Download citation
Download citation
link to html
In the crystal structure of the title complex, [Ag(C12H8N4O)(NO3)]n, each silver(I) center is coordinated by two N atoms of the pyridine rings of the bridging ligand 2,5-bis(4-pyridyl)-1,3,4-oxa­diazo­le and one oxy­gen donor of the nitrate anion, giving a trigonal coordination geometry. The ligands bridge the silver(I) centers to form a one-dimensional linear structure, which is further linked into a double-chain motif through intermolecular C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803000825/su6011sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803000825/su6011Isup2.hkl
Contains datablock I

CCDC reference: 204655

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.040
  • wR factor = 0.117
  • Data-to-parameter ratio = 11.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_737 Alert C D...A Calc 3.271(7), Rep 3.270(3) .... 2.33 su-Ratio C9 -O12 1.555 2.776
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Great efforts have been devoted to metal-directed coordination supramolecules due to their interesting topological structures and potential applications as functional materials (Batten & Robson, 1998; Eddaoudi et al., 2001). Using a `building block' methodology, combination of linear 4,4'-bipyridine-based ligands and metal ions has generated a wide variety of solid-state architectures (Hagrman et al., 1999). Recently, an interesting angular dipyridyl ligand, 2,5-bis(4-pyridyl)-1,3,4-oxadiazole, which could potentially provide both discrete and divergent topologies upon metal complexation under appropriate conditions (Du, Bu et al., 2002; Du, Chen et al., 2002; Du, Liu et al., 2002) has been developed. Here, we report on the crystal structure of a silver(I) complex of this ligand, which reveals that it is a neutral one-dimensional coordination polymer, (I).

As depicted in Fig. 1, the AgI center coordinates to two N atoms of the pyridine rings from the bridging ligand, and one O atom of the nitrate anion. The coordination environment of each AgI ion can best be described as trigonal, with the AgI ion deviating from the mean coordination plane by ca 0.18 Å. The mean atomic displacement from the least-squares plane of the ligand is equal to 0.0733 Å. The two pyridine rings in the same ligand molecule are inclined by 4.9 and 4.7°, with respect to the central oxadiazole plane, and by 8.5° with respect to one another.

As shown in Fig. 2, within this 1:1 ligand–metal polymeric chain, the neighboring Ag···Ag separation is 14.191 Å, and the nearest Ag···Ag distance between the coordination chains is only 3.592 Å. This is slightly longer than the van der Waals contact distance for Ag···Ag (3.40 Å), illustrating the lack of direct metal—metal interaction (Hartshorn & Steel, 1998). Of further interest is the fact that each nitrate anion in the chain acts as an acceptor of two intermolecular C—H···O hydrogen bonds (with the pyridine rings of the adjacent coordination chain), forming a unique double-chain supramolecular motif (Fig. 2). The C···O and H···O separations, and the bond angles are listed in Table 2, which are in the normal range for weak hydrogen bonding interactions.

Experimental top

A CH3CN solution of AgNO3 (42.5 mg, 0.25 mmol) was carefully layered onto a CHCl3 solution of the ligand 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (56.0 mg, 0.25 mmol). Colorless block-shaped single crystals of (I) suitable for X-ray diffraction were obtained after ca two weeks at room temperature. Yield: 75%. Analysis calculated for the title complex: C 36.57, H 2.05, N 17.77%; found: C 36.48, H 2.06, N 17.82%. FT—IR data (KBr pellet, cm−1): 3178 (w), 3096 (m), 3049 (m), 2934 (w), 2430 (m), 2332 (m), 1993 (w), 1971 (w), 1876 (w), 1747 (m), 1612 (s), 1564 (s), 1540 (s), 1485 (s), 1427 (s), 1402 (s), 1356 (s), 1336 (s), 1302 (s), 1215 (s), 1121 (m), 1097 (m), 1061 (m), 1039 (m), 1012 (s), 970 (m), 892 (w), 846 (s), 823 (m), 747 (m), 727 (s), 713 (s), 699 (m).

Refinement top

H atoms were placed in the geometrically calculated positions and included in the final refinement in the riding-model approximation, with displacement parameters derived from the atoms to which they were bonded.

Data collection: SMART (BRUKER, 1998); cell refinement: SMART (BRUKER, 1998); data reduction: SAINT (BRUKER, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 1998)

Computing details top

Figures top
[Figure 1] Fig. 1. View of the coordination geometry around the AgI center in complex (I).
[Figure 2] Fig. 2. View of the double-chain structure in (I), though Ag—N coordination interactions and C—H···O hydrogen bonds.
catena-Poly[silver(I)-2,5-bis(4-pyridyl)-1,3,4-oxadiazole nitrate] top
Crystal data top
[Ag(C12H8N4O)(NO3]Z = 2
Mr = 394.10F(000) = 388
Triclinic, P1Dx = 1.986 Mg m3
a = 8.3649 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9480 (13) ÅCell parameters from 2737 reflections
c = 9.8344 (14) Åθ = 2.5–25.0°
α = 74.713 (2)°µ = 1.56 mm1
β = 77.828 (3)°T = 298 K
γ = 69.389 (3)°Block, colorless
V = 658.90 (16) Å30.15 × 0.15 × 0.15 mm
Data collection top
Bruker SMART 1000
diffractometer
2016 reflections with I > 2σ(I)
ω scansRint = 0.021
Absorption correction: multi-scan
[SAINT (Bruker 1998) and SADABS (Sheldrick, 1997)]
θmax = 25.0°
Tmin = 0.491, Tmax = 0.792h = 69
2737 measured reflectionsk = 710
2303 independent reflectionsl = 1111
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.087P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.81 e Å3
2303 reflectionsΔρmin = 0.73 e Å3
199 parameters
Crystal data top
[Ag(C12H8N4O)(NO3]γ = 69.389 (3)°
Mr = 394.10V = 658.90 (16) Å3
Triclinic, P1Z = 2
a = 8.3649 (11) ÅMo Kα radiation
b = 8.9480 (13) ŵ = 1.56 mm1
c = 9.8344 (14) ÅT = 298 K
α = 74.713 (2)°0.15 × 0.15 × 0.15 mm
β = 77.828 (3)°
Data collection top
Bruker SMART 1000
diffractometer
2303 independent reflections
Absorption correction: multi-scan
[SAINT (Bruker 1998) and SADABS (Sheldrick, 1997)]
2016 reflections with I > 2σ(I)
Tmin = 0.491, Tmax = 0.792Rint = 0.021
2737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040199 parameters
wR(F2) = 0.117H-atom parameters constrained
S = 1.06Δρmax = 0.81 e Å3
2303 reflectionsΔρmin = 0.73 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Full-MATRIX

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag11.08174 (4)0.79990 (4)0.95985 (3)0.0569 (2)
O10.4770 (3)0.7225 (3)0.5734 (3)0.0376 (6)
N10.8793 (4)0.7625 (4)0.8714 (3)0.0457 (8)
N20.3830 (5)0.6032 (4)0.7866 (4)0.0448 (8)
N30.2890 (4)0.5953 (4)0.6876 (3)0.0432 (7)
N40.1864 (4)0.7403 (4)0.1672 (4)0.0424 (7)
C10.8614 (5)0.8098 (5)0.7311 (4)0.0444 (9)
H1A0.93860.85820.66960.053*
C20.7353 (5)0.7897 (5)0.6761 (4)0.0391 (8)
H2A0.72550.82610.57960.047*
C30.6219 (5)0.7143 (4)0.7666 (4)0.0362 (8)
C40.6394 (6)0.6652 (5)0.9100 (4)0.0459 (9)
H4A0.56540.61440.97360.055*
C50.7689 (6)0.6931 (6)0.9563 (4)0.0501 (10)
H5A0.77900.66121.05290.060*
C60.4906 (5)0.6787 (5)0.7149 (4)0.0380 (8)
C70.3489 (5)0.6659 (4)0.5659 (4)0.0360 (8)
C80.2947 (5)0.6915 (4)0.4278 (4)0.0363 (8)
C90.3639 (5)0.7798 (5)0.3066 (4)0.0413 (9)
H9A0.44840.82300.31070.050*
C100.3054 (5)0.8023 (5)0.1806 (4)0.0431 (9)
H10A0.35060.86370.09990.052*
C110.1230 (5)0.6531 (5)0.2829 (4)0.0454 (9)
H11A0.04200.60770.27470.054*
C120.1720 (5)0.6262 (5)0.4156 (4)0.0445 (9)
H12A0.12350.56560.49490.053*
N111.2250 (4)1.0537 (4)0.7428 (4)0.0489 (8)
O111.2338 (6)1.0113 (5)0.8723 (4)0.0788 (11)
O121.2765 (6)1.1659 (6)0.6709 (4)0.0891 (13)
O131.1575 (5)0.9844 (4)0.6877 (5)0.0754 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0655 (3)0.0801 (3)0.0394 (3)0.0343 (2)0.02544 (17)0.00568 (17)
O10.0391 (13)0.0523 (15)0.0262 (13)0.0175 (11)0.0123 (10)0.0054 (11)
N10.0491 (18)0.066 (2)0.0307 (17)0.0221 (16)0.0161 (14)0.0095 (15)
N20.0519 (19)0.0573 (19)0.0329 (17)0.0252 (16)0.0132 (15)0.0049 (15)
N30.0508 (18)0.0544 (18)0.0316 (17)0.0246 (15)0.0129 (14)0.0038 (14)
N40.0433 (17)0.0515 (18)0.0353 (17)0.0106 (14)0.0175 (14)0.0096 (14)
C10.047 (2)0.056 (2)0.033 (2)0.0199 (18)0.0117 (17)0.0050 (17)
C20.048 (2)0.048 (2)0.0247 (17)0.0172 (17)0.0138 (15)0.0033 (15)
C30.0374 (18)0.0419 (18)0.0328 (18)0.0114 (15)0.0125 (15)0.0086 (15)
C40.053 (2)0.064 (2)0.0276 (19)0.027 (2)0.0102 (16)0.0034 (17)
C50.058 (2)0.072 (3)0.0289 (19)0.028 (2)0.0164 (18)0.0065 (18)
C60.0405 (19)0.046 (2)0.0269 (18)0.0102 (16)0.0100 (15)0.0064 (15)
C70.0352 (18)0.0414 (19)0.0327 (19)0.0086 (15)0.0123 (15)0.0083 (15)
C80.0360 (18)0.0419 (19)0.0317 (19)0.0085 (15)0.0119 (15)0.0080 (15)
C90.045 (2)0.049 (2)0.036 (2)0.0202 (17)0.0152 (17)0.0047 (16)
C100.047 (2)0.051 (2)0.034 (2)0.0175 (17)0.0141 (17)0.0032 (16)
C110.042 (2)0.060 (2)0.041 (2)0.0194 (18)0.0155 (17)0.0102 (18)
C120.049 (2)0.059 (2)0.0328 (19)0.0260 (18)0.0116 (16)0.0046 (16)
N110.0431 (18)0.063 (2)0.041 (2)0.0186 (16)0.0064 (15)0.0074 (16)
O110.096 (3)0.096 (3)0.0357 (18)0.025 (2)0.0187 (18)0.0009 (17)
O120.090 (3)0.128 (3)0.066 (2)0.076 (3)0.021 (2)0.018 (2)
O130.076 (2)0.073 (2)0.092 (3)0.0243 (19)0.021 (2)0.032 (2)
Geometric parameters (Å, º) top
Ag1—N12.216 (3)C3—C41.385 (5)
Ag1—N4i2.250 (3)C3—C61.460 (5)
Ag1—O112.512 (5)C4—C51.380 (6)
O1—C71.358 (5)C4—H4A0.9300
O1—C61.361 (4)C5—H5A0.9300
N1—C51.319 (5)C7—C81.458 (5)
N1—C11.356 (5)C8—C91.384 (5)
N2—C61.294 (5)C8—C121.386 (5)
N2—N31.404 (5)C9—C101.368 (6)
N3—C71.286 (5)C9—H9A0.9300
N4—C111.324 (5)C10—H10A0.9300
N4—C101.341 (5)C11—C121.385 (6)
N4—Ag1ii2.250 (3)C11—H11A0.9300
C1—C21.365 (6)C12—H12A0.9300
C1—H1A0.9300N11—O121.223 (5)
C2—C31.388 (5)N11—O111.239 (5)
C2—H2A0.9300N11—O131.245 (5)
N1—Ag1—N4i139.84 (13)C4—C5—H5A118.1
N1—Ag1—O11130.27 (12)N2—C6—O1112.5 (3)
N4i—Ag1—O1187.79 (12)N2—C6—C3128.3 (3)
C7—O1—C6102.3 (3)O1—C6—C3119.1 (3)
C5—N1—C1117.3 (4)N3—C7—O1113.2 (3)
C5—N1—Ag1120.0 (3)N3—C7—C8128.0 (3)
C1—N1—Ag1122.7 (3)O1—C7—C8118.9 (3)
C6—N2—N3106.2 (3)C9—C8—C12118.5 (3)
C7—N3—N2105.9 (3)C9—C8—C7121.4 (3)
C11—N4—C10117.7 (4)C12—C8—C7120.1 (3)
C11—N4—Ag1ii121.0 (3)C10—C9—C8118.7 (4)
C10—N4—Ag1ii121.1 (3)C10—C9—H9A120.7
N1—C1—C2123.0 (4)C8—C9—H9A120.7
N1—C1—H1A118.5N4—C10—C9123.4 (4)
C2—C1—H1A118.5N4—C10—H10A118.3
C1—C2—C3118.9 (3)C9—C10—H10A118.3
C1—C2—H2A120.5N4—C11—C12123.0 (4)
C3—C2—H2A120.5N4—C11—H11A118.5
C4—C3—C2118.4 (3)C12—C11—H11A118.5
C4—C3—C6119.2 (3)C11—C12—C8118.6 (4)
C2—C3—C6122.3 (3)C11—C12—H12A120.7
C5—C4—C3118.6 (4)C8—C12—H12A120.7
C5—C4—H4A120.7O12—N11—O11120.4 (4)
C3—C4—H4A120.7O12—N11—O13120.3 (4)
N1—C5—C4123.7 (4)O11—N11—O13119.2 (4)
N1—C5—H5A118.1N11—O11—Ag1104.7 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O12iii0.932.453.350 (4)163
C9—H9A···O12iii0.932.383.270 (3)160
Symmetry code: (iii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ag(C12H8N4O)(NO3]
Mr394.10
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.3649 (11), 8.9480 (13), 9.8344 (14)
α, β, γ (°)74.713 (2), 77.828 (3), 69.389 (3)
V3)658.90 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.15 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
[SAINT (Bruker 1998) and SADABS (Sheldrick, 1997)]
Tmin, Tmax0.491, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
2737, 2303, 2016
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.06
No. of reflections2303
No. of parameters199
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.73

Selected geometric parameters (Å, º) top
Ag1—N12.216 (3)Ag1—O112.512 (5)
Ag1—N4i2.250 (3)
N1—Ag1—N4i139.84 (13)N4i—Ag1—O1187.79 (12)
N1—Ag1—O11130.27 (12)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O12ii.932.453.350 (4)163
C9—H9A···O12ii.932.383.270 (3)160
Symmetry code: (ii) x+2, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds