research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[gold(I)-μ-cyanido-[di­aqua­bis­­(2-phenyl­pyrazine)­iron(II)]-μ-cyanido] dicyanidogold(I)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine, bUkrOrgSyntez Ltd, Chervonotkatska St., 67, Kyiv 02094, Ukraine, and cDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania
*Correspondence e-mail: lesya.kucheriv@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 4 July 2019; accepted 7 July 2019; online 12 July 2019)

In the title polymeric complex, {[Fe(CN)2(C10H8N2)2(H2O)2][Au(CN)2]}n, the FeII ion, which is located on a twofold rotation axis, has a slightly distorted FeN4O2 octa­hedral geometry. It is coordinated by two phenyl­pyrazine mol­ecules, two water mol­ecules and two di­cyano­aurate anions, the Au atom also being located on a second twofold rotation axis. In the crystal, the coordinated di­cyano­aurate anions bridge the FeII ions to form polymeric chains propagating along the b-axis direction. In the crystal, the chains are linked by Owater—H⋯Ndi­cyano­aurate anions hydrogen bonds and aurophillic inter­actions [Au⋯Au = 3.5661 (3) Å], forming layers parallel to the bc plane. The layers are linked by offset ππ stacking inter­actions [inter­centroid distance = 3.643 (3) Å], forming a supra­molecular metal–organic framework.

1. Chemical context

The design of functional materials based on coordination compounds is an important area of current scientific research. For example, metal–organic frameworks (MOFs), which consist of metal ions and organic ligand linkers, are studied intensively. Fe-based coordination polymers with N-donor bridging ligands are well known as compounds with switchable spin states (Niel et al., 2003[Niel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E. & Real, J. A. (2003). Angew. Chem. Int. Ed. 42, 3760-3763.]; Gural'skiy et al., 2016[Gural'skiy, I. A., Golub, B. O., Shylin, S. I., Ksenofontov, V., Shepherd, H. J., Raithby, P. R., Tremel, W. & Fritsky, I. O. (2016). Eur. J. Inorg. Chem. pp. 3191-3195.]; Kucheriv et al., 2016[Kucheriv, O. I., Shylin, S. I., Ksenofontov, V., Dechert, S., Haukka, M., Fritsky, I. O. & Gural'skiy, I. A. (2016). Inorg. Chem. 55, 4906-4914.]). This phenomenon is called spin crossover and can be observed in complexes of 3d4–3d7 metal ions. Applying external stimuli, such as temperature, pressure, magnetic field, light irradiation or adding a guest can affect this kind of the compound and change their properties significantly (Gütlich & Goodwin, 2004[Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. Vol. 234, pp. 233-235. Berlin, Heidelberg, New York: Springer.]). The synthesis and crystallographic characterization of these complexes are of current inter­est because of the bis­tability of their magnetic, electrical, mechanical and optical properties (Senthil Kumar & Ruben, 2017[Senthil Kumar, K. & Ruben, M. (2017). Coord. Chem. Rev. 346, 176-205.]). The parameters of these transitions could be controlled through a wide variety of available organic ligands and co-ligands. Complexes with metallo­cyanate bridges as co-ligands to N-bridging ligands form one of the largest family of spin-crossover compounds (Muñoz & Real, 2011[Muñoz, M. C. & Real, J. A. (2011). Coord. Chem. Rev. 255, 2068-2093.]). Here we report on a new one-dimensional polymeric compound that is similar in its structure to switchable cyano­metallates. It employs 2-phen­yl­pyrazine as a ligand and Au(CN)2− as co-ligands, while coordinated H2O mol­ecules stabilize the FeII ions in the high-spin state.

[Scheme 1]

2. Structural commentary

The structure of the title compound features a one-dimensional chain motif that runs parallel to the crystallographic b axis (Figs. 1[link] and 2[link]). The compound crystallizes in the monoclinic space group C2/c. Selected bond distances and bond angles are given in Table 1[link]. The coordination sphere of the FeII cation, atom Fe1, which is located on a twofold rotation axis, has a distorted octa­hedral environment [FeN4O2]. It includes two 2-phenyl­pyrazine N atoms [Fe1—N3 = 2.223 (5) Å] in axial positions, and two N atoms of cyano bridges and two water O atoms of water mol­ecules [Fe1—O1 = 2.122 (4) Å] in equatorial positions. The two CN anions bridge the FeII and AuI cations [Fe1⋯Au1 = 5.244 (3) Å] to form a one-dimensional polymeric structure with bond lengths Fe1—N1 = 2.107 (5) Å and Fe1—–N2 = 2.117 (6) Å (Fig. 1[link] and Table 1[link]). The FeII octa­hedral distortion parameter (the sum of the moduli of the deviations from 90° for all cis-bond angles) is Σ|90 - Θ| = 8.53°, where Θ are the cis-N—Fe—O and cis-N—Fe—N angles in the coordination environment of the FeII atom.

Table 1
Selected geometric parameters (Å, °)

Au1—C1 1.975 (7) Fe1—N2 2.117 (6)
Au1—C2i 1.988 (7) Fe1—O1 2.122 (4)
Au2—C13 1.988 (6) Fe1—N3 2.223 (5)
Fe1—N1 2.107 (5)    
       
C1—Au1—C2i 180 N2—Fe1—N3 89.60 (10)
C13ii—Au2—C13 180 O1—Fe1—N3 90.09 (16)
N1—Fe1—N2 180 C1—N1—Fe1 180
O1—Fe1—O1iii 176.73 (19) C2—N2—Fe1 180
N3—Fe1—N3iii 179.19 (19) N1—C1—Au1 180
N1—Fe1—O1 91.63 (9) N2—C2—Au1iv 180
N2—Fe1—O1 88.37 (9) N5—C13—Au2 175.8 (7)
N1—Fe1—N3 90.40 (10)    
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y, -z+{\script{3\over 2}}]; (iv) x, y+1, z.
[Figure 1]
Figure 1
A fragment of the mol­ecular structure of the title compound, with the atom labelling Displacement ellipsoids are drawn at the 50% probability level. The Au1⋯Au2 inter­action [3.5661 (3) Å] is shown as a dashed line. [Symmetry codes: (i) x, y − 1, z; (ii) x − 1, y − 1, z − 1; (iii) −x − 1, y, −z + [{3\over 2}]; (iv) x, y + 1, z].
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The hydrogen bonds (Table 2[link]) and aurophillic inter­actions as shown as dashed lines. For clarity, the C-bound H atoms have been omitted.

3. Supra­molecular features

The crystal packing features different types of weak inter­actions (see Table 2[link] and Figs. 2[link] and 3[link]). The free di­cyano­aurate anions are linked to the polymeric chains by Owater—H⋯N hydrogen bonds [O1—H1A⋯N5v = 2.02 Å and O1—H1B⋯N5vi = 2.18 Å; Table 2[link]], and by aurophillic inter­actions [Au1⋯Au2 = 3.566 (2) Å], forming layers parallel to the bc plane. The layers are then linked via offset ππ inter­actions involving a pyrazine ring as an acceptor and a phenyl ring as a donor of electron density, forming a supra­molecular metal–organic framework [Cg1⋯Cg2 = 3.643 (3) Å, where Cg1 and Cg2 are the centroids of the N3/N4/C3–C6 and C7–C12 rings, respectively; α = 3.8 (3)°, inter­planar distances = 3.466 (2) and 3.510 (2) Å, offset = 0.976 Å, symmetry code (i): −x + [{1\over 2}], −y + [{3\over 2}], −z + 1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N5v 0.86 2.02 2.851 (6) 165
O1—H1B⋯N5vi 0.85 2.18 3.023 (6) 178
Symmetry codes: (v) [x, -y+1, z+{\script{1\over 2}}]; (vi) [-x+1, y+1, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound. The O—H⋯N hydrogen bonds and Au⋯Au inter­actions are shown as dashed lines. For clarity, the C-bound H atoms have been omitted.

4. Database survey

A survey of the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) confirmed that the structure of the title complex has not been reported previously and revealed 41 Fe–Au CN-bridged frameworks supported axially by different co-ligands. There are 37 compounds with an octa­hedral FeN6 environment. The coordination spheres of such compounds are formed by pyridine-azine ligands, substituted pyridines, saturated and substituted pyrazines, and pyrimidine (Clements et al., 2016[Clements, J. E., Price, J. R., Neville, S. M. & Kepert, C. J. (2016). Angew. Chem. Int. Ed. 55, 15105-15109.]; Arcís-Castillo et al., 2013[Arcís-Castillo, Z., Muñoz, M. C., Molnár, G., Bousseksou, A. & Real, J. A. (2013). Chem. Eur. J. 19, 6851-6861.]; Agustí et al., 2008[Agustí, G., Muñoz, M. C., Gaspar, A. B. & Real, J. A. (2008). Inorg. Chem. 47, 2552-2561.]; Clements et al., 2014[Clements, J. E., Price, J. R., Neville, S. M. & Kepert, C. J. (2014). Angew. Chem. Int. Ed. 53, 10164-10168.], Kosone & Kitazawa, 2016[Kosone, T. & Kitazawa, T. (2016). Inorg. Chim. Acta, 439, 159-163.]; Niel et al., 2003[Niel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E. & Real, J. A. (2003). Angew. Chem. Int. Ed. 42, 3760-3763.]). Nine such compounds have a stable low- or high-spin state and another 28 are complexes with a switchable spin state. There are also four compounds with an environment formed by the N atoms of organic ligands and water O atoms. The only compound with an FeN5O environment contains a pyridine-based N-donor ligand (Xu et al., 2014[Xu, H., Xu, Z. & Sato, O. (2014). Microporous Mesoporous Mater. 197, 72-76.]), while three compounds have an FeN4O2 octa­hedral geometry. The bidentate bridging organoselenium triazole ligand and two different pyridine-based ligands were used to obtain these latter complexes (Seredyuk et al., 2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.]; Xu et al., 2014[Xu, H., Xu, Z. & Sato, O. (2014). Microporous Mesoporous Mater. 197, 72-76.]).

5. Synthesis and crystallization

Crystals of the title compound were prepared by the slow diffusion method between three layers in a 10 ml tube. The first layer was a solution of K[Au(CN)2] (0.0058 g, 0.02 mmol) in water (2.5 ml), the second was a mixture of water/aceto­nitrile (1:2, 5 ml) and the third layer was a solution of 2-phenyl­pyrazine (0.0078 g, 0.05 mmol) and [Fe(OTs)2]·6H2O (0.0101 g, 0.02 mmol) (OTs = p-toluene­sulfonate) in aceto­nitrile (2.5 ml) with 0.3 ml of water. After two weeks, yellow crystals grew in the second layer; these were collected and maintained under the mother solution until measured.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms were placed in their expected calculated positions (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Uiso(C). The idealized OH2 group was fixed using an AFIX 7 command that allowed the H atoms to ride on the O atom and rotate around the bond.

Table 3
Experimental details

Crystal data
Chemical formula [AuFe(CN)2(C10H8N2)2(H2O)2][Au(CN)2]
Mr 902.26
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 18.5306 (13), 10.4541 (3), 14.2522 (9)
β (°) 107.509 (7)
V3) 2633.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 11.70
Crystal size (mm) 0.3 × 0.3 × 0.1
 
Data collection
Diffractometer Rigaku Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.292, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7203, 3265, 2410
Rint 0.031
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.084, 1.04
No. of reflections 3265
No. of parameters 173
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.37, −1.45
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELX2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELX2018 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

catena-Poly[[gold(I)-µ-cyanido-[diaquabis(2-phenylpyrazine)iron(II)]-µ-cyanido] dicyanidogold(I)] top
Crystal data top
[AuFe(CN)2(C10H8N2)2(H2O)2][Au(CN)2]F(000) = 1680
Mr = 902.26Dx = 2.276 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.5306 (13) ÅCell parameters from 2258 reflections
b = 10.4541 (3) Åθ = 2.3–30.8°
c = 14.2522 (9) ŵ = 11.70 mm1
β = 107.509 (7)°T = 293 K
V = 2633.0 (3) Å3Plate, clear light yellow
Z = 40.3 × 0.3 × 0.1 mm
Data collection top
Rigaku Xcalibur Eos
diffractometer
3265 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2410 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.0797 pixels mm-1θmax = 28.3°, θmin = 2.3°
ω scansh = 1724
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 713
Tmin = 0.292, Tmax = 1.000l = 1816
7203 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.084H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.2566P]
where P = (Fo2 + 2Fc2)/3
3265 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 1.37 e Å3
0 restraintsΔρmin = 1.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.5000000.51420 (2)0.7500000.03916 (11)
Au20.5000000.5000000.5000000.04886 (13)
Fe10.5000001.01389 (8)0.7500000.0304 (3)
O10.4511 (3)1.0197 (3)0.8669 (2)0.0440 (10)
H1A0.4619530.9494710.8989960.066*
H1B0.4748961.0726470.9102360.066*
C120.2099 (3)0.8548 (6)0.3359 (4)0.0498 (16)
H120.1771750.9216800.3375140.060*
N30.3852 (3)1.0154 (3)0.6414 (3)0.0372 (11)
N10.5000000.8124 (5)0.7500000.0381 (16)
C10.5000000.7031 (6)0.7500000.0347 (18)
N40.2472 (3)1.0277 (4)0.4918 (3)0.0487 (13)
C30.3652 (3)0.9310 (4)0.5669 (4)0.0366 (13)
H30.3988800.8655720.5653740.044*
C90.3032 (4)0.6538 (5)0.3300 (4)0.0556 (17)
H90.3351200.5856890.3285880.067*
C130.4723 (4)0.3157 (6)0.4880 (4)0.0519 (17)
C70.2772 (3)0.8418 (5)0.4104 (4)0.0355 (12)
C60.3334 (3)1.1041 (5)0.6411 (4)0.0453 (15)
H60.3432071.1639490.6916140.054*
N50.4606 (3)0.2077 (5)0.4804 (3)0.0572 (15)
N20.5000001.2164 (5)0.7500000.0465 (19)
C100.2365 (4)0.6684 (6)0.2558 (4)0.0558 (18)
H100.2227900.6099940.2041930.067*
C80.3230 (3)0.7399 (5)0.4067 (4)0.0448 (15)
H80.3682420.7288870.4567430.054*
C50.2662 (4)1.1083 (5)0.5674 (4)0.0518 (16)
H50.2315681.1714270.5703520.062*
C110.1910 (4)0.7682 (6)0.2584 (4)0.0553 (17)
H110.1462420.7791190.2074990.066*
C40.2977 (3)0.9364 (4)0.4927 (4)0.0336 (12)
C20.5000001.3240 (7)0.7500000.045 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0509 (2)0.01133 (13)0.0543 (2)0.0000.01452 (16)0.000
Au20.0638 (3)0.02992 (17)0.0467 (2)0.00972 (13)0.00732 (17)0.00062 (12)
Fe10.0484 (7)0.0125 (4)0.0289 (5)0.0000.0094 (5)0.000
O10.069 (3)0.0265 (17)0.035 (2)0.0036 (17)0.0132 (19)0.0003 (15)
C120.041 (4)0.062 (4)0.045 (4)0.003 (3)0.011 (3)0.002 (3)
N30.045 (3)0.025 (2)0.041 (3)0.0041 (18)0.011 (2)0.0012 (18)
N10.055 (5)0.010 (2)0.045 (4)0.0000.010 (3)0.000
C10.038 (5)0.026 (4)0.041 (4)0.0000.013 (3)0.000
N40.052 (3)0.044 (2)0.047 (3)0.012 (2)0.011 (2)0.001 (2)
C30.043 (4)0.023 (2)0.042 (3)0.001 (2)0.010 (3)0.003 (2)
C90.070 (5)0.045 (3)0.051 (4)0.004 (3)0.018 (3)0.010 (3)
C130.071 (5)0.041 (3)0.040 (3)0.012 (3)0.011 (3)0.001 (3)
C70.036 (3)0.034 (3)0.037 (3)0.002 (2)0.013 (2)0.003 (2)
C60.058 (4)0.034 (3)0.044 (3)0.011 (3)0.015 (3)0.003 (2)
N50.083 (4)0.040 (3)0.047 (3)0.006 (3)0.017 (3)0.002 (2)
N20.075 (6)0.018 (3)0.041 (4)0.0000.010 (4)0.000
C100.065 (5)0.055 (4)0.047 (4)0.023 (3)0.016 (3)0.015 (3)
C80.045 (4)0.043 (3)0.041 (3)0.004 (2)0.005 (3)0.008 (2)
C50.060 (4)0.037 (3)0.060 (4)0.019 (3)0.021 (3)0.004 (3)
C110.042 (4)0.079 (5)0.037 (4)0.016 (3)0.001 (3)0.006 (3)
C40.037 (3)0.029 (2)0.036 (3)0.000 (2)0.012 (2)0.008 (2)
C20.067 (6)0.019 (3)0.046 (5)0.0000.014 (4)0.000
Geometric parameters (Å, º) top
Au1—C11.975 (7)N4—C51.329 (7)
Au1—C2i1.988 (7)N4—C41.333 (7)
Au2—C13ii1.988 (6)C3—C41.376 (7)
Au2—C131.988 (6)C3—H30.9300
Fe1—N12.107 (5)C9—C101.373 (7)
Fe1—N22.117 (6)C9—C81.377 (7)
Fe1—O12.122 (4)C9—H90.9300
Fe1—O1iii2.122 (4)C13—N51.149 (7)
Fe1—N32.223 (5)C7—C81.374 (7)
Fe1—N3iii2.223 (5)C7—C41.492 (7)
O1—H1A0.8564C6—C51.368 (7)
O1—H1B0.8479C6—H60.9300
C12—C71.380 (6)N2—C21.125 (8)
C12—C111.390 (7)C10—C111.349 (8)
C12—H120.9300C10—H100.9300
N3—C61.333 (6)C8—H80.9300
N3—C31.344 (6)C5—H50.9300
N1—C11.143 (8)C11—H110.9300
C1—Au1—C2i180N3—C3—C4123.4 (5)
C13ii—Au2—C13180N3—C3—H3118.3
N1—Fe1—N2180C4—C3—H3118.3
O1—Fe1—O1iii176.73 (19)C10—C9—C8120.2 (6)
N3—Fe1—N3iii179.19 (19)C10—C9—H9119.9
N1—Fe1—O191.63 (9)C8—C9—H9119.9
N2—Fe1—O188.37 (9)N2—C2—Au1iv180
N1—Fe1—O1iii91.63 (9)N5—C13—Au2175.8 (7)
N2—Fe1—O1iii88.37 (9)C8—C7—C12118.2 (5)
N1—Fe1—N390.40 (10)C8—C7—C4122.0 (5)
N2—Fe1—N389.60 (10)C12—C7—C4119.8 (5)
O1—Fe1—N390.09 (16)N3—C6—C5120.9 (5)
O1iii—Fe1—N389.89 (16)N3—C6—H6119.6
N1—Fe1—N3iii90.40 (10)C5—C6—H6119.6
N2—Fe1—N3iii89.60 (10)C11—C10—C9119.3 (6)
O1—Fe1—N3iii89.89 (16)C11—C10—H10120.3
O1iii—Fe1—N3iii90.09 (16)C9—C10—H10120.3
Fe1—O1—H1A108.0C7—C8—C9121.2 (5)
Fe1—O1—H1B109.9C7—C8—H8119.4
H1A—O1—H1B100.6C9—C8—H8119.4
C7—C12—C11120.1 (6)N4—C5—C6124.0 (5)
C7—C12—H12120.0N4—C5—H5118.0
C11—C12—H12120.0C6—C5—H5118.0
C6—N3—C3115.3 (5)C10—C11—C12121.1 (6)
C6—N3—Fe1123.0 (4)C10—C11—H11119.5
C3—N3—Fe1121.6 (4)C12—C11—H11119.5
C1—N1—Fe1180N4—C4—C3120.7 (5)
C2—N2—Fe1180N4—C4—C7117.1 (5)
N1—C1—Au1180C3—C4—C7122.3 (5)
C5—N4—C4115.6 (5)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+3/2; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N5v0.862.022.851 (6)165
O1—H1B···N5vi0.852.183.023 (6)178
Symmetry codes: (v) x, y+1, z+1/2; (vi) x+1, y+1, z+3/2.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant Nos. 19BF037-01M, DZ/55-2018); H2020-MSCA-RISE-2016 (grant No. 73422).

References

First citationAgustí, G., Muñoz, M. C., Gaspar, A. B. & Real, J. A. (2008). Inorg. Chem. 47, 2552–2561.  Web of Science PubMed Google Scholar
First citationArcís-Castillo, Z., Muñoz, M. C., Molnár, G., Bousseksou, A. & Real, J. A. (2013). Chem. Eur. J. 19, 6851–6861.  Web of Science PubMed Google Scholar
First citationClements, J. E., Price, J. R., Neville, S. M. & Kepert, C. J. (2014). Angew. Chem. Int. Ed. 53, 10164–10168.  Web of Science CSD CrossRef CAS Google Scholar
First citationClements, J. E., Price, J. R., Neville, S. M. & Kepert, C. J. (2016). Angew. Chem. Int. Ed. 55, 15105–15109.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGural'skiy, I. A., Golub, B. O., Shylin, S. I., Ksenofontov, V., Shepherd, H. J., Raithby, P. R., Tremel, W. & Fritsky, I. O. (2016). Eur. J. Inorg. Chem. pp. 3191–3195.  Google Scholar
First citationGütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. Vol. 234, pp. 233–235. Berlin, Heidelberg, New York: Springer.  Google Scholar
First citationKosone, T. & Kitazawa, T. (2016). Inorg. Chim. Acta, 439, 159–163.  Web of Science CSD CrossRef CAS Google Scholar
First citationKucheriv, O. I., Shylin, S. I., Ksenofontov, V., Dechert, S., Haukka, M., Fritsky, I. O. & Gural'skiy, I. A. (2016). Inorg. Chem. 55, 4906–4914.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMuñoz, M. C. & Real, J. A. (2011). Coord. Chem. Rev. 255, 2068–2093.  Google Scholar
First citationNiel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E. & Real, J. A. (2003). Angew. Chem. Int. Ed. 42, 3760–3763.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSenthil Kumar, K. & Ruben, M. (2017). Coord. Chem. Rev. 346, 176–205.  Web of Science CrossRef CAS Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H., Xu, Z. & Sato, O. (2014). Microporous Mesoporous Mater. 197, 72–76.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds