Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The molecule of the title compound, C24H32N42+·2I·2H2O, possesses Ci symmetry with the inversion center at the mid-point of the central C—C bond between two benzimidazolium rings. In the crystal structure, the mol­ecules stack along the a axis, forming channels occupied by a chain of I ions bridged by water mol­ecules via O—H...I hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803013473/su6026sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803013473/su6026Isup2.hkl
Contains datablock I

CCDC reference: 217602

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.057
  • wR factor = 0.114
  • Data-to-parameter ratio = 21.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C24 H36 I2 N4 O2 Atom count from _chemical_formula_moiety:C24 H32 I2 N4

Comment top

Bis-benzimidazoles constitute a family of heterocycles that have begun to attracted particular interest because of their potential use in cancer therapy by DNA binding and blocking purposes, and their use as metal ligands (Rezende et al., 2001). A previous study of bis-benzimidazoles differing in the number of cationic groups and benzimidazole subunits suggested that, although electrostatic interactions and hydrogen bonding provided some binding energy, the single most important factor for DNA binding are the van der Waals interactions within the minor groove of DNA (Cazarny et al., 1995).

In light of the general importance of benzimidazole compounds, the study of benzimidazoles and bis-benzimidazole derivatives remaines an active area of research, in spite of previous extensive investigations. Benzimidazole itself and the 5- or 6-substituted derivatives can show a tautomerism at the imidazole ring (Elderfield, 1957). Following our work on the synthesis and antibacterial activity of bis-benzimidazole compounds (Küçükbay et al., 2003), we studied the crystal structure of the title compound, (I), in order to observe whether the same tautomerism could exist in this type of bis-benzimidazole derivative.

The structure of (I) has a step-like non-planar conformation (Fig. 1), and the benzimidazolium rings are planar, within experimental error. The tautomerism at the imidazole ring is found to be present. Atom C13A is bonded to atom C3, and atom C13B to atom C4, with site occupancies of 0.45 (1) and 0.55 (1), respectively. The bond lengths and angles in (I) agree with the corresponding values in bis(1-methyl-3-ethylbenzimidazolidine-2-ylium) tetrafluoroborate (Aydın et al., 1998), in 1,3-dimethylbenzimidazole-2-selenone (Aydın et al., 1999), in 1-(2-ethoxyethyl)-3-(2-methoxyethyl)benzimidazolium chloride monohydrate (Öztürk et al., 2001), and in 3,3'-bis(3-cyanopropyl)-1,1'-propylenedi(benzimidazolium) dichloride dihydrate (Akkurt et al., 2003).

In the crystal structure, the molecules stack up the a axis, forming channels occupied by a chain of I ions bridged by water molecules via O—H···I hydrogen bonds (Fig. 2). There are also two C—H···X hydrogen bonds involving the benzimidazolium cation and the water molecule and the I anion (Table 2).

Experimental top

All experiments were performed under argon using freshly distilled dry solvents. 1H-NMR and 13C-NMR spectra were recorded using a Bruker DPX-400 high performance digital FT-NMR (Bruker WM360, Bruker Instruments, Inc., Billercia, USA) spectrometer. Melting points were recorded using an electrothermal melting point apparatus (Electrothermal 9200, Electrothermal Engineering Ltd., Essex, UK) and are uncorrected. The starting reactant 1,1'-butylenedi[5(6)-methylbenzimidazole] was synthesized from 5(6)-methylbenzimidazole and 1,4-dibromobutane, according to a literature procedure (Küçükbay et al., 2003). 5(6)-Methylbenzimidazole shows a tautomerism at the imidazole ring, as indicated in the literature (Elderfield, 1957). Hence, the starting compound is a mixture of both 5-methyl- and 6-methylbenzimidazole. The title compound, (I), was synthesized by adding ethyl iodide (0.4 ml, 4.95 mmol) to a solution of 1,1'-butylenedi[5(6)-methylbenzimidazole] (0.78 g, 2.47 mmol) in DMF (2 ml). The mixture was refluxed for 5 h. All the volatiles were then driven off and the crude product obtained was recrystallized from EtOH/Et2O (3:1) giving yellow crystals (yield: 1.48 g, 96%; m.p.: 506–507 K).

1H NMR (DMSO): δ 1.57 (t, CH2CH3, 6H), 2.07 (s, NCH2CH2CH2CH2N, 4H), 2.55 (s, CH3, 6H), 4.50 (q, NCH2CH3, 4H), 4.53 (s, NCH2CH2CH2CH2N, 4H), 7.49–8.03 (m, Ar—H, 6H), 9.77 (s, CH, 2H). 13C NMR (DMSO): δ 15.90, 22.93, 27.32, 47.94, 48.03, 114.84, 115.04, 129.83, 131.17, 133.10, 138.74, 143.09. Analysis calculated for C24H32N4I2: C 45.71, H 5.08, N 8.89%; found: C 45.60, H 5.02, N 8.84%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms. The Uiso values of the H atoms of the water molecule and the methyl groups were made equal to 1.5Ueq(parent atom).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens,1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 1990) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view of the molecular packing and the hydrogen-bond contacts of (I).
3,3'-Diethyl-1,1'-butylenedi[5(6)-methylbenzimidazolium] diiodide dihydrate top
Crystal data top
C24H32N412+·2I·2H2OF(000) = 660
Mr = 666.37Dx = 1.566 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3391 reflections
a = 5.4761 (3) Åθ = 2.5–28.3°
b = 21.7289 (12) ŵ = 2.25 mm1
c = 12.2512 (6) ÅT = 293 K
β = 104.156 (2)°Prism, yellow
V = 1413.50 (13) Å30.40 × 0.26 × 0.24 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
2496 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.017
ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.442, Tmax = 0.583k = 2825
8590 measured reflectionsl = 1216
3391 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0206P)2 + 4.7667P]
where P = (Fo2 + 2Fc2)/3
3391 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
C24H32N412+·2I·2H2OV = 1413.50 (13) Å3
Mr = 666.37Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.4761 (3) ŵ = 2.25 mm1
b = 21.7289 (12) ÅT = 293 K
c = 12.2512 (6) Å0.40 × 0.26 × 0.24 mm
β = 104.156 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3391 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2496 reflections with I > 2σ(I)
Tmin = 0.442, Tmax = 0.583Rint = 0.017
8590 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.97Δρmax = 0.77 e Å3
3391 reflectionsΔρmin = 0.79 e Å3
158 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.4652 (9)0.3146 (2)0.3384 (4)0.0749 (17)
N20.3547 (7)0.4101 (2)0.3490 (4)0.0631 (16)
C10.5781 (10)0.3476 (3)0.2676 (5)0.0754 (19)
C20.7337 (12)0.3288 (3)0.1970 (6)0.089 (3)
C30.8066 (13)0.3749 (5)0.1367 (6)0.099 (3)
C40.7370 (14)0.4351 (4)0.1394 (5)0.096 (3)
C50.5821 (11)0.4531 (3)0.2086 (5)0.086 (3)
C60.5050 (10)0.4080 (3)0.2727 (4)0.0677 (19)
C70.3350 (10)0.3538 (3)0.3870 (5)0.0714 (19)
C80.4981 (14)0.2480 (3)0.3612 (7)0.107 (3)
C90.3313 (16)0.2235 (3)0.4278 (6)0.109 (3)
C100.2315 (9)0.4653 (2)0.3830 (5)0.0696 (17)
C110.3694 (9)0.4890 (2)0.4972 (4)0.0629 (17)
C13B0.839 (3)0.4733 (10)0.0695 (12)0.150 (8)0.553 (14)
C13A0.962 (3)0.3633 (8)0.0514 (12)0.095 (6)0.447 (14)
O1W0.4412 (11)0.5993 (2)0.2160 (5)0.129 (3)
I10.95298 (8)0.34521 (2)0.61220 (4)0.0924 (2)
H2A0.782400.288100.192200.1070*
H5A0.532400.493900.211600.1030*
H7A0.244800.343100.439400.0860*
H8A0.466500.226100.290100.1290*
H8B0.671400.240300.401000.1290*
H9A0.351400.179700.434500.1640*
H9B0.159600.233000.391200.1640*
H9C0.373500.241700.501400.1640*
H10A0.059900.455100.384400.0830*
H10B0.224800.497500.327500.0830*
H11A0.273500.522600.518200.0760*
H11B0.377600.456400.552100.0760*
H13D0.817000.454500.003100.2230*0.553 (14)
H13E1.015500.479300.102500.2230*0.553 (14)
H13F0.754800.512400.061400.2230*0.553 (14)
H3A0.916500.365700.088700.1180*0.553 (14)
H4A0.790800.465900.094100.1150*0.447 (14)
H13A1.077900.396600.053700.1430*0.447 (14)
H13B0.851600.360600.022600.1430*0.447 (14)
H13C1.053200.325500.069200.1430*0.447 (14)
H1W0.342300.617000.249700.1940*
H2W0.561600.623900.215700.1940*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.066 (3)0.063 (3)0.084 (3)0.007 (2)0.004 (2)0.025 (2)
N20.052 (2)0.067 (3)0.066 (3)0.0047 (19)0.0062 (18)0.020 (2)
C10.059 (3)0.088 (4)0.070 (3)0.001 (3)0.002 (3)0.025 (3)
C20.069 (4)0.108 (5)0.079 (4)0.015 (3)0.003 (3)0.048 (4)
C30.071 (4)0.144 (7)0.077 (4)0.008 (4)0.010 (3)0.028 (5)
C40.085 (5)0.137 (7)0.059 (4)0.017 (4)0.003 (3)0.007 (4)
C50.067 (4)0.112 (5)0.068 (4)0.005 (3)0.002 (3)0.012 (4)
C60.054 (3)0.086 (4)0.055 (3)0.002 (3)0.002 (2)0.022 (3)
C70.057 (3)0.071 (3)0.079 (4)0.003 (2)0.003 (3)0.021 (3)
C80.097 (5)0.070 (4)0.144 (7)0.007 (4)0.010 (5)0.024 (4)
C90.132 (7)0.081 (5)0.102 (5)0.014 (4)0.003 (5)0.001 (4)
C100.053 (3)0.070 (3)0.077 (3)0.010 (2)0.001 (2)0.018 (3)
C110.059 (3)0.063 (3)0.066 (3)0.003 (2)0.014 (2)0.013 (2)
C13B0.108 (12)0.26 (2)0.082 (10)0.014 (13)0.025 (8)0.019 (12)
C13A0.071 (9)0.134 (14)0.085 (10)0.006 (8)0.027 (7)0.033 (9)
O1W0.146 (5)0.112 (4)0.133 (5)0.015 (4)0.041 (4)0.006 (4)
I10.0797 (3)0.0926 (3)0.1012 (3)0.0053 (2)0.0148 (2)0.0164 (3)
Geometric parameters (Å, º) top
O1W—H2W0.8495C3—H3A0.9597
O1W—H1W0.8492C4—H4A0.9606
N1—C71.340 (8)C5—H5A0.9307
N1—C81.477 (8)C7—H7A0.9302
N1—C11.382 (8)C8—H8B0.9695
N2—C101.485 (6)C8—H8A0.9703
N2—C61.389 (7)C9—H9B0.9600
N2—C71.323 (8)C9—H9C0.9596
C1—C61.378 (9)C9—H9A0.9593
C1—C21.415 (9)C10—H10A0.9697
C2—C31.361 (12)C10—H10B0.9701
C3—C13A1.521 (17)C11—H11A0.9701
C3—C41.365 (14)C11—H11B0.9703
C4—C51.394 (10)C13A—H13B0.9606
C4—C13B1.40 (2)C13A—H13C0.9583
C5—C61.385 (9)C13A—H13A0.9583
C8—C91.466 (11)C13B—H13E0.9610
C10—C111.509 (7)C13B—H13F0.9601
C11—C11i1.494 (7)C13B—H13D0.9592
C2—H2A0.9297
I1···C7ii3.853 (6)H2W···H8Av2.2260
I1···O1Wi3.573 (6)H2W···C8v2.8487
I1···O1Wiii3.671 (6)H2W···C9v2.9365
I1···C73.812 (6)H3A···H13E2.5240
I1···H7Aii2.9483H3A···H13D2.2327
I1···H1Wi2.7367H4A···H13A2.3162
I1···H2Wiii3.0366H5A···O1W2.3475
I1···H2Aiv3.2668H5A···C103.0337
I1···H11Ai3.3722H5A···H10B2.4555
O1W···C8v3.406 (8)H5A···H13F2.4753
O1W···C53.276 (8)H7A···C92.6516
O1W···I1iii3.671 (6)H7A···I1vii2.9483
O1W···I1i3.573 (6)H7A···H9B2.4809
O1W···H8Av2.8055H7A···H9C2.3804
O1W···H5A2.3475H8A···C23.0394
O1W···H13Bvi2.6619H8A···H2Wviii2.2260
O1W···H13Dvi2.8922H8A···O1Wviii2.8055
N2···H11Ai2.7038H8B···C13Aiv3.0921
C2···C7ii3.579 (9)H8B···H13Biv2.4910
C4···C10ii3.566 (9)H9A···C13Aix2.9942
C5···O1W3.276 (8)H9A···H2Wviii2.3478
C6···C11i3.533 (7)H9A···H13Cix2.5924
C7···I1vii3.853 (6)H9B···H7A2.4809
C7···C2vii3.579 (9)H9B···C72.7999
C7···I13.812 (6)H9C···C72.7924
C8···O1Wviii3.406 (8)H9C···H7A2.3804
C9···C13Aix3.382 (18)H9C···H13Cix2.5712
C10···C4vii3.566 (9)H10A···H11Axiii2.4612
C11···C6i3.533 (7)H10A···C5vii2.9547
C13A···C9x3.382 (18)H10B···C52.8766
C13B···C13Bxi2.97 (2)H10B···H5A2.4555
C2···H8A3.0394H10B···H11Bi2.5197
C5···H10Aii2.9547H11A···C6i2.9644
C5···H10B2.8766H11A···N2i2.7038
C6···H11Ai2.9644H11A···I1i3.3722
C7···H9C2.7924H11A···H10Axiii2.4612
C7···H9B2.7999H11B···H10Bi2.5197
C7···H11B2.9808H11B···C72.9808
C8···H2A3.0077H13A···H4A2.3162
C8···H2Wviii2.8487H13B···H8Bxii2.4910
C9···H2Wviii2.9365H13B···O1Wvi2.6619
C9···H7A2.6516H13C···C9x2.7828
C9···H13Cix2.7828H13C···H2A2.4946
C10···H5A3.0337H13C···H9Ax2.5924
C13A···H8Bxii3.0921H13C···H9Cx2.5712
C13A···H9Ax2.9942H13D···H3A2.2327
C13B···H13Fxi3.0596H13D···O1Wvi2.8922
C13B···H13Dxi2.7242H13D···C13Bxi2.7242
C13B···H13Exi2.6376H13D···H13Exi2.2226
H1W···I1i2.7367H13E···C13Bxi2.6376
H2A···I1xii3.2668H13E···H3A2.5240
H2A···C83.0077H13E···H13Dxi2.2226
H2A···H13C2.4946H13F···H5A2.4753
H2W···H9Av2.3478H13F···C13Bxi3.0596
H2W···I1iii3.0366
H1W—O1W—H2W107.76N2—C7—H7A125.23
C1—N1—C7108.5 (5)N1—C8—H8A108.91
C7—N1—C8126.3 (5)N1—C8—H8B108.87
C1—N1—C8125.1 (5)C9—C8—H8B108.90
C6—N2—C7108.6 (5)H8A—C8—H8B107.73
C7—N2—C10124.5 (5)C9—C8—H8A108.85
C6—N2—C10126.9 (5)C8—C9—H9B109.54
N1—C1—C6106.6 (5)C8—C9—H9C109.50
C2—C1—C6121.9 (6)C8—C9—H9A109.51
N1—C1—C2131.5 (6)H9A—C9—H9C109.40
C1—C2—C3114.8 (6)H9B—C9—H9C109.48
C2—C3—C4124.8 (7)H9A—C9—H9B109.40
C4—C3—C13A112.4 (9)N2—C10—H10B109.14
C2—C3—C13A122.6 (10)C11—C10—H10A109.21
C3—C4—C5119.9 (7)C11—C10—H10B109.17
C5—C4—C13B126.7 (11)H10A—C10—H10B107.85
C3—C4—C13B113.4 (10)N2—C10—H10A109.21
C4—C5—C6117.5 (6)C10—C11—H11A108.79
N2—C6—C1106.8 (5)C10—C11—H11B108.75
C1—C6—C5121.1 (5)C11i—C11—H11A108.75
N2—C6—C5132.2 (6)C11i—C11—H11B108.68
N1—C7—N2109.5 (5)H11A—C11—H11B107.57
N1—C8—C9113.4 (6)C3—C13A—H13B109.25
N2—C10—C11112.2 (4)C3—C13A—H13C109.49
C10—C11—C11i114.1 (4)H13A—C13A—H13C109.63
C1—C2—H2A122.57H13B—C13A—H13C109.58
C3—C2—H2A122.61H13A—C13A—H13B109.47
C4—C3—H3A115.79C3—C13A—H13A109.41
C2—C3—H3A119.36C4—C13B—H13D109.61
C3—C4—H4A121.78C4—C13B—H13E109.46
C5—C4—H4A118.30C4—C13B—H13F109.50
C6—C5—H5A121.27H13D—C13B—H13E109.46
C4—C5—H5A121.24H13D—C13B—H13F109.44
N1—C7—H7A125.29H13E—C13B—H13F109.37
C7—N1—C1—C2179.8 (7)C2—C1—C6—N2179.8 (5)
C7—N1—C1—C61.8 (6)C2—C1—C6—C50.2 (9)
C8—N1—C1—C23.8 (10)N1—C1—C6—N21.5 (6)
C8—N1—C1—C6178.2 (6)N1—C1—C2—C3178.6 (6)
C1—N1—C7—N21.3 (7)C6—C1—C2—C30.8 (9)
C8—N1—C7—N2177.6 (6)N1—C1—C6—C5178.4 (5)
C1—N1—C8—C9172.5 (6)C1—C2—C3—C41.1 (11)
C7—N1—C8—C911.8 (10)C2—C3—C4—C50.7 (11)
C7—N2—C6—C10.8 (6)C2—C3—C4—C13B179.8 (9)
C7—N2—C6—C5179.2 (6)C3—C4—C5—C60.1 (10)
C10—N2—C6—C1179.9 (5)C13B—C4—C5—C6178.9 (10)
C10—N2—C6—C50.1 (9)C4—C5—C6—N2179.7 (6)
C6—N2—C7—N10.3 (6)C4—C5—C6—C10.3 (9)
C10—N2—C7—N1179.0 (5)N2—C10—C11—C11i63.4 (5)
C6—N2—C10—C11102.8 (6)C10—C11—C11i—C10i180.0 (4)
C7—N2—C10—C1178.0 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x+1, y+1, z; (vii) x1, y, z; (viii) x+1, y1/2, z+1/2; (ix) x1, y+1/2, z+1/2; (x) x+1, y+1/2, z1/2; (xi) x+2, y+1, z; (xii) x, y+1/2, z1/2; (xiii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···I1i0.852.743.573 (6)169
O1W—H2W···I1iii0.853.043.671 (6)133
C5—H5A···O1W0.932.353.276 (8)175
C7—H7A···I1vii0.932.953.853 (6)165
Symmetry codes: (i) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC24H32N412+·2I·2H2O
Mr666.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.4761 (3), 21.7289 (12), 12.2512 (6)
β (°) 104.156 (2)
V3)1413.50 (13)
Z2
Radiation typeMo Kα
µ (mm1)2.25
Crystal size (mm)0.40 × 0.26 × 0.24
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.442, 0.583
No. of measured, independent and
observed [I > 2σ(I)] reflections
8590, 3391, 2496
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.114, 0.97
No. of reflections3391
No. of parameters158
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.79

Computer programs: SMART (Siemens, 1996), SAINT (Siemens,1996), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 1990) and WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
N1—C71.340 (8)N2—C71.323 (8)
N1—C81.477 (8)C3—C13A1.521 (17)
N1—C11.382 (8)C4—C13B1.40 (2)
N2—C101.485 (6)C10—C111.509 (7)
N2—C61.389 (7)C11—C11i1.494 (7)
C1—N1—C7108.5 (5)N1—C1—C2131.5 (6)
C7—N1—C8126.3 (5)N2—C6—C1106.8 (5)
C1—N1—C8125.1 (5)N2—C6—C5132.2 (6)
C6—N2—C7108.6 (5)N1—C7—N2109.5 (5)
C7—N2—C10124.5 (5)N1—C8—C9113.4 (6)
C6—N2—C10126.9 (5)N2—C10—C11112.2 (4)
N1—C1—C6106.6 (5)C10—C11—C11i114.1 (4)
C1—N1—C8—C9172.5 (6)N1—C1—C2—C3178.6 (6)
C7—N1—C8—C911.8 (10)C2—C3—C4—C13B179.8 (9)
C7—N2—C6—C5179.2 (6)C13B—C4—C5—C6178.9 (10)
C6—N2—C10—C11102.8 (6)N2—C10—C11—C11i63.4 (5)
C7—N2—C10—C1178.0 (6)C10—C11—C11i—C10i180.0 (4)
C2—C1—C6—C50.2 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···I1i0.852.743.573 (6)169
O1W—H2W···I1ii0.853.043.671 (6)133
C5—H5A···O1W0.932.353.276 (8)175
C7—H7A···I1iii0.932.953.853 (6)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x1, y, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds