Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The anion of the title compound, K2[Ni(C3H2O4)2(H2O)2]·2H2O, possesses C2h symmetry. The Ni atom is coordinated by two water mol­ecules and two malonate ligands, with an elongated octahedral environment. Hydro­gen bonds between the complex anion and the water mol­ecules of crystallization produce an NaCl-type framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803027508/su6059sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803027508/su6059Isup2.hkl
Contains datablock I

CCDC reference: 231815

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.019
  • wR factor = 0.051
  • Data-to-parameter ratio = 12.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT164_ALERT_4_C Nr. of Refined C-H H-Atoms in Heavy-At Struct... 1 PLAT250_ALERT_2_C Large U3/U1 ratio for average U(i,j) tensor .... 2.28
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

(I) top
Crystal data top
K2[Ni(C3H2O4)2(H2O)2]·2H2OF(000) = 420
Mr = 413.05Dx = 1.942 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 3628 reflections
a = 9.3973 (5) Åθ = 3.0–27.4°
b = 10.8760 (5) ŵ = 2.02 mm1
c = 7.6283 (4) ÅT = 293 K
β = 115.026 (2)°Block, blue
V = 706.45 (6) Å30.30 × 0.20 × 0.20 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
860 independent reflections
Radiation source: Rotating anode799 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 0.76 pixels mm-1θmax = 27.5°, θmin = 3.0°
Oscillation scansh = 012
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
k = 014
Tmin = 0.622, Tmax = 0.668l = 98
3183 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019All H-atom parameters refined
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0306P)2 + 0.266P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
859 reflectionsΔρmax = 0.34 e Å3
67 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0071 (11)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni(1)0.00000.00000.00000.01860 (13)
K(1)0.27411 (5)0.00000.49310 (6)0.03051 (14)
O(1)0.07292 (17)0.00000.2225 (2)0.0272 (3)
O(2)0.15607 (11)0.13147 (9)0.14916 (14)0.0266 (2)
O(3)0.24987 (12)0.31532 (9)0.25740 (15)0.0316 (2)
O(4)0.50000.16533 (18)0.50000.0472 (5)
H(1)0.041 (4)0.363 (3)0.083 (4)0.112 (11)*
H(2)0.133 (2)0.062 (2)0.214 (3)0.053 (6)*
H(3)0.433 (2)0.211 (2)0.435 (3)0.057 (7)*
C(1)0.14377 (15)0.24636 (12)0.14412 (18)0.0221 (3)
C(2)0.00000.3120 (2)0.00000.0456 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni(1)0.01759 (18)0.01316 (18)0.02040 (19)0.0000.00352 (13)0.000
K(1)0.0345 (3)0.0276 (3)0.0251 (2)0.0000.00843 (19)0.000
O(1)0.0302 (8)0.0201 (7)0.0349 (8)0.0000.0172 (6)0.000
O(2)0.0236 (5)0.0175 (5)0.0291 (5)0.0018 (4)0.0019 (4)0.0007 (4)
O(3)0.0300 (5)0.0225 (5)0.0326 (5)0.0084 (4)0.0038 (4)0.0032 (4)
O(4)0.0276 (8)0.0350 (9)0.0600 (12)0.0000.0000 (8)0.000
C(1)0.0240 (6)0.0195 (6)0.0213 (6)0.0035 (5)0.0081 (5)0.0000 (5)
C(2)0.0370 (13)0.0173 (10)0.0527 (14)0.0000.0100 (11)0.000
Geometric parameters (Å, º) top
Ni(1)—O(2)2.0195 (9)O(2)—C(1)1.2540 (16)
Ni(1)—O(2)i2.0195 (9)O(3)—C(1)1.2548 (16)
Ni(1)—O(2)ii2.0195 (9)O(4)—H(3)0.79 (2)
Ni(1)—O(2)iii2.0195 (9)C(1)—C(2)1.5123 (16)
Ni(1)—O(1)2.0818 (14)C(2)—C(1)ii1.5123 (16)
Ni(1)—O(1)i2.0818 (14)C(2)—H(1)1.03 (3)
O(1)—H(2)0.86 (2)
O(2)—Ni(1)—O(2)i180.00 (7)O(2)i—Ni(1)—O(1)i92.77 (4)
O(2)—Ni(1)—O(2)ii89.85 (5)O(2)ii—Ni(1)—O(1)i92.77 (4)
O(2)i—Ni(1)—O(2)ii90.15 (5)O(2)iii—Ni(1)—O(1)i87.23 (4)
O(2)—Ni(1)—O(2)iii90.15 (5)O(1)—Ni(1)—O(1)i180.00 (7)
O(2)i—Ni(1)—O(2)iii89.85 (5)O(2)—C(1)—O(3)122.57 (13)
O(2)ii—Ni(1)—O(2)iii180.00 (6)O(2)—C(1)—C(2)122.36 (13)
O(2)—Ni(1)—O(1)92.77 (4)O(3)—C(1)—C(2)115.07 (13)
O(2)i—Ni(1)—O(1)87.23 (4)C(1)ii—C(2)—C(1)123.65 (19)
O(2)ii—Ni(1)—O(1)87.23 (4)C(1)ii—C(2)—H(1)105.0 (17)
O(2)iii—Ni(1)—O(1)92.77 (4)C(1)—C(2)—H(1)104.3 (17)
O(2)—Ni(1)—O(1)i87.23 (4)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O(1)—H(2)···O(3)iv0.86 (2)1.85 (2)2.6932 (14)166 (2)
O(4)—H(3)···O(3)0.79 (2)2.03 (2)2.8161 (15)175 (2)
Symmetry code: (iv) x+1/2, y+1/2, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds