Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The mol­ecular structure of the title compound, C13H17NO4, has no symmetry plane because one C atom of the ethyl group lies out of the plane defined by the other non-H atoms. In the crystal structure, the mol­ecules stack along the a axis. Symmetry-related mol­ecules are linked by a C—H...O hydrogen bond, forming zigzag chains extending in the b-axis direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805039590/su6246sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805039590/su6246Isup2.hkl
Contains datablock I

CCDC reference: 296674

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in main residue
  • R factor = 0.049
  • wR factor = 0.155
  • Data-to-parameter ratio = 13.0

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C12
Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 48 Perc. PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.70 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.22 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C8 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C9' PLAT301_ALERT_3_C Main Residue Disorder ......................... 10.00 Perc. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 19.90 Deg. C9' -O2 -C9 1.555 1.555 1.555
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Dihydropyridine compounds are calcium ion channel blockers and the use of these compounds is generally beneficial (Böcker et al., 1986). Aromatization of Hantzsch 1,4-dihydropyridines (1,4-DHP) has attracted considerable attention in recent years, essentially since the discovery that the metabolism of these drugs involves an oxidation step (Eynde et al.,1995). Here we describe the synthesis (Lu et al., 2001) and crystal structure of the title compound, (I).

The molecular structure of the compound (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. A l l of the non-H atoms in (I) lie almost in the same plane, except atom C10 which is out of the plane with a C8—O2—C9—C10 torsion angle of 123.2 (17)°. This is probably because of the disorder of the ethyl group, and for this reason the molecule has no symmetry plane.

In the crystal structure of (I), the molecules stack along the a axis and are linked by C—H···O hydrogen bonds, forming polymer chains extending in the b-axis direction (see Table 2 and Fig. 2 for details).

Experimental top

The title compound, (I) was prepared according to the literature procedure of Lu et al. (2001). A mixture of diethyl 2,6-dimethyl-1,4- dihydropyridine-3,5-dicarboxylate, ferric chloride hexahydrate, acetic acid and water was heated at reflux for 1 h. After neutralization with an aqueous solution of sodium bicarbornate and extraction with chloroform, the title compound was obtained (yield 52%; m.p. 343–344 K). Single crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of an ethanol solution. IR (KBr, ν cm−1): 2979, 2932, 1721, 1591, 1442, 1367, 1296, 1223, 1120, 1043, 771, 698.

Refinement top

All the H atoms were positioned geometrically and refined as riding atoms with C—H distances = 0.93–0.97 Å. For the aromatic and CH2 H atoms Uiso(H) = 1.2Ue(C), and for the CH3 Hatoms Uiso(H) = 1.5Ueq(C). The ethyl group was found to be disordered over two orientations, with occupancies of 0.39 (2) and 0.61 (2).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom-labelling scheme, with displacement ellipsolids drawn at the 35% probability level. Only the major component of the disordered ethyl group is shown.
[Figure 2] Fig. 2. The crystal packing of compound (I), viewed along the a axis. Only the major component of the disordered ethyl group is shown. The C—H···O hydrogen bonds are shown as dashed lines.
Diethyl 2,6-dimethylpyridine-3,5-dicarboxylate top
Crystal data top
C13H17NO4F(000) = 536
Mr = 251.28Dx = 1.212 Mg m3
Monoclinic, P21/cMelting point: 343 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 4.593 (2) ÅCell parameters from 1328 reflections
b = 15.950 (9) Åθ = 2.5–23.6°
c = 18.795 (10) ŵ = 0.09 mm1
β = 90.656 (9)°T = 294 K
V = 1376.9 (13) Å3Block, colorless
Z = 40.24 × 0.20 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2427 independent reflections
Radiation source: fine-focus sealed tube1158 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 45
Tmin = 0.960, Tmax = 0.986k = 1812
6854 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.2484P]
where P = (Fo2 + 2Fc2)/3
2427 reflections(Δ/σ)max = 0.002
187 parametersΔρmax = 0.20 e Å3
29 restraintsΔρmin = 0.14 e Å3
Crystal data top
C13H17NO4V = 1376.9 (13) Å3
Mr = 251.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.593 (2) ŵ = 0.09 mm1
b = 15.950 (9) ÅT = 294 K
c = 18.795 (10) Å0.24 × 0.20 × 0.16 mm
β = 90.656 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2427 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1158 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.986Rint = 0.046
6854 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04929 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
2427 reflectionsΔρmin = 0.14 e Å3
187 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.2765 (6)1.00909 (17)0.29361 (13)0.1091 (9)
O21.0690 (5)0.93288 (15)0.20975 (12)0.0925 (8)
O30.3313 (5)0.65999 (15)0.35320 (11)0.0827 (7)
O40.4211 (4)0.71868 (12)0.24860 (11)0.0664 (6)
N10.9495 (5)0.83212 (18)0.44323 (13)0.0661 (7)
C11.0658 (6)0.8888 (2)0.39946 (17)0.0604 (8)
C20.9964 (5)0.88958 (18)0.32672 (15)0.0529 (7)
C30.7966 (5)0.83108 (18)0.30156 (14)0.0522 (7)
H30.74490.83100.25360.063*
C40.6733 (5)0.77302 (17)0.34672 (14)0.0500 (7)
C50.7594 (6)0.7747 (2)0.41872 (15)0.0611 (8)
C61.2721 (7)0.9495 (2)0.43497 (17)0.0836 (11)
H6A1.18451.00410.43630.125*
H6B1.44970.95210.40860.125*
H6C1.31360.93100.48260.125*
C70.6517 (8)0.7147 (2)0.47389 (16)0.0934 (12)
H7A0.73510.72890.51940.140*
H7B0.70760.65860.46140.140*
H7C0.44330.71800.47630.140*
C81.1295 (7)0.9500 (2)0.27714 (18)0.0662 (8)
C91.126 (4)0.9914 (10)0.1507 (9)0.090 (6)0.39 (2)
H9A1.22561.04150.16750.108*0.39 (2)
H9B0.94731.00750.12650.108*0.39 (2)
C101.321 (5)0.9396 (10)0.1025 (8)0.114 (6)0.39 (2)
H10A1.48330.91840.12950.171*0.39 (2)
H10B1.39030.97410.06440.171*0.39 (2)
H10C1.21120.89350.08300.171*0.39 (2)
C9'1.229 (3)0.9867 (7)0.1600 (4)0.084 (3)0.61 (2)
H9'11.43780.98240.16820.100*0.61 (2)
H9'21.17101.04480.16460.100*0.61 (2)
C10'1.145 (4)0.9524 (8)0.0878 (3)0.119 (4)0.61 (2)
H10D1.20660.89500.08440.178*0.61 (2)
H10E1.23840.98480.05150.178*0.61 (2)
H10F0.93810.95560.08160.178*0.61 (2)
C110.4586 (6)0.71134 (19)0.31846 (16)0.0554 (7)
C120.2205 (6)0.6604 (2)0.21440 (16)0.0700 (9)
H12A0.02850.66540.23490.084*
H12B0.28790.60320.22080.084*
C130.2095 (10)0.6817 (3)0.13845 (18)0.1354 (18)
H13A0.14850.73890.13290.203*
H13B0.07360.64540.11440.203*
H13C0.39920.67470.11840.203*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.118 (2)0.0879 (19)0.121 (2)0.0455 (17)0.0152 (17)0.0054 (16)
O20.122 (2)0.0816 (17)0.0740 (16)0.0377 (15)0.0253 (14)0.0011 (13)
O30.0925 (16)0.0773 (16)0.0786 (15)0.0218 (13)0.0083 (12)0.0090 (13)
O40.0680 (13)0.0658 (14)0.0653 (13)0.0154 (11)0.0060 (10)0.0022 (11)
N10.0579 (15)0.0766 (19)0.0637 (16)0.0063 (15)0.0078 (13)0.0050 (15)
C10.0455 (16)0.063 (2)0.072 (2)0.0135 (16)0.0071 (15)0.0170 (18)
C20.0418 (15)0.0491 (18)0.068 (2)0.0066 (14)0.0023 (14)0.0030 (16)
C30.0454 (15)0.0553 (18)0.0560 (17)0.0093 (15)0.0026 (13)0.0044 (15)
C40.0424 (14)0.0507 (18)0.0569 (17)0.0064 (14)0.0035 (13)0.0031 (15)
C50.0544 (17)0.067 (2)0.062 (2)0.0136 (17)0.0015 (15)0.0007 (17)
C60.069 (2)0.089 (3)0.093 (2)0.002 (2)0.0165 (18)0.032 (2)
C70.107 (3)0.110 (3)0.063 (2)0.013 (2)0.0012 (19)0.019 (2)
C80.0581 (19)0.056 (2)0.084 (2)0.0019 (17)0.0035 (17)0.0088 (19)
C90.081 (8)0.092 (8)0.098 (9)0.029 (7)0.008 (6)0.008 (6)
C100.115 (9)0.116 (8)0.112 (8)0.007 (7)0.034 (7)0.006 (7)
C9'0.090 (6)0.077 (5)0.084 (5)0.016 (5)0.019 (4)0.008 (4)
C10'0.148 (8)0.121 (7)0.088 (5)0.027 (6)0.019 (5)0.018 (5)
C110.0520 (17)0.0531 (19)0.061 (2)0.0084 (15)0.0055 (15)0.0030 (16)
C120.0620 (18)0.065 (2)0.083 (2)0.0094 (17)0.0056 (16)0.0150 (18)
C130.169 (4)0.155 (4)0.081 (3)0.071 (4)0.042 (3)0.005 (3)
Geometric parameters (Å, º) top
O1—C81.198 (3)C7—H7A0.9600
O2—C81.322 (3)C7—H7B0.9600
O2—C9'1.473 (7)C7—H7C0.9600
O2—C91.476 (9)C9—C101.525 (10)
O3—C111.203 (3)C9—H9A0.9700
O4—C111.328 (3)C9—H9B0.9700
O4—C121.454 (3)C10—H10A0.9600
N1—C11.338 (4)C10—H10B0.9600
N1—C51.344 (4)C10—H10C0.9600
C1—C21.400 (4)C9'—C10'1.508 (8)
C1—C61.505 (4)C9'—H9'10.9700
C2—C31.388 (4)C9'—H9'20.9700
C2—C81.478 (4)C10'—H10D0.9600
C3—C41.382 (4)C10'—H10E0.9600
C3—H30.9300C10'—H10F0.9600
C4—C51.406 (4)C12—C131.468 (4)
C4—C111.487 (4)C12—H12A0.9700
C5—C71.499 (4)C12—H12B0.9700
C6—H6A0.9600C13—H13A0.9600
C6—H6B0.9600C13—H13B0.9600
C6—H6C0.9600C13—H13C0.9600
C8—O2—C9'112.8 (4)O2—C8—C2112.7 (3)
C8—O2—C9123.5 (10)O2—C9—C10102.4 (8)
C9'—O2—C919.9 (9)O2—C9—H9A111.3
C11—O4—C12117.1 (2)C10—C9—H9A111.3
C1—N1—C5120.8 (3)O2—C9—H9B111.3
N1—C1—C2121.2 (3)C10—C9—H9B111.3
N1—C1—C6114.6 (3)H9A—C9—H9B109.2
C2—C1—C6124.2 (3)O2—C9'—C10'103.6 (6)
C3—C2—C1118.0 (3)O2—C9'—H9'1111.0
C3—C2—C8120.0 (3)C10'—C9'—H9'1111.0
C1—C2—C8122.0 (3)O2—C9'—H9'2111.0
C4—C3—C2121.0 (3)C10'—C9'—H9'2111.0
C4—C3—H3119.5H9'1—C9'—H9'2109.0
C2—C3—H3119.5C9'—C10'—H10D109.5
C3—C4—C5117.8 (3)C9'—C10'—H10E109.5
C3—C4—C11119.9 (3)H10D—C10'—H10E109.5
C5—C4—C11122.3 (3)C9'—C10'—H10F109.5
N1—C5—C4121.2 (3)H10D—C10'—H10F109.5
N1—C5—C7114.6 (3)H10E—C10'—H10F109.5
C4—C5—C7124.2 (3)O3—C11—O4122.6 (3)
C1—C6—H6A109.5O3—C11—C4125.5 (3)
C1—C6—H6B109.5O4—C11—C4111.9 (3)
H6A—C6—H6B109.5O4—C12—C13107.3 (3)
C1—C6—H6C109.5O4—C12—H12A110.3
H6A—C6—H6C109.5C13—C12—H12A110.3
H6B—C6—H6C109.5O4—C12—H12B110.3
C5—C7—H7A109.5C13—C12—H12B110.3
C5—C7—H7B109.5H12A—C12—H12B108.5
H7A—C7—H7B109.5C12—C13—H13A109.5
C5—C7—H7C109.5C12—C13—H13B109.5
H7A—C7—H7C109.5H13A—C13—H13B109.5
H7B—C7—H7C109.5C12—C13—H13C109.5
O1—C8—O2121.4 (3)H13A—C13—H13C109.5
O1—C8—C2125.9 (3)H13B—C13—H13C109.5
C5—N1—C1—C20.8 (4)C9'—O2—C8—C2173.1 (7)
C5—N1—C1—C6179.3 (2)C9—O2—C8—C2167.9 (8)
N1—C1—C2—C31.8 (4)C3—C2—C8—O1170.6 (3)
C6—C1—C2—C3178.4 (3)C1—C2—C8—O19.6 (5)
N1—C1—C2—C8178.1 (3)C3—C2—C8—O29.1 (4)
C6—C1—C2—C81.8 (4)C1—C2—C8—O2170.7 (3)
C1—C2—C3—C41.0 (4)C8—O2—C9—C10123.2 (17)
C8—C2—C3—C4178.8 (2)C9'—O2—C9—C1061 (2)
C2—C3—C4—C50.7 (4)C8—O2—C9'—C10'176.0 (12)
C2—C3—C4—C11179.7 (2)C9—O2—C9'—C10'57 (2)
C1—N1—C5—C41.0 (4)C12—O4—C11—O31.1 (4)
C1—N1—C5—C7179.1 (3)C12—O4—C11—C4178.7 (2)
C3—C4—C5—N11.7 (4)C3—C4—C11—O3177.5 (3)
C11—C4—C5—N1178.6 (2)C5—C4—C11—O32.9 (4)
C3—C4—C5—C7178.4 (3)C3—C4—C11—O42.8 (3)
C11—C4—C5—C71.2 (4)C5—C4—C11—O4176.9 (2)
C9'—O2—C8—O17.2 (8)C11—O4—C12—C13178.7 (3)
C9—O2—C8—O111.8 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O1i0.972.523.346 (4)143
Symmetry code: (i) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H17NO4
Mr251.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)4.593 (2), 15.950 (9), 18.795 (10)
β (°) 90.656 (9)
V3)1376.9 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.960, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
6854, 2427, 1158
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.155, 1.00
No. of reflections2427
No. of parameters187
No. of restraints29
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.14

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected torsion angles (º) top
C8—O2—C9—C10123.2 (17)C11—O4—C12—C13178.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O1i0.972.523.346 (4)143
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds