Download citation
Download citation
link to html
The title racemic compound, [Cu(C12H11NO5)(C4H6N2)], adopts a square-planar copper(II) coordination mode with the tridentate N-salicyl­idenglutamato Schiff base dianion and the 1-methyl­imidazole ligand. Dimers of centrosymmetrically related mol­ecules are formed. The theoretical investigation of the electronic structure of the title compound by the B3LYP method is presented.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803026424/su6058sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803026424/su6058Isup2.hkl
Contains datablock I

CCDC reference: 227771

Key indicators

  • Single-crystal X-ray study
  • T = 183 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.041
  • wR factor = 0.144
  • Data-to-parameter ratio = 24.4

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT222_ALERT_3_A Large Non-Solvent H Ueq(max)/Ueq(min) ... 6.07 Ratio
Author Response: The methyl hydrogens on a long tail are indeed less localized than the "core" hydrogens.

Alert level C PLAT142_ALERT_4_C su on b - Axis Small or Missing (x 100000) ..... 10 Ang. PLAT143_ALERT_4_C su on c - Axis Small or Missing (x 100000) ..... 10 Ang. PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.51 Ratio PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 3 O2 -CU1 -O1 -C7 -35.60 1.20 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 4 O1 -CU1 -O2 -C12 44.00 1.20 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 8 N2 -CU1 -N1 -C1 152.50 0.50 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 11 N2 -CU1 -N1 -C8 -20.60 0.60 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 14 N1 -CU1 -N2 -C15 38.80 0.70 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 17 N1 -CU1 -N2 -C13 -141.50 0.50 1.555 1.555 1.555 1.555
1 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 8 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT & SADABS (Sheldrick, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL.

(1-Methylimidazole)(N-salicylidene-rac-glutamato)copper(II) top
Crystal data top
[Cu(C12H11NO5)(C4H6N2)]F(000) = 812
Mr = 394.87Dx = 1.593 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7529 reflections
a = 7.9294 (1) Åθ = 2.2–32.9°
b = 11.3305 (1) ŵ = 1.36 mm1
c = 18.5387 (1) ÅT = 183 K
β = 98.707 (1)°Prism, blue
V = 1646.40 (3) Å30.20 × 0.20 × 0.06 mm
Z = 4
Data collection top
Bruker CCD area detector
diffractometer
5922 independent reflections
Radiation source: fine-focus sealed tube4602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 32.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1212
Tmin = 0.773, Tmax = 0.923k = 1617
28068 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
5922 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 1.22 e Å3
6 restraintsΔρmin = 0.92 e Å3
Special details top

Experimental. Data were collected at low temperature using a Siemens SMART CCD diffractometer equiped with a LT-2 device. A full sphere of reciprocal space was scanned by 0.3° steps in ω with a crystal–to–detector distance of 3.97 cm, 25 s per frame. Preliminary orientation matrix was obtained from the first 100 frames using SMART (Siemens, 1995). The collected frames were integrated using the preliminary orientation matrix which was updated every 100 frames. Final cell parameters were obtained by refinement on the position of 7529 reflections with I>10σ(I) after integration of all the frames data using SAINT (Siemens, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.85341 (3)0.12032 (2)0.041895 (12)0.02174 (9)
O10.78453 (19)0.00034 (13)0.02917 (8)0.0277 (3)
O20.9120 (2)0.24321 (12)0.11708 (8)0.0262 (3)
O30.8866 (2)0.28977 (14)0.23194 (9)0.0326 (3)
O41.2024 (3)0.1439 (2)0.28776 (15)0.0657 (7)
O51.4020 (2)0.03617 (14)0.24605 (9)0.0339 (3)
H51.46160.09680.25680.045 (9)*
N10.7779 (2)0.03554 (14)0.12081 (9)0.0218 (3)
N20.9296 (2)0.22374 (14)0.03125 (9)0.0233 (3)
N31.0603 (2)0.36462 (15)0.08194 (11)0.0281 (4)
C10.6900 (3)0.06051 (17)0.11472 (11)0.0238 (4)
H10.65400.09090.15770.041 (8)*
C20.6421 (2)0.12541 (16)0.04827 (11)0.0225 (4)
C30.5392 (3)0.22632 (19)0.05237 (13)0.0297 (4)
H30.50740.24770.09800.046 (8)*
C40.4841 (3)0.2940 (2)0.00784 (14)0.0338 (5)
H40.41480.36140.00420.068 (12)*
C50.5318 (3)0.26197 (19)0.07458 (13)0.0304 (4)
H5A0.49500.30860.11660.042 (8)*
C60.6309 (3)0.1643 (2)0.08050 (12)0.0287 (4)
H60.66120.14490.12670.052 (9)*
C70.6894 (2)0.09160 (17)0.01983 (11)0.0223 (3)
C80.8097 (3)0.09478 (18)0.19207 (11)0.0238 (4)
H80.70070.09930.21290.033 (7)*
C90.9443 (3)0.02901 (19)0.24587 (11)0.0269 (4)
H9A0.94850.06360.29520.039 (8)*
H9B0.91060.05490.24840.035 (7)*
C101.1210 (3)0.03620 (18)0.22315 (11)0.0266 (4)
H10A1.10920.02770.16950.014 (5)*
H10B1.16930.11540.23590.027 (7)*
C111.2444 (3)0.0559 (2)0.25814 (12)0.0315 (4)
C120.8724 (2)0.21985 (18)0.17953 (11)0.0247 (4)
C130.8828 (3)0.2172 (2)0.10574 (12)0.0302 (4)
H130.80600.16120.13070.043 (8)*
C140.9641 (3)0.3038 (2)0.13796 (12)0.0334 (5)
H140.95610.31920.18870.042 (8)*
C151.0372 (2)0.31413 (17)0.01938 (11)0.0250 (4)
H151.09050.33930.02750.022 (6)*
C161.1693 (3)0.4671 (2)0.08974 (17)0.0425 (6)
H16A1.09810.53410.10890.085 (8)*
H16B1.24900.44780.12360.085 (8)*
H16C1.23350.48770.04200.085 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02773 (14)0.01699 (13)0.02019 (13)0.00594 (8)0.00267 (9)0.00101 (8)
O10.0362 (8)0.0236 (7)0.0237 (6)0.0115 (6)0.0057 (6)0.0002 (5)
O20.0358 (8)0.0182 (6)0.0239 (6)0.0050 (5)0.0024 (5)0.0008 (5)
O30.0371 (8)0.0303 (8)0.0314 (8)0.0072 (6)0.0087 (6)0.0125 (6)
O40.0493 (12)0.0733 (15)0.0784 (16)0.0149 (11)0.0220 (11)0.0529 (13)
O50.0312 (8)0.0280 (8)0.0431 (9)0.0052 (6)0.0070 (7)0.0071 (7)
N10.0248 (7)0.0182 (7)0.0227 (7)0.0032 (6)0.0041 (6)0.0011 (6)
N20.0268 (8)0.0183 (7)0.0252 (8)0.0022 (6)0.0050 (6)0.0024 (6)
N30.0286 (8)0.0191 (8)0.0384 (10)0.0024 (6)0.0107 (7)0.0037 (7)
C10.0271 (9)0.0203 (8)0.0255 (9)0.0021 (7)0.0087 (7)0.0018 (7)
C20.0221 (8)0.0178 (8)0.0283 (9)0.0021 (6)0.0058 (7)0.0022 (7)
C30.0321 (10)0.0240 (9)0.0349 (11)0.0085 (8)0.0113 (8)0.0012 (8)
C40.0296 (10)0.0262 (10)0.0469 (13)0.0117 (8)0.0101 (9)0.0067 (9)
C50.0262 (9)0.0266 (10)0.0373 (11)0.0049 (7)0.0017 (8)0.0088 (8)
C60.0292 (10)0.0286 (10)0.0281 (10)0.0047 (8)0.0041 (8)0.0034 (8)
C70.0212 (8)0.0194 (8)0.0258 (9)0.0025 (6)0.0023 (7)0.0002 (7)
C80.0247 (9)0.0241 (9)0.0235 (9)0.0034 (7)0.0067 (7)0.0027 (7)
C90.0288 (9)0.0312 (10)0.0209 (8)0.0018 (8)0.0049 (7)0.0044 (7)
C100.0287 (9)0.0256 (9)0.0259 (9)0.0000 (7)0.0050 (7)0.0035 (7)
C110.0350 (11)0.0323 (11)0.0273 (10)0.0028 (9)0.0054 (8)0.0081 (8)
C120.0235 (9)0.0213 (9)0.0295 (9)0.0015 (7)0.0043 (7)0.0036 (7)
C130.0372 (11)0.0271 (10)0.0258 (9)0.0056 (8)0.0035 (8)0.0026 (8)
C140.0425 (12)0.0298 (11)0.0285 (10)0.0024 (9)0.0077 (9)0.0062 (8)
C150.0246 (9)0.0191 (8)0.0316 (10)0.0013 (7)0.0055 (7)0.0010 (7)
C160.0419 (13)0.0276 (11)0.0615 (16)0.0097 (9)0.0194 (12)0.0079 (11)
Geometric parameters (Å, º) top
Cu1—O11.9142 (15)C4—C51.395 (3)
Cu1—N11.9199 (16)C4—H40.9500
Cu1—N21.9559 (16)C5—C61.371 (3)
Cu1—O21.9752 (14)C5—H5A0.9500
O1—C71.313 (2)C6—C71.415 (3)
O2—C121.272 (2)C6—H60.9500
O3—C121.245 (3)C8—C121.531 (3)
O4—C111.210 (3)C8—C91.538 (3)
O5—C111.322 (3)C8—H81.0000
O5—H50.8400C9—C101.525 (3)
N1—C11.288 (2)C9—H9A0.9900
N1—C81.469 (2)C9—H9B0.9900
N2—C151.330 (2)C10—C111.508 (3)
N2—C131.377 (3)C10—H10A0.9900
N3—C151.330 (3)C10—H10B0.9900
N3—C141.376 (3)C13—C141.361 (3)
N3—C161.468 (3)C13—H130.9500
C1—C21.436 (3)C14—H140.9500
C1—H10.9500C15—H150.9500
C2—C31.414 (3)C16—H16A0.9800
C2—C71.423 (3)C16—H16B0.9800
C3—C41.370 (3)C16—H16C0.9800
C3—H30.9500
O1—Cu1—N194.58 (6)N1—C8—C12107.56 (16)
O1—Cu1—N291.96 (7)N1—C8—C9111.67 (16)
N1—Cu1—N2173.09 (7)C12—C8—C9109.73 (16)
O1—Cu1—O2176.80 (6)N1—C8—H8109.3
N1—Cu1—O283.23 (6)C12—C8—H8109.3
N2—Cu1—O290.15 (6)C9—C8—H8109.3
C7—O1—Cu1125.63 (13)C10—C9—C8111.79 (16)
C12—O2—Cu1115.56 (13)C10—C9—H9A109.3
C11—O5—H5109.5C8—C9—H9A109.3
C1—N1—C8118.79 (16)C10—C9—H9B109.3
C1—N1—Cu1125.65 (14)C8—C9—H9B109.3
C8—N1—Cu1115.20 (12)H9A—C9—H9B107.9
C15—N2—C13106.05 (17)C11—C10—C9114.05 (18)
C15—N2—Cu1127.20 (14)C11—C10—H10A108.7
C13—N2—Cu1126.75 (14)C9—C10—H10A108.7
C15—N3—C14108.01 (17)C11—C10—H10B108.7
C15—N3—C16125.9 (2)C9—C10—H10B108.7
C14—N3—C16126.1 (2)H10A—C10—H10B107.6
N1—C1—C2125.27 (18)O4—C11—O5123.2 (2)
N1—C1—H1117.4O4—C11—C10124.1 (2)
C2—C1—H1117.4O5—C11—C10112.28 (18)
C3—C2—C7119.84 (18)O3—C12—O2124.9 (2)
C3—C2—C1116.62 (19)O3—C12—C8117.61 (19)
C7—C2—C1123.52 (17)O2—C12—C8117.46 (17)
C4—C3—C2121.6 (2)C14—C13—N2109.11 (19)
C4—C3—H3119.2C14—C13—H13125.4
C2—C3—H3119.2N2—C13—H13125.4
C3—C4—C5118.78 (19)C13—C14—N3105.96 (19)
C3—C4—H4120.6C13—C14—H14127.0
C5—C4—H4120.6N3—C14—H14127.0
C6—C5—C4121.1 (2)N2—C15—N3110.86 (19)
C6—C5—H5A119.5N2—C15—H15124.6
C4—C5—H5A119.5N3—C15—H15124.6
C5—C6—C7122.0 (2)N3—C16—H16A109.5
C5—C6—H6119.0N3—C16—H16B109.5
C7—C6—H6119.0H16A—C16—H16B109.5
O1—C7—C6118.88 (18)N3—C16—H16C109.5
O1—C7—C2124.38 (18)H16A—C16—H16C109.5
C6—C7—C2116.73 (18)H16B—C16—H16C109.5
N1—Cu1—O1—C710.93 (17)C5—C6—C7—C20.7 (3)
N2—Cu1—O1—C7166.82 (17)C3—C2—C7—O1179.9 (2)
O2—Cu1—O1—C735.6 (12)C1—C2—C7—O11.6 (3)
O1—Cu1—O2—C1244.0 (12)C3—C2—C7—C61.0 (3)
N1—Cu1—O2—C122.77 (15)C1—C2—C7—C6179.46 (19)
N2—Cu1—O2—C12175.25 (15)C1—N1—C8—C12165.03 (17)
O1—Cu1—N1—C18.49 (18)Cu1—N1—C8—C128.57 (19)
N2—Cu1—N1—C1152.5 (5)C1—N1—C8—C974.5 (2)
O2—Cu1—N1—C1169.17 (18)Cu1—N1—C8—C9111.88 (15)
O1—Cu1—N1—C8178.42 (13)N1—C8—C9—C1068.1 (2)
N2—Cu1—N1—C820.6 (6)C12—C8—C9—C1051.0 (2)
O2—Cu1—N1—C83.92 (13)C8—C9—C10—C11161.46 (18)
O1—Cu1—N2—C15160.24 (17)C9—C10—C11—O416.4 (4)
N1—Cu1—N2—C1538.8 (7)C9—C10—C11—O5170.42 (19)
O2—Cu1—N2—C1522.16 (18)Cu1—O2—C12—O3174.03 (17)
O1—Cu1—N2—C1319.53 (19)Cu1—O2—C12—C88.7 (2)
N1—Cu1—N2—C13141.5 (5)N1—C8—C12—O3171.34 (18)
O2—Cu1—N2—C13158.06 (18)C9—C8—C12—O367.0 (2)
C8—N1—C1—C2177.09 (19)N1—C8—C12—O211.2 (2)
Cu1—N1—C1—C24.2 (3)C9—C8—C12—O2110.5 (2)
N1—C1—C2—C3177.4 (2)C15—N2—C13—C140.4 (3)
N1—C1—C2—C71.1 (3)Cu1—N2—C13—C14179.45 (15)
C7—C2—C3—C40.6 (3)N2—C13—C14—N30.7 (3)
C1—C2—C3—C4179.2 (2)C15—N3—C14—C130.7 (2)
C2—C3—C4—C50.1 (4)C16—N3—C14—C13179.3 (2)
C3—C4—C5—C60.4 (4)C13—N2—C15—N30.1 (2)
C4—C5—C6—C70.0 (3)Cu1—N2—C15—N3179.91 (13)
Cu1—O1—C7—C6171.85 (15)C14—N3—C15—N20.5 (2)
Cu1—O1—C7—C29.2 (3)C16—N3—C15—N2179.5 (2)
C5—C6—C7—O1179.73 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O3i0.841.752.580 (2)168
C1—H1···O3ii0.952.513.443 (2)166
C15—H15···O20.952.582.965 (2)105
C16—H16A···O2iii0.982.533.369 (3)144
Symmetry codes: (i) x+5/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+2, y+1, z.
Bond distances d(Cu–X) (Å) and Mulliken population analysis (|e|) for Cu and neighbouring atoms (X). top
Atom Xd(Cu1–X)Mulliken chargesOverlap population
Cu10.481
N11.9202-0.2930.183
N21.9559-0.3120.185
O11.9139-0.3800.185
O21.9757-0.3810.189
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds