 for Windows (Farrugia, 1997), WebLab ViewerPro 3.5 (MSI, 1999), WinGX (Farrugia, 1999), WinGX publication routines (Farrugia, 1999).

Selected geometric parameters (Å, º) for (II) top
C3—C41.489 (5)C13—C141.494 (5)
C4—O21.210 (4)C14—O121.204 (4)
N1—C2—C3—C412.6 (5)N11—C12—C13—C1427.0 (6)
C2—C3—C4—C511.0 (5)C15—C14—C13—C1216.2 (6)
C3—C4—C5—C643.9 (5)C16—C15—C14—C1321.6 (5)
C4—C5—C6—N152.7 (4)N11—C16—C15—C1447.2 (4)
C2—N1—C6—C532.1 (5)C12—N11—C16—C1540.1 (4)
C6—N1—C2—C31.1 (5)C16—N11—C12—C133.0 (5)
C4—C5—C6—C7174.8 (3)C17—C16—C15—C14167.2 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O110.862.042.899 (3)176
N11—H11···O10.862.052.878 (3)161
Selected torsion angles (º) for (III_IV) top
N11—C12—C13—C1422.1 (3)C5—C6—N1—C225.1 (4)
C12—C13—C14—C1549.3 (3)C2—C3—C4—O2165.2 (4)
C13—C14—C15—C1662.7 (3)C4—C5—C6—C7172.2 (3)
C14—C15—C16—N1146.8 (2)N1—C2—C31—C4123.3 (6)
C15—C16—N11—C1219.8 (3)C2—C31—C41—C5155 (1)
C16—N11—C12—C137.5 (3)C31—C41—C51—C6163 (1)
C12—C13—C14—O12169.41 (19)C41—C51—C61—N135 (1)
C14—C15—C16—C17167.86 (18)C51—C61—N1—C22.7 (7)
N1—C2—C3—C410.8 (4)C61—N1—C2—C33.6 (4)
C2—C3—C4—C540.1 (4)C2—C31—C41—O21175.2 (8)
C3—C4—C5—C661.8 (4)C2—N1—C61—C7142.6 (2)
C4—C5—C6—N153.9 (4)
Hydrogen-bond geometry (Å, º) for (III_IV) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O110.882.052.925 (3)172
N11—H11···O10.882.012.888 (3)172
O12—H12···O11i0.841.952.769 (2)164
O2—H2···O1ii0.841.982.821 (5)177
O21—H21···O1ii0.841.982.797 (14)163
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+1, y+1/2, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds