Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [Ni(C3S5)(C5H12N2)] or [Ni(dmit)(dach)] (dach is 1,4-diaza­cyclo­heptane and dmit is 2-thioxo-1,3-dithiole-4,5-dithiol­ate), crystallizes with two independent mol­ecules per asymmetric unit. In each mol­ecule, the central NiII atom is coplanar with the two S atoms of one dmit ligand and two N atoms of one dach ligand. In the crystal structure, some weak S...S inter­actions and N—H...S and C—H...N hydrogen bonds are present. These inter­actions generate a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805039632/su6245sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805039632/su6245Isup2.hkl
Contains datablock I

CCDC reference: 296673

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.026
  • wR factor = 0.074
  • Data-to-parameter ratio = 19.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - S4 .. 6.54 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - S5 .. 6.28 su PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C8 H12 N2 Ni S5
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Over the past decades, transition metal complexes with bis-(dithiolate) ligands, such as dmit, have been widely studied for their semiconducting, conducting, and even superconducting properties (Cassoux et al., 1996). Additionally, diazamesocyclic ligands, such as dach, occupy an important role in coordination chemistry with regard to their manifestation of unique conformations, exceptionally strong ligand fields and their potential for further functionalization (Mills et al., 1990; Musker, 1992; Grapperhaus & Darensbourg, 1998). On combining bis-(dithiolate) and diazamesocyclic ligands as a mixed-ligand system to react with transition metal salts, a series of novel coordination complexes has been obtained. Here, we present the synthesis and crystal structure of the title compound, [Ni(dach)(dmit)], (I).

The molecular structure of complex (I) is illustrated in Fig. 1, and selected bond distances and angles are given in Table 1. The central Ni atom has a square-planar coordination environment, and is surrounded by two S atoms of one dmit ligand, with Ni—S distances of 2.1568 (12) and 2.1584 (10) Å, and two N atoms of a dach ligand, with Ni—N distances of 1.925 (2) and 1.930 (2) Å. The five S of atoms of the dmit ligand are approximately planar. The S5 planes of the two independent molecules are inclined to one another by ca 85.74°. The independent molecules are linked by N—H···S hydrogen bonds to form a dimer (Table 2).

In the crystal structure of (I) there are some weak S···S interactions [S5···S8i = 3.5406 (14) Å; symmetry operation: (i) 1 − x, −y, −z]. Symmetry related molecules are also conneced via N—H···S and C—H···S hydrogen bonds [D···A range 3.374 (3)–3.771 (4) Å]. Details are given in Table 2 and Fig. 2.

Experimental top

[TBA][Ni(dmit)2] and [Ni(DACH)2](H2O)4(Ac)2 were prepared according to the literature procedures (Sun et al., 1996; Guo, 2002; Guo et al., 2001). These two compounds (ratio 1:1) were dissolved separately in acetonitrile at room temperature and allowed to slowly diffuse in an H-shaped tube. After a few weeks, red plate-like crystals, suitable for X-ray diffraction analysis, were obtained.

Refinement top

The H atoms bonded to the C atoms were positioned geometrically and refined using a riding model with C—H 0.97 Å and Uiso(H) = 1.2Ueq(parent C-atom). The H atoms bonded to the N atoms were located in difference Fourier maps and refined (N—H distance = 0.857 (16) − 0.894 (17) Å) with Uiso(H) = 1.2Ueq(parent N-atom).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecule structure of the two independent molecules of complex (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of (I). The S···S and CH···S interactions are depicted by dashed lines.
(1,4-Diazacycloheptane-κ2N,N')(2-thioxo-1,3-dithiole-4,5-dithiolato- κ2S4,S5)nickel(II) top
Crystal data top
[Ni(C3S5)(C5H12N2)]Z = 4
Mr = 355.21F(000) = 728
Triclinic, P1Dx = 1.791 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3290 (19) ÅCell parameters from 2987 reflections
b = 11.997 (2) Åθ = 1.7–27.4°
c = 13.169 (3) ŵ = 2.24 mm1
α = 65.20 (3)°T = 293 K
β = 82.81 (3)°Block, red
γ = 80.64 (3)°0.30 × 0.20 × 0.20 mm
V = 1317.5 (6) Å3
Data collection top
Bruker P4
diffractometer
5887 independent reflections
Radiation source: fine-focus sealed tube4265 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.590, Tmax = 0.639k = 1515
9484 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0378P)2]
where P = (Fo2 + 2Fc2)/3
5887 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.52 e Å3
4 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ni(C3S5)(C5H12N2)]γ = 80.64 (3)°
Mr = 355.21V = 1317.5 (6) Å3
Triclinic, P1Z = 4
a = 9.3290 (19) ÅMo Kα radiation
b = 11.997 (2) ŵ = 2.24 mm1
c = 13.169 (3) ÅT = 293 K
α = 65.20 (3)°0.30 × 0.20 × 0.20 mm
β = 82.81 (3)°
Data collection top
Bruker P4
diffractometer
5887 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4265 reflections with I > 2σ(I)
Tmin = 0.590, Tmax = 0.639Rint = 0.020
9484 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0274 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.01Δρmax = 0.52 e Å3
5887 reflectionsΔρmin = 0.43 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.28221 (4)0.35966 (3)0.02695 (3)0.02540 (9)
Ni20.18867 (4)0.12528 (3)0.22792 (3)0.02956 (10)
S10.21954 (9)0.32388 (8)0.58366 (7)0.0470 (2)
S20.12592 (8)0.43815 (7)0.34988 (6)0.03972 (18)
S30.33703 (9)0.22243 (7)0.41434 (6)0.03761 (18)
S40.14265 (8)0.46469 (7)0.10773 (6)0.03833 (18)
S50.37647 (8)0.22801 (6)0.18001 (6)0.03326 (17)
S60.25533 (12)0.10177 (9)0.32469 (7)0.0633 (3)
S70.11334 (10)0.18811 (8)0.09236 (7)0.0504 (2)
S80.32194 (10)0.01696 (7)0.15685 (6)0.0429 (2)
S90.07658 (9)0.20743 (8)0.14839 (7)0.0428 (2)
S100.31138 (9)0.02221 (7)0.07684 (6)0.03986 (19)
N10.4006 (3)0.2830 (2)0.06304 (19)0.0301 (5)
H10.436 (3)0.2065 (17)0.022 (2)0.036*
N20.2284 (3)0.4764 (2)0.12021 (19)0.0293 (5)
H20.155 (2)0.530 (2)0.122 (2)0.035*
N30.1117 (3)0.2232 (2)0.3770 (2)0.0355 (6)
H30.046 (3)0.269 (2)0.380 (3)0.043*
N40.2711 (3)0.0572 (2)0.3139 (2)0.0353 (6)
H40.301 (3)0.0167 (18)0.273 (2)0.042*
C10.2273 (3)0.3275 (3)0.4553 (2)0.0337 (6)
C20.1904 (3)0.3859 (3)0.2457 (2)0.0310 (6)
C30.2904 (3)0.2849 (2)0.2763 (2)0.0290 (6)
C40.5258 (3)0.3533 (3)0.1168 (3)0.0454 (8)
H4A0.59640.30630.14890.055*
H4B0.57250.36440.06040.055*
C50.4798 (3)0.4779 (3)0.2072 (3)0.0545 (9)
H5A0.45700.46610.27160.065*
H5B0.56140.52580.23010.065*
C60.3499 (4)0.5522 (3)0.1742 (3)0.0456 (8)
H6A0.37870.58210.12270.055*
H6B0.31700.62340.24040.055*
C70.2001 (3)0.4047 (3)0.1815 (2)0.0354 (7)
H7A0.21480.45230.26160.042*
H7B0.10020.38630.16520.042*
C80.3049 (3)0.2842 (2)0.1448 (2)0.0358 (7)
H8A0.25020.21380.11090.043*
H8B0.36290.27880.20940.043*
C90.2298 (4)0.1017 (3)0.1974 (3)0.0426 (8)
C100.1541 (3)0.1472 (3)0.0123 (2)0.0347 (7)
C110.2522 (3)0.0677 (2)0.0181 (2)0.0312 (6)
C120.2316 (4)0.3167 (3)0.4369 (3)0.0471 (8)
H12A0.27670.35960.39060.057*
H12B0.19150.37720.50570.057*
C130.3455 (4)0.2608 (3)0.4643 (3)0.0617 (10)
H13A0.30950.24590.53050.074*
H13B0.43080.32180.48430.074*
C140.3929 (4)0.1441 (3)0.3773 (3)0.0492 (8)
H14A0.46490.16350.32530.059*
H14B0.43900.10400.41270.059*
C150.1477 (4)0.0311 (3)0.3859 (3)0.0465 (8)
H15A0.08970.04590.34310.056*
H15B0.18390.02260.44800.056*
C160.0545 (4)0.1369 (3)0.4304 (3)0.0455 (8)
H16A0.05800.17970.51110.055*
H16B0.04600.10500.41290.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02730 (19)0.02911 (18)0.02124 (19)0.00141 (14)0.00280 (14)0.01208 (14)
Ni20.0347 (2)0.03321 (19)0.02305 (19)0.01038 (15)0.00127 (16)0.01235 (15)
S10.0500 (5)0.0719 (6)0.0274 (4)0.0115 (4)0.0022 (4)0.0270 (4)
S20.0372 (4)0.0565 (5)0.0297 (4)0.0039 (4)0.0032 (3)0.0248 (4)
S30.0496 (5)0.0386 (4)0.0241 (4)0.0022 (3)0.0086 (3)0.0116 (3)
S40.0362 (4)0.0519 (4)0.0263 (4)0.0127 (3)0.0082 (3)0.0202 (3)
S50.0449 (4)0.0293 (3)0.0256 (4)0.0024 (3)0.0064 (3)0.0126 (3)
S60.0977 (8)0.0626 (5)0.0322 (5)0.0167 (5)0.0190 (5)0.0272 (4)
S70.0633 (6)0.0603 (5)0.0390 (5)0.0130 (4)0.0122 (4)0.0269 (4)
S80.0633 (5)0.0391 (4)0.0261 (4)0.0062 (4)0.0040 (4)0.0150 (3)
S90.0438 (5)0.0592 (5)0.0339 (4)0.0249 (4)0.0023 (4)0.0220 (4)
S100.0584 (5)0.0412 (4)0.0257 (4)0.0233 (4)0.0067 (4)0.0156 (3)
N10.0350 (13)0.0286 (11)0.0270 (13)0.0030 (10)0.0080 (10)0.0126 (10)
N20.0303 (13)0.0305 (12)0.0288 (13)0.0041 (10)0.0056 (10)0.0154 (10)
N30.0366 (14)0.0417 (14)0.0298 (14)0.0141 (11)0.0031 (11)0.0142 (11)
N40.0505 (16)0.0322 (12)0.0251 (13)0.0150 (12)0.0002 (12)0.0105 (10)
C10.0359 (16)0.0467 (16)0.0242 (15)0.0150 (13)0.0007 (13)0.0170 (13)
C20.0289 (15)0.0431 (16)0.0257 (15)0.0065 (13)0.0001 (12)0.0184 (12)
C30.0348 (15)0.0319 (14)0.0228 (14)0.0097 (12)0.0039 (12)0.0110 (11)
C40.0277 (16)0.059 (2)0.051 (2)0.0027 (15)0.0026 (15)0.0269 (17)
C50.0419 (19)0.055 (2)0.061 (2)0.0231 (17)0.0170 (18)0.0180 (18)
C60.059 (2)0.0310 (15)0.0429 (19)0.0127 (15)0.0014 (16)0.0100 (14)
C70.0367 (17)0.0435 (16)0.0318 (17)0.0035 (13)0.0081 (13)0.0201 (13)
C80.0502 (19)0.0338 (15)0.0295 (16)0.0066 (13)0.0085 (14)0.0167 (13)
C90.055 (2)0.0383 (16)0.0335 (17)0.0133 (14)0.0125 (15)0.0179 (14)
C100.0408 (17)0.0400 (15)0.0273 (16)0.0021 (13)0.0062 (13)0.0176 (13)
C110.0416 (17)0.0293 (13)0.0216 (14)0.0000 (12)0.0017 (13)0.0109 (11)
C120.059 (2)0.0368 (16)0.0396 (19)0.0090 (15)0.0056 (17)0.0078 (14)
C130.061 (2)0.054 (2)0.060 (3)0.0066 (18)0.024 (2)0.0078 (18)
C140.046 (2)0.055 (2)0.048 (2)0.0149 (16)0.0135 (16)0.0155 (17)
C150.066 (2)0.0443 (17)0.0352 (18)0.0050 (16)0.0027 (17)0.0239 (15)
C160.0460 (19)0.0551 (19)0.0363 (18)0.0080 (16)0.0097 (15)0.0223 (15)
Geometric parameters (Å, º) top
Ni1—N21.925 (2)N4—C151.477 (4)
Ni1—N11.930 (2)N4—C141.482 (4)
Ni1—S52.1568 (12)N4—H40.894 (17)
Ni1—S42.1584 (10)C2—C31.348 (4)
Ni2—N31.933 (2)C4—C51.504 (5)
Ni2—N41.933 (2)C4—H4A0.9700
Ni2—S102.1505 (12)C4—H4B0.9700
Ni2—S92.1533 (9)C5—C61.514 (4)
S1—C11.665 (3)C5—H5A0.9700
S2—C11.720 (3)C5—H5B0.9700
S2—C21.741 (3)C6—H6A0.9700
S3—C11.715 (3)C6—H6B0.9700
S3—C31.733 (3)C7—C81.533 (4)
S4—C21.737 (3)C7—H7A0.9700
S5—C31.736 (3)C7—H7B0.9700
S6—C91.664 (3)C8—H8A0.9700
S7—C91.719 (3)C8—H8B0.9700
S7—C101.745 (3)C10—C111.333 (4)
S8—C91.706 (3)C12—C131.497 (4)
S8—C111.741 (3)C12—H12A0.9700
S9—C101.736 (3)C12—H12B0.9700
S10—C111.735 (3)C13—C141.482 (4)
N1—C81.477 (4)C13—H13A0.9700
N1—C41.479 (4)C13—H13B0.9700
N1—H10.879 (16)C14—H14A0.9700
N2—C71.473 (3)C14—H14B0.9700
N2—C61.486 (4)C15—C161.523 (4)
N2—H20.857 (16)C15—H15A0.9700
N3—C161.478 (3)C15—H15B0.9700
N3—C121.484 (4)C16—H16A0.9700
N3—H30.874 (17)C16—H16B0.9700
N2—Ni1—N180.11 (10)C6—C5—H5A108.5
N2—Ni1—S5171.07 (7)C4—C5—H5B108.5
N1—Ni1—S593.09 (8)C6—C5—H5B108.5
N2—Ni1—S492.66 (7)H5A—C5—H5B107.5
N1—Ni1—S4172.73 (7)N2—C6—C5111.3 (2)
S5—Ni1—S494.03 (4)N2—C6—H6A109.4
N3—Ni2—N479.65 (10)C5—C6—H6A109.4
N3—Ni2—S10169.31 (8)N2—C6—H6B109.4
N4—Ni2—S1092.47 (7)C5—C6—H6B109.4
N3—Ni2—S994.03 (8)H6A—C6—H6B108.0
N4—Ni2—S9173.05 (7)N2—C7—C8108.6 (2)
S10—Ni2—S994.16 (4)N2—C7—H7A110.0
C1—S2—C297.49 (13)C8—C7—H7A110.0
C1—S3—C397.58 (14)N2—C7—H7B110.0
C2—S4—Ni1101.62 (10)C8—C7—H7B110.0
C3—S5—Ni1101.56 (10)H7A—C7—H7B108.3
C9—S7—C1097.60 (15)N1—C8—C7108.8 (2)
C9—S8—C1197.75 (15)N1—C8—H8A109.9
C10—S9—Ni2101.29 (10)C7—C8—H8A109.9
C11—S10—Ni2101.32 (10)N1—C8—H8B109.9
C8—N1—C4113.0 (2)C7—C8—H8B109.9
C8—N1—Ni1106.37 (17)H8A—C8—H8B108.3
C4—N1—Ni1108.62 (17)S6—C9—S8122.7 (2)
C8—N1—H1109.9 (19)S6—C9—S7124.4 (2)
C4—N1—H1107.3 (19)S8—C9—S7112.88 (17)
Ni1—N1—H1111.8 (18)C11—C10—S9121.5 (2)
C7—N2—C6112.8 (2)C11—C10—S7115.5 (2)
C7—N2—Ni1107.25 (16)S9—C10—S7122.97 (17)
C6—N2—Ni1107.91 (19)C10—C11—S10121.7 (2)
C7—N2—H2109.3 (19)C10—C11—S8116.2 (2)
C6—N2—H2103.9 (18)S10—C11—S8122.07 (16)
Ni1—N2—H2115.9 (19)N3—C12—C13112.7 (2)
C16—N3—C12113.1 (3)N3—C12—H12A109.1
C16—N3—Ni2107.10 (17)C13—C12—H12A109.1
C12—N3—Ni2107.68 (18)N3—C12—H12B109.1
C16—N3—H3111.0 (19)C13—C12—H12B109.1
C12—N3—H3102.6 (19)H12A—C12—H12B107.8
Ni2—N3—H3115 (2)C14—C13—C12118.0 (3)
C15—N4—C14113.7 (2)C14—C13—H13A107.8
C15—N4—Ni2104.89 (18)C12—C13—H13A107.8
C14—N4—Ni2110.85 (18)C14—C13—H13B107.8
C15—N4—H4104.1 (18)C12—C13—H13B107.8
C14—N4—H4109.5 (19)H13A—C13—H13B107.1
Ni2—N4—H4113.7 (19)C13—C14—N4112.9 (3)
S1—C1—S3123.74 (19)C13—C14—H14A109.0
S1—C1—S2123.16 (17)N4—C14—H14A109.0
S3—C1—S2113.10 (15)C13—C14—H14B109.0
C3—C2—S4121.2 (2)N4—C14—H14B109.0
C3—C2—S2115.6 (2)H14A—C14—H14B107.8
S4—C2—S2122.94 (17)N4—C15—C16109.1 (2)
C2—C3—S3116.2 (2)N4—C15—H15A109.9
C2—C3—S5121.5 (2)C16—C15—H15A109.9
S3—C3—S5122.10 (16)N4—C15—H15B109.9
N1—C4—C5111.8 (3)C16—C15—H15B109.9
N1—C4—H4A109.3H15A—C15—H15B108.3
C5—C4—H4A109.3N3—C16—C15108.4 (2)
N1—C4—H4B109.3N3—C16—H16A110.0
C5—C4—H4B109.3C15—C16—H16A110.0
H4A—C4—H4B107.9N3—C16—H16B110.0
C4—C5—C6115.0 (3)C15—C16—H16B110.0
C4—C5—H5A108.5H16A—C16—H16B108.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S100.88 (2)2.87 (2)3.527 (3)133 (2)
N2—H2···S4i0.86 (2)2.75 (2)3.416 (3)136 (2)
N3—H3···S1ii0.87 (3)2.60 (3)3.401 (3)152 (2)
N4—H4···S50.89 (2)2.49 (2)3.374 (3)173 (2)
C7—H7B···S9iii0.972.833.646 (3)142
C15—H15B···S6iv0.972.873.771 (4)155
C16—H16B···S6iii0.972.813.669 (4)148
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x, y, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C3S5)(C5H12N2)]
Mr355.21
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.3290 (19), 11.997 (2), 13.169 (3)
α, β, γ (°)65.20 (3), 82.81 (3), 80.64 (3)
V3)1317.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.24
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.590, 0.639
No. of measured, independent and
observed [I > 2σ(I)] reflections
9484, 5887, 4265
Rint0.020
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 1.01
No. of reflections5887
No. of parameters301
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.43

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2002), SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—N21.925 (2)Ni2—N31.933 (2)
Ni1—N11.930 (2)Ni2—N41.933 (2)
Ni1—S52.1568 (12)Ni2—S102.1505 (12)
Ni1—S42.1584 (10)Ni2—S92.1533 (9)
N2—Ni1—N180.11 (10)N3—Ni2—N479.65 (10)
N2—Ni1—S5171.07 (7)N3—Ni2—S10169.31 (8)
N1—Ni1—S593.09 (8)N4—Ni2—S1092.47 (7)
N2—Ni1—S492.66 (7)N3—Ni2—S994.03 (8)
N1—Ni1—S4172.73 (7)N4—Ni2—S9173.05 (7)
S5—Ni1—S494.03 (4)S10—Ni2—S994.16 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S100.88 (2)2.87 (2)3.527 (3)133 (2)
N2—H2···S4i0.86 (2)2.752 (19)3.416 (3)136 (2)
N3—H3···S1ii0.87 (3)2.60 (3)3.401 (3)152 (2)
N4—H4···S50.89 (2)2.49 (2)3.374 (3)173 (2)
C7—H7B···S9iii0.972.833.646 (3)142
C15—H15B···S6iv0.972.873.771 (4)155
C16—H16B···S6iii0.972.813.669 (4)148
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x, y, z; (iv) x, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds